ebook img

Einstein's theory : a rigorous introduction to general relativity for the mathematically untrained PDF

650 Pages·2002·8.85 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Einstein's theory : a rigorous introduction to general relativity for the mathematically untrained

Einstein’s Theory a Rigorous Introduction for the Mathematically Untrained Øyvind Grøn and Arne Næss 2 c m = E R µν−1 g 2 µνR =8π G c4 T µν µ du + Γµ uα uν = 0 αν dλ Ad Infinitum ∞ Einstein’s Theory a Rigorous Introduction to General Relativity for the Mathematically Untrained by Øyvind Grøn Arne Næss ∞ Ad Infinitum Oslo Einstein’s Theory: a Rigorous Introduction to General Relativity for the Mathematically Untrained by Øyvind Grøn and Arne Næss Copyright (cid:13)c 2002 by Ad Infinitum AS, Oslo, Norway www.adinfinitum.no ISBN 82-92261-07-9 Contents Preface by Arne Næss xv Preface by Øyvind Grøn xx 1 Vectors 24 1.1 Introduction . . . . . . . . . . . . . . . 24 1.2 Vectors as arrows . . . . . . . . . . . . . 25 1.3 Vector fields . . . . . . . . . . . . . . . . 28 1.4 Calculus of vectors. Two dimensions . 33 1.5 Three and more dimensions . . . . . . 45 1.6 The vector product . . . . . . . . . . . . 51 1.7 Space and metric . . . . . . . . . . . . . 55 2 Differential calculus 63 2.1 Differentiation . . . . . . . . . . . . . . 63 2.2 Calculation of slopes of tangent lines . 72 2.3 Geometry of second derivatives . . . . 75 2.4 The product rule . . . . . . . . . . . . . 76 iv Contents v 2.5 The chain rule . . . . . . . . . . . . . . 79 2.6 The derivative of a power function . . 82 2.7 Differentiation of fractions . . . . . . . 84 2.8 Functions of several variables . . . . . 86 2.9 The MacLaurin and the Taylor series ex- pansions . . . . . . . . . . . . . . . . . . 94 3 Tangent vectors 103 3.1 Parametric description of curves . . . . 103 3.2 Parametrization of a straight line . . . 108 3.3 Tangent vector fields . . . . . . . . . . . 111 3.4 Differential equations and Newton’s 2. law . . . . . . . . . . . . . . . . . . . . . 116 3.5 Integration . . . . . . . . . . . . . . . . 118 3.6 Exponential and logarithmic functions 125 3.7 Integrating equations of motion . . . . 131 4 Curvilinear coordinate systems 135 4.1 Trigonometric functions . . . . . . . . . 137 4.2 Plane polar coordinates . . . . . . . . . 155 5 The metric tensor 162 5.1 Basis vectors and dimension of space . 162 5.2 Space and spacetime . . . . . . . . . . . 166 5.3 Transformation of vector components . 169 5.4 The Galilean coordinate transformation 176 5.5 Transformation of basis vectors . . . . 181 5.6 Vector components . . . . . . . . . . . . 183 Contents vi 5.7 Tensors . . . . . . . . . . . . . . . . . . 186 5.8 The metric tensor . . . . . . . . . . . . . 191 5.9 Tensor components . . . . . . . . . . . 200 5.10 The Lorentz transformation . . . . . . . 205 5.11 The relativistic time dilation . . . . . . 219 5.12 The line element . . . . . . . . . . . . . 222 5.13 Minkowski diagrams and light cones . 232 5.14 The spacetime interval . . . . . . . . . 236 5.15 The general formula for the line element 246 5.16 Epistemological comment . . . . . . . . 253 5.17 Kant or Einstein . . . . . . . . . . . . . 256 6 The Christoffel symbols 265 6.1 Geometrical calculation . . . . . . . . . 267 6.2 Algebraic calculation . . . . . . . . . . 280 6.3 Spherical coordinates . . . . . . . . . . 285 6.4 Symmetry of the Christoffel symbols . 293 7 Covariant differentiation 295 7.1 Variation of vector components . . . . 296 7.2 The covariant derivative . . . . . . . . 301 7.3 Transformation of covariant derivatives 309 7.4 Covariant tensor components . . . . . 313 7.5 Connection expressed by the metric . . 315 8 Geodesics 320 8.1 Generalizing ‘flat space concepts’ . . . 321 Contents vii 8.2 Parallel transport: unexpected difficul- ties . . . . . . . . . . . . . . . . . . . . . 323 8.3 Definition of parallel transport . . . . . 327 8.4 The general geodesic equation . . . . . 329 8.5 Local Cartesian coordinates . . . . . . . 