Graduate Texts in Physics Günter Ludyk Einstein in Matrix Form Exact Derivation of the Theory of Special and General Relativity without Tensors Graduate Texts in Physics Forfurthervolumes: www.springer.com/series/8431 Graduate Texts in Physics Graduate Texts in Physics publishes core learning/teaching material for graduate- and ad- vanced-levelundergraduatecoursesontopicsofcurrentandemergingfieldswithinphysics, both pure and applied. These textbooks serve students at the MS- or PhD-level and their instructorsascomprehensivesourcesofprinciples,definitions,derivations,experimentsand applications(asrelevant)fortheirmasteryandteaching,respectively.Internationalinscope and relevance, the textbooks correspond to course syllabi sufficiently to serve as required reading.Theirdidacticstyle,comprehensivenessandcoverageoffundamentalmaterialalso makethemsuitableasintroductionsorreferencesforscientistsentering,orrequiringtimely knowledgeof,aresearchfield. SeriesEditors ProfessorWilliamT.Rhodes DepartmentofComputerandElectricalEngineeringandComputerScience ImagingScienceandTechnologyCenter FloridaAtlanticUniversity 777GladesRoadSE,Room456 BocaRaton,FL33431 USA [email protected] ProfessorH.EugeneStanley CenterforPolymerStudiesDepartmentofPhysics BostonUniversity 590CommonwealthAvenue,Room204B Boston,MA02215 USA [email protected] ProfessorRichardNeeds CavendishLaboratory JJThomsonAvenue CambridgeCB30HE UK [email protected] ProfessorMartinStutzmann WalterSchottkyInstitut TUMünchen 85748Garching Germany [email protected] Günter Ludyk Einstein in Matrix Form Exact Derivation of the Theory of Special and General Relativity without Tensors ProfessorDr.GünterLudyk PhysicsandElectricalEngineering UniversityofBremen Bremen,Germany [email protected] ISSN1868-4513 ISSN1868-4521(electronic) GraduateTextsinPhysics ISBN978-3-642-35797-8 ISBN978-3-642-35798-5(eBook) DOI10.1007/978-3-642-35798-5 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013942312 ©Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To mygrandchildren Ann-Sophie and Alexander Hüttermann Preface ThisbookisanintroductiontothetheoriesofSpecialandGeneralRelativity.The targetaudiencearephysicists,engineersandappliedscientistswhoarelookingfor anunderstandableintroductiontothetopic—withouttoomuchnewmathematics. All necessary mathematical tools are provided either directly in the text or in theappendices.Alsotheappendicescontainanintroductiontovectorormatrices: first,asarefresherofknownfundamentalalgebra,andsecond,togainnewexperi- ences,e.g.withtheKronecker-productofmatricesanddifferentiationwithrespect tovectorsandmatrices. ThefundamentalequationsofEinstein’stheoryofSpecialandGeneralRelativity arederivedusingmatrixcalculuswithoutthehelpoftensors.Thisfeaturemakesthe bookspecialandavaluabletoolforscientistsandengineerswithnoexperiencein thefieldoftensorcalculus.ButphysicistsarealsodiscoveringthatEinstein’svac- uum field equations can be expressed as a system of first-order differential-matrix equations, wherein the unknown quantity is a matrix. These matrix equations are also easy to handle when implementing numerical algorithms using standard soft- wareas,e.g.MATHEMATICAorMAPLE. In Chap. 1, the foundations of Special Relativity are developed. Chapter 2 de- scribes the structure and principles of General Relativity. Chapter 3 explains the Schwarzschild solution of spherical body gravity and examines the “Black Hole” phenomenon.Furthermore,twoappendicessummarizethebasicsofthematrixthe- oryanddifferentialgeometry. Aftercompletionofthebook,Idiscoveredthepaper[37],whereEinstein’sequa- tionsofasimilarshapearederived. I would like to thank Claus Ascheron (Springer) who has made great effort to- wards the publicationof this book. Finally,I would like to thank my wife Renate, withoutherthisbookwouldhaveneverbeenpublished! Bremen GünterLudyk vii Contents 1 SpecialRelativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 GalileiTransformation . