ebook img

Eichler-Shimura isomorphism and group cohomology on arithmetic groups PDF

0.18 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Eichler-Shimura isomorphism and group cohomology on arithmetic groups

1 EICHLER-SHIMURA ISOMORPHISM AND GROUP COHOMOLOGY ON ARITHMETIC GROUPS SANTIAGOMOLINA 7 1 0 Introduction 2 The Eichler-Shimura isomorphism establishes a bijection between the space of n modular forms and certain cohomology groups with coefficients in a space of poly- a J nomials. Moreprecisely,letk ≥2beanintegerandletΓ⊆SL2(Z)beacongruence 3 subgroup, then we have the following isomorphism of Hecke modules (0.1) M (Γ,C)⊕S (Γ,C)≃H1(Γ,V(k)∨), ] k k T whereV(k)∨ isthedualoftheC-vectorspaceofhomogenouspolynomialsofdegree N k−2,M (Γ,C)isthe spaceofmodularformsofweightk andS (Γ,C)⊂M (Γ,C) k k k . h is the subspace of cuspidal modular forms (see [6, Thm. 8.4] and [4, Thm. 6.3.4]). t This isomorphism can be interpreted in geometric terms. Indeed, a modular a m form of weight k can be interpreted as a section of certain sheaf of differential forms on the open modular curve attached to Γ. With this in mind, the Eichler- [ ShimuraisomorphismcanbeobtainedcomparingdeRhamandsingularcohomology, 1 noticing that the singular cohomology of the open modular curve is given by the v group cohomology H•(Γ,V(k)∨). The aim of this paper is to omit this geometric 1 interpretation and to provide a new group cohomologicalinterpretation. 1 6 The restriction of the Eichler-Shimura isomorphism to the spaces of cuspidal 0 modular forms is given by the morphisms 0 1. ∂± :Sk(Γ,C)−→H1(Γ,V(k)∨), 0 where 7 γz0 γz0 1 ∂±(f)(γ)(P)= P(1,−τ)f(τ)dτ ± P(1,τ¯)f(−τ¯)d(−τ¯). : v Zz0 Zz0 i foranyz inHthePoincar´ehyperplane,γ ∈ΓandP ∈V(k). Infact,themorphism X 0 defining the cuspidal part of (0.1) is given by r a S (Γ,C)⊕S (Γ,C) −→ H1(Γ,V(k)∨) k k (f ,f¯) 7−→ (∂++∂−)(f )+(∂+−∂−)(f∗), 1 2 1 2 where f∗ ∈ S (Γ,C) is obtained from f by complex conjugating its Fourier co- 2 k 2 efficients. The image of ∂± lies in the subspaces H1(Γ,V(k)∨)± ⊂ H1(Γ,V(k)∨) 1 0 where the natural action of ω = normalizing Γ acts by ±1. 0 −1 (cid:18) (cid:19) In a general setting, F is a totally real number field of degree d, G is the multi- plicativegroupofaquaternionalgebraAoverF,andφisaweightk =(k ,··· ,k ) 1 d cuspidal automorphic form of G with level U ⊂ G(A∞) and central character ψ : A×/F× → C×. We assume that ψσi(x) = sign(x)ki|x|µi, for any archimedean place σ :F ֒→R. In this scenario,by an automorphicformwe meana function on i Hr×G(A∞)/U,whereHisthePoincar´eupperplaneandr isthecardinaloftheset Σ of archimedeanplaces where A splits, with values in V (k )∨ (see §1.2 σi∈∞\Σ µi i for a precisedefinition ofV (k )), that satisfies the usualtransformationlaws with µi i N 1 Theauthor issupportedinpartbyDGICYTGrantMTM2015-63829-P. 1 2 SANTIAGOMOLINA respectto the weight-k -actions ofG(F). The interestingcohomologysubgroupsto i consider are: n Hr(G(F)+,A(V (k),C)U)= Hr(Γ ,V (k)∨), Γ =G(F)+∩g Ug−1, ψ gi ψ gi i i i=1 M where V (k) is the tensor product of the polynomial spaces V (k ) (j =1,··· ,d), ψ µi j G(F)+ ⊆G(F)isthesubgroupoftotallypositiveelements,{g } ⊂G(A∞)is i i=1,···,n asetofrepresentativesofthedoublecosetspaceG(F)+\G(A∞)/U,andA(V (k),C)U = ψ C(G(A∞)/U,V (k)∨). Similarly as in the classical case, for any character ε : ψ G(F)/G(F)+ −→±1 we can define a morphism ∂ε :S (U,ψ)−→Hr(G(F)+,A(V (k),C)U)(ε), k ψ from the set S (U,ψ) of automorphic cuspforms of weight k, level U and central k character ψ, to the ε-isotypical component of Hr(G(F)+,A(V (k),C)U). Such a ψ map is given by: ∂ǫφ= ǫ(γ)∂φγ, γ∈G(FX)/G(F)+ where ∂φ∈Hr(G(F)+,A(V (k),C)) is the class of the cocycle ψ g1τ1 g1···grτr (G(F)+)r ∋(g ,g ,··· ,g )7−→ ··· P (1,−z)hφ(z,g),PΣidz, 1 2 r Σ Zτ1 Zg1···gr−1τr withP ∈ r V (k ), PΣ ∈ d V (k )andz =(z ,··· ,z ),(τ ,··· ,τ )∈ Σ j=1 µj j j=r+1 µj j 1 r 1 r Hr. Ourresultwillprovidea groupcohomologicalinterpretationto the morphisms N N ∂ε, for any character ε. LetF ≃Rd betheproductofthearchimedeancompletionsofF,letG bethe ∞ ∞ LiealgebraofG(F )andletK ⊆G(F )beamaximalcompactsubgroup. Then ∞ ∞ ∞ the (G ,K )-module generated by φ is isomorphic to D (k), the tensor product ∞ ∞ ψ of discrete series of weight k at archimedean places in Σ and polynomial spaces j V (k )atarchimedeanplacesnotinΣ. Thisimpliesthatanyφ∈S (U,ψ)provides µj j k an element φ∈H0(G(F),A(D (k),C)U); A(D (k),C)U :=Hom (D (k),AU), ψ ψ (G∞,K∞) ψ whereAU isthe(G ,K )-moduleofsmoothadmissiblefunctionsf :G(A)/U →C. ∞ ∞ Our main result (Theorem 2.4) can be rewritten as follows: Theorem 0.1. There exists an exact sequence of G(F)-modules 0→A(V (k)(ε),C)U →A(Iε(k),C)U →A(Iε(k),C)U →···→A(D (k),C)U →0, ψ 1 2 ψ such that, up to an explicit constant, the morphism ∂ǫ is given by the corresponding connection morphism H0(G(F),A(D (k),C)U)−→Hr(G(F),A(V (k)(ε),C)U)≃Hr(G(F)+,A(V (k),C)U)(ε). ψ ψ ψ We obtain the above exact sequence from extensions of the (G ,K )-modules σi σi of discrete series D (k ) at every place σ ∈ Σ. The archimedean local nature of µi i i theseconnectionmorphisms∂εimpliesthattheG(A∞)-representationgeneratedby ∂εφ coincides with the restriction to G(A∞) of π , the automorphic representation φ attached to φ. The image of a cuspidal automorphic representation π through the morphisms φ ∂ε isusedinmanypaperstogiveagroupcohomologicalconstructionofcyclotomic andanti-cyclotomicp-adicL-functions andStickelbergerelements attachedto qua- dratic extensions of a totally real number field (see for instance [7], [5] and [1]). The explicit form of ∂ε given in Theorem 2.4 provides the interpolation properties of these objects. Another application is the construction of Stark-Heegner points. By means of the connection morphisms ∂ε±1, where (ε+,ε−) is a well chosen pair of characters, EICHLER-SHIMURA ISOMORPHISM AND GROUP COHOMOLOGY ON ARITHMETIC GROUPS3 one can construct a complex torus C[L:Q]/Λ attached to a weight 2 automorphic representation π with field of coefficients L. It is conjectured that such complex φ torus coincides with the abelian variety of GL -type attached to π . In [3], we 2 φ use the cohomologicaldescription of ∂ε±1 to construct Stark-Heegner points in the complex torus, that we conjecture to be global points in the corresponding abelian variety. Suchpointsareconjecturallydefinedoverclassfieldsofquadraticextensions of F and satisfy explicit reciprocity laws. Notation. Throughout this paper, we will denote by dθ = dθ the Haar S1 SO(2) measure of S1 =SO(2) such that vol(S1)=π. R R LetF beanumberfield. Foranyplacev ofF,wedenotebyF itscompletionat v v. GivenafinitesetofplacesS ofF,wedenotebyF theproductofcompletionsat S everyplaceinS. WedenotebyF theproductofcompletionsateveryarchimedean ∞ place. Similarly, for any subset Σ of archimedeanplaces, F will be the