ebook img

Einstein-Podolsky-Rosen Steerability Criterion for Two-Qubit Density Matrices PDF

0.13 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Einstein-Podolsky-Rosen Steerability Criterion for Two-Qubit Density Matrices

Einstein-Podolsky-RosenSteerability CriterionforTwo-QubitDensity Matrices Jing-LingChen,1,2,∗ Hong-Yi Su,1,2 Xiang-Jun Ye,1 ChunfengWu,2 and C. H. Oh2,3,† 1Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071, People’s Republic of China 2CentreforQuantumTechnologies, NationalUniversityofSingapore, 3ScienceDrive2,Singapore117543 3Department of Physics, NationalUniversityof Singapore, 2Science Drive3, Singapore 117542 (Dated:January31,2012) WeproposeasufficientcriterionS =λ1+λ2−(λ1−λ2)2<0todetectEinstein-Podolsky-Rosensteering forarbitrarytwo-qubitdensitymatrixρAB. Hereλ1,λ2 arerespectivelytheminimalandthesecondminimal eigenvalues of ρTABB, which isthe partial transpose of ρAB. Byinvestigating several typical two-qubit states suchastheisotropicstate, Bell-diagonal state, maximallyentangled mixedstate, etc., weshow thiscriterion 2 worksefficientlyandcanmakereasonablepredictionsforsteerability. Wealsopresentamixedstateofwhich 1 steerabilityalwaysexists,andcomparetheresultwiththeviolationofsteeringinequalities. 0 2 PACSnumbers:03.65.Ud,03.67.-a n a J In 1935, Einstein-Podolsky-Rosen (EPR) questioned the tialtransposematrixρTB. Welistsomeexamplestoshowthe AB 8 completeness of quantum mechanics based on locality and utilityofourcriterion. 2 realism [1]. Soon after, Schro¨dinger [2] published a semi- SteerabilityCriterion.—Let λ1,λ2,λ3,λ4 befoureigen- nalpaperdefiningthenotionofentanglementtodescribethe valuesofρTB inthesmall-to-la{rgeorder[ρTB}andρTA share ] AB AB AB h correlationsbetweentwoparticles. Entanglement,aquantum thesameeigenvalues]. ThenthecriterionforEPRsteeringis p statewhichcannotbeseparated,isindeedtheessentialentity givenby - thatevaluateswhetheraquantuminformationprocessingcan nt be accomplished in quantum level. The more entanglement S =λ1+λ2−(λ1−λ2)2 <0, (1) a is, themoreprowessoftheresourcehas. Variouscriteriafor when(1)issatisfied,thenEPRsteeringexists. u q quantitativewitnessesofentanglement [3–5]havebeenpro- Example1.—Thenonmaximalentangledstate [ posed in recent decades. Generally speaking, entanglement cos2θ 0 0 sinθcosθ measuresaremostlyasfunctionsofdensityoperator. 4  0 0 0 0  v EPR steering, like entanglement, was originated from ρ1 = 0 0 0 0 (2) 93 Ssihstreo¨ndcinygbeert’ws ereepnlyqutoantthuemEmPeRchpaanraicdsoaxntdolroecflaelcrteathliesmin,caonnd- sinθcosθ 0 0 sin2θ  6 was formalizedby Wiseman, Jones, and Doherty [6]. In the withθ [0,π/4]alwaysviolatestheCHSHinequalityaswell 4 ∈ . steeringscenario,forapureentangledstateheldbytwosep- assteeringinequalitygivenin Ref.[9] exceptθ = 0. Inthis 2 aratedobserversAliceandBob,Bob’squbitcanbe“steered” case, we have λ sinθcosθ,sin2θ,sinθcosθ,cos2θ , 1 ∈ {− } into different ensembles of states although Alice has no ac- andthesteerabilitycriteriongives 1 1 cesstothequbit. AlicetriestoconvinceBobthattheyshare 1 : two systems in an entangled state. If the systems are actu- = sin2θ(1+2sin2θ), (3) v S −2 allyentangled,quantummechanicspredictsthat,byperform- i X ingdifferentmeasurementsonhersystem,Alicecanremotely hencedetectsallthesteering. Example2.