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 RelativityPrincipleofGalilei . . . . . . . . . . . . . . . . 1 1.1.2 GeneralGalileiTransformation . . . . . . . . . . . . . . . 5 1.1.3 Maxwell’sEquationsandGalileiTransformation . . . . . . 6 1.2 LorentzTransformation . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 DeterminingtheComponentsoftheTransformationMatrix 8 1.2.3 SimultaneityatDifferentPlaces . . . . . . . . . . . . . . . 12 1.2.4 LengthContractionofMovingBodies . . . . . . . . . . . 13 1.2.5 TimeDilation . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3 InvarianceoftheQuadraticForm . . . . . . . . . . . . . . . . . . 15 1.3.1 InvariancewithRespecttoLorentzTransformation. . . . . 17 1.3.2 LightCone . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3.3 ProperTime . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.4 RelativisticVelocityAddition . . . . . . . . . . . . . . . . . . . . 20 1.4.1 GalileanAdditionofVelocities . . . . . . . . . . . . . . . 20 1.5 LorentzTransformationoftheVelocity . . . . . . . . . . . . . . . 22 1.6 MomentumandItsLorentzTransformation . . . . . . . . . . . . . 25 1.7 AccelerationandForce . . . . . . . . . . . . . . . . . . . . . . . 26 1.7.1 Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.7.2 EquationofMotionandForce . . . . . . . . . . . . . . . . 28 1.7.3 EnergyandRestMass . . . . . . . . . . . . . . . . . . . . 30 1.7.4 EmissionofEnergy . . . . . . . . . . . . . . . . . . . . . 31 1.8 RelativisticElectrodynamics . . . . . . . . . . . . . . . . . . . . 32 1.8.1 Maxwell’sEquations . . . . . . . . . . . . . . . . . . . . 32 1.8.2 LorentzTransformationoftheMaxwell’sEquations . . . . 34 1.8.3 ElectromagneticInvariants . . . . . . . . . . . . . . . . . 37 1.8.4 ElectromagneticForces . . . . . . . . . . . . . . . . . . . 39 ix x Contents 1.9 TheEnergy–MomentumMatrix . . . . . . . . . . . . . . . . . . . 41 1.9.1 TheElectromagneticEnergy–MomentumMatrix . . . . . . 41 1.9.2 TheMechanicalEnergy–MomentumMatrix . . . . . . . . 43 1.9.3 TheTotalEnergy–MomentumMatrix . . . . . . . . . . . . 47 1.10 TheMostImportantDefinitionsandFormulasinSpecialRelativity 48 2 TheoryofGeneralRelativity . . . . . . . . . . . . . . . . . . . . . . 51 2.1 GeneralRelativityandRiemannianGeometry . . . . . . . . . . . 51 2.2 MotioninaGravitationalField . . . . . . . . . . . . . . . . . . . 53 2.2.1 FirstSolution . . . . . . . . . . . . . . . . . . . . . . . . 54 2.2.2 SecondSolution . . . . . . . . . . . . . . . . . . . . . . . 55 ˜ 2.2.3 RelationBetweenΓ andG . . . . . . . . . . . . . . . . . 56 2.3 GeodesicLinesandEquationsofMotion . . . . . . . . . . . . . . 57 2.3.1 AlternativeGeodesicEquationofMotion . . . . . . . . . . 62 2.4 Example:UniformlyRotatingSystems . . . . . . . . . . . . . . . 64 2.5 GeneralCoordinateTransformations . . . . . . . . . . . . . . . . 67 2.5.1 AbsoluteDerivatives . . . . . . . . . . . . . . . . . . . . . 67 ˜ 2.5.2 TransformationoftheChristoffelMatrixΓ . . . . . . . . . 69 ˆ 2.5.3 TransformationoftheChristoffelMatrixΓ . . . . . . . . . 71 2.5.4 CoordinateTransformationandCovariantDerivative . . . . 72 2.6 IncidentalRemark . . . . . . . . . . . . . . . . . . . . . . . . . . 76 2.7 ParallelTransport . . . . . . . . . . . . . . . . . . . . . . . . . . 78 2.8 RiemannianCurvatureMatrix . . . . . . . . . . . . . . . . . . . . 80 2.9 PropertiesoftheRiemannianCurvatureMatrix . . . . . . . . . . . 81 ˇ 2.9.1 CompositionofRandR . . . . . . . . . . . . . . . . . . 81 2.10 TheRicciMatrixandItsProperties . . . . . . . . . . . . . . . . . 88 2.10.1 SymmetryoftheRicciMatrixR . . . . . . . . . . . . . 90 Ric 2.10.2 TheDivergenceoftheRicciMatrix . . . . . . . . . . . . . 92 2.11 GeneralTheoryofGravitation . . . . . . . . . . . . . . . . . . . . 93 2.11.1 TheEinstein’sMatrixG. . . . . . . . . . . . . . . . . . . 