334 9 Curvature 337 9.1 The curvature of plane curves . . . . . 337 9.2 The curvature of surfaces . . . . . . . . 342 9.3 Curl . . . . . . . . . . . . . . . . . . . . 356 9.4 The Riemann curvature tensor . . . . . 361 10 Conservation laws of classical mechanics 372 10.1 Introduction . . . . . . . . . . . . . . . 372 10.2 Divergence . . . . . . . . . . . . . . . . 375 10.3 The equation of continuity . . . . . . . 380 10.4 The stress tensor . . . . . . . . . . . . . 384 10.5 The net surface force acting on a fluid element . . . . . . . . . . . . . . . . . . 388 10.6 The material derivative . . . . . . . . . 393 10.7 The equation of motion . . . . . . . . . 396 10.8 Four-velocity . . . . . . . . . . . . . . . 398 10.9 Newtonian energy-momentum of a per- fect fluid . . . . . . . . . . . . . . . . . . 403 10.10 The basic conservation laws . . . . . . 407 10.11 Relativistic energy-momentum of a per- fect fluid . . . . . . . . . . . . . . . . . . 413 Contents viii 11 Einstein’s field equations 415 11.1 A new conception of gravitation . . . . 415 11.2 The Ricci curvature tensor . . . . . . . 418 11.3 The Bianchi identity and Einstein’s ten- sor . . . . . . . . . . . . . . . . . . . . . 426 12 Einstein’s theory of spacetime and gravitation 442 12.1 Newtonian kinematics . . . . . . . . . . 442 12.2 Forces . . . . . . . . . . . . . . . . . . . 444 12.3 Newton’s theory of gravitation . . . . . 451 12.4 Special relativity and gravity . . . . . . 453 12.5 The general theory of relativity . . . . . 463 12.6 The Newtonian limit of general relativity 479 12.7 Repulsive gravitation . . . . . . . . . . 489 12.8 ‘Geodesic postulate’ and the field equa- tions . . . . . . . . . . . . . . . . . . . . 491 12.9 Constants of motion . . . . . . . . . . . 495 12.10 Conceptual structure of general relativity 498 12.11 General relativity versus Newton’s the- ory . . . . . . . . . . . . . . . . . . . . . 499 12.12 Epistemological comment . . . . . . . . 502 13 Some applications 505 13.1 Rotating reference frame . . . . . . . . 507 13.2 The gravitational time dilation . . . . . 510 13.3 The Schwarzschild solution . . . . . . . 517 13.4 The Pound–Rebka experiment . . . . . 526 13.5 The Hafele–Keating experiment . . . . 530 Contents ix 13.6 Mercury’s perihelion precession . . . . 535 13.7 Gravitational deflection of light . . . . 543 13.8 Black holes . . . . . . . . . . . . . . . . 548 14 Relativistic universe models 561 14.1 Observations . . . . . . . . . . . . . . . 562 14.2 Homogeneous and isotropic models . . 566 14.3 Einstein’s cosmological field equations 572 14.4 The Friedmann models . . . . . . . . . 577 14.5 Thematterandradiationdominatedpe- riods . . . . . . . . . . . . . . . . . . . . 587 14.6 Problems with the standard model . . 591 14.7 Inflationary cosmology . . . . . . . . . 594 A The Laplacian in a spherical coordinate system 605 B Ricci tensor of a static, spherically symmetric metric 614 C Ricci tensor of the Robertson–Walker metric 624 Bibliography 631 Index 633 List of Figures 1.1 Vectors with different directions . . . . . . . 26 1.2 Vectors with different magnitudes . . . . . . 27 1.3 Parallel transportation of a vector . . . . . . 27 1.4 Wind velocity field over Europe on February 3, 1988 . . . . . . . . . . . . . . . . . . . . . . 30 1.5 Grid . . . . . . . . . . . . . . . . . . . . . . . 31 1.6 Basis vectors and vector components . . . . 34 1.7 Vector components . . . . . . . . . . . . . . 35 1.8 Vector addition . . . . . . . . . . . . . . . . . 38 1.9 Vector subtraction . . . . . . . . . . . . . . . 38 1.10 Decomposition of a vector . . . . . . . . . . 39 1.11 Vector addition . . . . . . . . . . . . . . . . . 41 1.12 Vector projection . . . . . . . . . . . . . . . . 42 1.13 Commutation of the dot product . . . . . . 43 1.14 Associative rule . . . . . . . . . . . . . . . . 44 1.15 Cartesian basis vectors in three dimensions 46 1.16 Vector components in three dimensions . . . 47 ~ ~ 1.17 The vector product of A and B . . . . . . . . 51 x

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.