—Theisotropicstate r prepare different states for Bob’s system. EPR steering is a commonlydetectedbytheviolationofEPR-steeringinequali- 1 tiesintheformofcorrelations[7–16]. Althoughmanyefforts ρ2 = Vρ0+(1 V) − 4 have been devoted to the investigationsof EPR steering, the 1+V 0 0 V EPR-steering inequalities in the literatures are not effective  04 1−V 0 02  enoughfortwo-qubitsystems. Therefore,itisnotpossibleto = 0 04 1−V 0 , (4) observetheEPRsteeringforsomestates,especiallyformixed  V 0 04 1+V states. For EPR steering, entanglement is necessary but not  2 4  sufficient. Byresortingtopartialtransposeofdensityopera- whereρ0 = 21(|00i+|11i)(h00|+h11|)is themaximalen- tor,entanglementcanbecertified. Thisisunderstandablethat tangled state, and 1 is the four-by-four identity matrix. It the densityoperatorcontainsallthe informationof thestate. has been known that the state has the steering in the region It is hence reasonableto anticipate a criterion based entirely V (1/2,1], and no steering in V [0,1/2]. In this case, ondensitymatrixforEPRsteeringwitness. we∈have λ 1−3V,1+V,1+V,1+∈V , and the steerability ∈ { 4 4 4 4 } Inthiswork,weproposeacriteriontodetectEPRsteering criteriongives of an arbitrary two-qubit density matrix ρAB. The criterion 1 canbeobtainedfromtheconstraintsontheeigenvaluesofpar- = (2V 1)(1+V), (5) S −2 − 2 hencedetectsthecriticalvalueVcr = 21. 1.0 Example3.—TheBell-diagonalstate 0.8 ρ3 = V Ψ+ Ψ+ +(1 V)χ+ χ+ | ih | − | ih | 0.6 V2 0 0 V2 F 2-settingandCHSH 0 1−V 1−V 0 0.4 3-setting = 0 1−2V 1−2V 0 (6) 10-setting  2 2  0.2 V 0 0 V 2 2 0.0 violatesthesteeringinequalityin Ref.[9] exceptV = 1. In 2 0.0 0.5 1.0 1.5 thiscase, wehaveλ V 1,1 V,1,1 , andthe steer- ∈ { − 2 2 − 2 2} Θ abilitycriteriongives = (1 2V)2, (7) FIG.1: (Coloronline)Quantumpredictionsofsteeringinequalities. S − − Theregionabovethebluelineissteerabledetectedbythetwo-setting whichrecoversthesameresult. steeringinequalityaswellasCHSHinequality.Theregionabovethe Example 4.—The nonmaximal entangle state with color greenandredlinesarerespectivelysteerabledetectedbythethree- noise andten-settingsteeringinequalities. V cos2θ+ 1−V 0 0 V sinθcosθ 2  0 0 0 0  with g = 4/9 for γ [0,2√2/3]. It violates the 10- ρ4 = (8) ∈ 0 0 0 0 setting steering inequality in Ref. [9] for γ 0.2564. In  V sinθcosθ 0 0 V sin2θ+ 1−V this case, we have λ 1 (1 1+3≥24γ2), 1 (1 +  2  ∈ {36 − 36 1+324γ2),4/9,1/2 ,andthesteerpabilitycriteriongives with θ [0,π/4] always violates CHSH inequality as well } ∈ p as the steering inequality in Ref. [9] exceptV = θ = 0. In 17 Vthicsocsa2sθe),,w1e(1ha+veVλc∈os{2−θ)V,siannθdcothseθ,sVteesrianbθilcitoysθc,ri12te(r1io−n S = 324 −γ2, (14) 2 } whichpredictsthecriticalvalue gives √17 = V2sin22θ, (9) γcr = 0.2291. (15) S − 18 ≃ whichrecoversthesameresult. Example 5.—The maximally entangled mixed state Example7.—Thestate (MEMS) 1−cosθF 0 0 sinθF 2 2 g(γ) 0 0 γ/2 ρ7 = 0 cosθF 0 0 , (16) ρ5 = 00 1−20g(γ) 00 00 , (10)  sin20θF 00 00 1− 1+0c2osθF γ/2 0 0 g(γ)   withF [0,1]andθ [0,π/2].Theconcurrenceofthestate ∈ ∈ isgivenby with g(γ) = 1/3 for γ [0,2/3] and g(γ) = γ/2 for ∈ γ [2/3,1]. It violates the 10-settingsteering inequality in Re∈f. [9] for γ 0.6029. In the case of γ [0,2/3], we = 2F(1 F(1+cosθ) 1)sin2 θ, (17) ≥ ∈ C r −| − | 2 haveλ 1−√1+9γ2,1,1,1+√1+9γ2 ,andthesteerability ∈ { 6 3 3 6 } which vanishes only when F = 0 or θ = 0. In this case, criteriongives λ Fsin2 θ,Fsin2 θ,Fcos2 θ,1 Fcos2 θ ,wehave ∈ {− 2 2 2 − 2} = 1 (16 9γ2 8 1+9γ2), (11) λ1 =−λ2 =−Fsin2 2θ,andthesteerabilitycriteriongives S 36 − − p θ = 4F2sin4 , (18) whichpredictsthecriticalvalue S − 2 2 which predicts that steering always exists. We compare the γcr = 3q2(6−√33)≃0.4765. (12) aboveresultwiththeviolationofthesteeringinequalitiesand CHSHinequality(seeFig.1). Example6.