93 2.11.2 Newton’sTheoryofGravity . . . . . . . . . . . . . . . . . 94 2.11.3 TheEinstein’sEquationwithG . . . . . . . . . . . . . . . 97 2.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 2.12.1 CovariancePrinciple . . . . . . . . . . . . . . . . . . . . . 99 2.12.2 Einstein’sFieldEquationandMomentum . . . . . . . . . 101 2.13 Hilbert’sActionFunctional . . . . . . . . . . . . . . . . . . . . . 101 2.13.1 EffectsofMatter . . . . . . . . . . . . . . . . . . . . . . . 105 2.14 MostImportantDefinitionsandFormulas . . . . . . . . . . . . . . 106 3 GravitationofaSphericalMass . . . . . . . . . . . . . . . . . . . . . 109 3.1 Schwarzschild’sSolution . . . . . . . . . . . . . . . . . . . . . . 109 3.1.1 ChristoffelMatrixΓ . . . . . . . . . . . . . . . . . . . . . 110 3.1.2 RicciMatrixR . . . . . . . . . . . . . . . . . . . . . . 112 Ric 3.1.3 TheFactorsA(r)andB(r) . . . . . . . . . . . . . . . . . 114 3.2 InfluenceofaMassiveBodyontheEnvironment . . . . . . . . . . 116 3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 116 Contents xi 3.2.2 ChangestoLengthandTime . . . . . . . . . . . . . . . . 117 3.2.3 RedshiftofSpectralLines . . . . . . . . . . . . . . . . . . 118 3.2.4 DeflectionofLight. . . . . . . . . . . . . . . . . . . . . . 120 3.3 Schwarzschild’sInnerSolution . . . . . . . . . . . . . . . . . . . 124 3.4 BlackHoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 3.4.1 Astrophysics . . . . . . . . . . . . . . . . . . . . . . . . . 127 3.4.2 FurtherDetailsabout“BlackHoles” . . . . . . . . . . . . 129 3.4.3 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . 131 3.4.4 Eddington’sCoordinates. . . . . . . . . . . . . . . . . . . 135 3.5 RotatingMasses . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 3.5.1 AnsatzfortheMetricMatrixG . . . . . . . . . . . . . . . 138 3.5.2 Kerr’sSolutioninBoyer–LindquistCoordinates . . . . . . 139 3.5.3 TheLense–ThirringEffect. . . . . . . . . . . . . . . . . . 139 3.6 SummaryofResultsfortheGravitationofaSphericalMass . . . . 141 3.7 ConcludingRemark . . . . . . . . . . . . . . . . . . . . . . . . . 143 AppendixA VectorsandMatrices . . . . . . . . . . . . . . . . . . . . . 145 A.1 VectorsandMatrices . . . . . . . . . . . . . . . . . . . . . . . . . 145 A.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 A.2.1 TypesofMatrices . . . . . . . . . . . . . . . . . . . . . . 147 A.2.2 MatrixOperations . . . . . . . . . . . . . . . . . . . . . . 148 A.2.3 BlockMatrices . . . . . . . . . . . . . . . . . . . . . . . . 152 A.3 TheKronecker-Product . . . . . . . . . . . . . . . . . . . . . . . 154 A.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 154 A.3.2 SomeTheorems . . . . . . . . . . . . . . . . . . . . . . . 154 A.3.3 ThePermutationMatrixUp×q . . . . . . . . . . . . . . . 156 A.3.4 MorePropertiesoftheKronecker-Product . . . . . . . . . 157 A.4 DerivativesofVectors/MatriceswithRespecttoVectors/Matrices . 157 A.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 157 A.4.2 ProductRule . . . . . . . . . . . . . . . . . . . . . . . . . 158 A.4.3 ChainRule . . . . . . . . . . . . . . . . . . . . . . . . . . 159 A.5 DifferentiationwithRespecttoTime . . . . . . . . . . . . . . . . 159 A.5.1 DifferentiationofaFunctionwithRespecttoTime . . . . . 159 A.5.2 DifferentiationofaVectorwithRespecttoTime . . . . . . 160 A.5.3 Differentiationofa2×3-MatrixwithRespecttoTime . . 161 A.5.4 Differentiationofann×m-MatrixwithRespecttoTime . 161 A.6 SupplementstoDifferentiationwithRespecttoaMatrix . . . . . . 162 AppendixB SomeDifferentialGeometry . . . . . . . . . . . . . . . . . 165 B.1 CurvatureofaCurvedLineinThreeDimensions . . . . . . . . . . 165 B.2 CurvatureofaSurfaceinThreeDimensions . . . . . . . . . . . . 166 B.2.1 VectorsintheTangentPlane. . . . . . . . . . . . . . . . . 166 B.2.2 CurvatureandNormalVectors . . . . . . . . . . . . . . . 168 B.2.3 TheoremaEgregiumandtheInnerValuesg . . . . . . . . 169 ij