—Thestate Anytwo-qubitstatecanbewritteninthefollowingform g 0 0 γ/2 3 1  0 1/2 g 0 0  ρ = (1 1+~σA u 1+1 ~σB v+ β σA σB), ρ6 = − , (13) AB 4 ⊗ · ⊗ ⊗ · ij i ⊗ j 0 0 0 0 iX,j=1   γ/2 0 0 1/2 (19)   3 where u and v are Bloch vectors for particles A and B, re- spectively; β are some real numbers. Particularly, we take ij u = (0,0,r), v = (0,0,s)and β = c δ , then we obtain ij i ij thefive-parameterX-stateas 3 1 ρAB = 4(1⊗1+r σ3A⊗1+1⊗sσ3B+ ciσiA⊗σiB). Xi=1 (20) InFig.2andFig.3wecomparethedetectiveabilityofsteer- abilitycriterionandtheten-settingsteeringinequality. Insummary,thecriterionisproposedduetonumericalob- servation,whichworksefficientlyfordetectingEPRsteering oftwo-qubitdensitymatrix. Similar toPPT criterionforde- tectingentanglement,thesteerabilitycriterionmayalsowork asanecessaryconditionfordemonstratingsteerabilityoftwo qubits. Itwouldbesignificanttoderivethesteerabilitycrite- rionfromanalyticapproach,suchaspositivemaps,andthen placeitonafirmerfoundation. FIG.2:(Coloronline)Comparisonofdetectiveabilityofsteerability J.L.C. is supported by National Basic Research Program criterionandthesteeringinequalityforr =s=0. Thetetrahedron (973Program)ofChinaunderGrantNo. 2012CB921900and is the set of all two-qubit states. Four vertices represent four Bell NSF of China (Grant Nos. 10975075 and 11175089). This states,respectively. ThestateswithS =0locateontheredsurface, work is also partly supportedby National Research Founda- inside which are states with S > 0, outside which are states with tionandMinistryofEducation,Singapore(GrantNo. WBS: S < 0. The green points represent the states that violate the ten- R-710-000-008-271). setting steering inequality. Numerical result shows that the green pointsarealwayslocatedinthevolumebetweentheredsurfaceand thepolytope(tetrahedrron)definedbythefourvertices(Bellstates). ∗ Electronicaddress:[email protected] † Electronicaddress:[email protected] [1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935). [2] E.Schro¨ingerandM.Born,Math.Proc.CambridgePhilos.Soc. 31,555(1935);E.Schro¨ingerandP.A.M.Dirac,Math.Proc. CambridgePhilos.Soc.32,446(1936). [3] A.Peres,Phys.Rev.Lett.77,1413(1996). [4] M.Horodeckia,P.Horodeckib,andR.Horodeckic,Phys.Lett. A223,1(1996);P.Horodecki,Phys.Lett.A232,333(1997); M.Horodecki,P.Horodecki,andR.Horodecki,Phys.Rev.Lett 80,5239(1998). [5] W.K.Wotters,Phys.Rev.Lett.80,2245(1997). [6] H.M.Wiseman,S.J.Jones,andA.C.Doherty,Phys.Rev.Lett. 98,140402(2007). [7] S.J.Jones, H.M.Wiseman,andA.C.Doherty,Phys.Rev.A 76,052116(2007). [8] E.G.Cavalcanti,S.J.Jones,H.M.Wiseman,andM.D.Reid, Phys.Rev.A80,032112(2009). [9] D. J. Saunders, S. J. Jones, H. M.Wiseman and G. J. Pryde, NaturePhys.6,845(2009). [10] Q.Y.He,P.D.Drummond,andM.D.Reid,Phys.Rev.A83, FIG.3: (Coloronline)Comparisonofdetectiveabilityofsteerabil- 032120(2011). ity criterionand the steering inequality for |r| = |s| = 1/2. The [11] E.G.Cavalcanti,Q.Y.He,M.D.Reid,H.M.Wiseman,Phys. tetrahedronisthesetofalltwo-qubitstates. Fourverticesrepresent Rev.A84,032115(2011). fourBellstates,respectively.ThestateswithS =0locateonthered [12] M.D.Reid,Phys.Rev.A40,913(1989). surface,insidewhicharestateswithS >0,outsidewhicharestates [13] M.D.Reid,P.D.Drummond,W.P.Bowen,E.G.Cavalcanti, withS < 0. Thegreen points represent the statesthat violate the P.K.Lam,H.A.Bachor,U.L.Anderson,andG.Leuchs,Rev. ten-settingsteeringinequality.Numericalresultshowsthatthegreen Mod.Phys.81,1727(2009). pointsarealwayslocatedinthevolumebetweentheredsurfaceand [14] Z.Y.Ou,S.F.Pereira,H.J.Kimble,andK.C.Peng,Phys.Rev. thepolytope(tetrahedrron)definedbythefourvertices(Bellstates). Lett.68,3663(1992). 4 [15] J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, SoutoRibeiro,Phys.Rev.Lett.106,130402(2011). Phys.Rev.Lett.92,210403(2004). [16] S.P.Walborn, A.Salles,R.M.Gomes, F.Toscano, andP.H.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.