product ∞\Σ of completions at every archimedean place not in Σ. We denote by A the ring of adeles of F. For any set S of places of F, we write AS for the ring adeles outside S. Consistent with this notation, we denote by A∞ the ring of finite adeles of F. 1. Discrete series 1.1. Finitedimensionalrepresentations. LetAbeaquaternionalgebradefined over a local field F. Let K/F be an extension where A splits. For any natural numberk ∈N,letPK ≃Symk−2(K2)bethefiniteK-vectorspaceofhomogeneous k−2 polynomials of degree k−2. We have a well defined action of GL (K) on PK 2 k−2 given by a b a b (1.2) ∗P (x,y):=P (x,y) =P (ax+cy,bx+dy). c d c d (cid:18)(cid:18) (cid:19) (cid:19) (cid:18) (cid:18) (cid:19)(cid:19) If we fix an embedding ι:A−→A⊗ K ≃M (K), F 2 then PK is equipped with an action of A×. k−2 We denote by det:A→F the reduced norm of A, and let us consider A+ ={a∈A: det(a)∈F2}. We write V(k)K = PkK−2⊗det2−2k with the natural action of A+. It is clear that the centreofA× acts triviallyonV(k) . Notice that, ifk is even,the actionofA+ K on V(k) extends to a natural action of A. K 1.2. Discreteseriesandexactsequences. AssumethatF =RandA=M (R). 2 Let GL (R) be the Lie algebra of GL (R). For any k ∈ Z and µ ∈ C, we define 2 2 I (k) as the (GL (R),SO(2))-module of smooth admissible vectors in µ 2 k (f :GL2(R)+ →C: f(cid:18)(cid:18) t1 tx2 (cid:19)g(cid:19)=sign(t1)k(t1t2)µ2 (cid:18)tt12(cid:19)2 f(g)). µ Write Vµ(k)=V(k)C⊗det2. If we assume that k ≥2, we have the well defined morphism of (GL (R),SO(2))-modules 2 a b 2−k+µ ι:Vµ(k)−→Iµ(2−k); ι(P) c d =(ad−bc) 2 P(c,d). (cid:18) (cid:19) Moreover,we have a (GL (R),SO(2))-invariant pairing (see [2, §2]) 2 h, i :I (k)×I (2−k)−→C; (f,g)7−→ f(θ)g(θ)dθ, I µ −µ ZSO(2) 4 SANTIAGOMOLINA providing the morphism of (GL (R),SO(2))-modules 2 ϕ¯:I (k)−→V (k)∨; hϕ¯(f),Pi :=hf,ι(P)i . µ −µ V I Composing with the natural GL (R)+-morphism 2 (1.3) V (k)∨ −→V (k); F 7−→P (x,y)=hF,(Yx−Xy)k−2i , −µ µ F V(X,Y) we obtain a map ϕ:I (k) −→ V (k); µ µ ϕ(f)(x,y) = hϕ¯(f),(Yx−Xy)k−2i = f(θ)(ysinθ+xcosθ)k−2dθ V(X,Y) ZS1 Remark 1.1. Notice that we have the symmetry hF,P i = hF,hG,(Yx−Xy)k−2i i G V V(X,Y) V(x,y) = (−1)khG,hF,(Xy−Yx)k−2i i =(−1)khG,P i , V(x,y) V(X,Y) F V for all F,G∈V (k)∨. µ The kernelof ϕ is D (k) the Discrete Series (GL (R),O(2))-module of weightk µ 2 and central character x 7→ sign(x)k|x|µ. This definition implies that D (k) lies in µ the following exact sequence of (GL (R),SO(2))-modules: 2 ϕ (1.4) 0−→D (k)−→I (k)−→V (k)−→0. µ µ µ Since any g ∈GL (R)+ can be written uniquely as g =u·τ(x,y)·κ(θ), where 2 y1/2 xy−1/2 cosθ sinθ u∈R+, τ(x,y)= ∈B, κ(θ)= ∈SO(2), y−1/2 −sinθ cosθ (cid:18) (cid:19) (cid:18) (cid:19) we have that Iµ(k)= Cft; ft(u·τ(x,y)·κ(θ))=uµyk2etiθ. t≡kM(mod2) The (GL (R),SO(2))-module structure of I (k) can be described as follows: Let 2 s L,R∈GL (R) be the Maass differential operators defined in [2, §2.2] 2 ∂ ∂ 1 ∂ ∂ ∂ 1 ∂ L=e−2iθ −iy +y − , R=e2iθ iy +y + . ∂x ∂y 2i∂θ ∂x ∂y 2i∂θ (cid:18) (cid:19) (cid:18) (cid:19) Then, the (GL (R),SO(2))-module I (k) is characterizedby the relations: 2 s k+t k−t (1.5) Rf = f ; Lf = f ; t t+2 t t−2 2 2 (cid:18) (cid:19) (cid:18) (cid:19) (1.6) κ(θ)f =etiθf ; uf =uµf , t t t t for any κ(θ)∈SO(2) and u∈R+ ⊂GL (R)+. 2 Write z = x+iy and z¯= x−iy. For n ∈ {0,1,··· ,k−2}, let us consider the elements P ∈ V (k), P (x,y) = znz¯k−2−n. It is clear that {P } is a n µ n n n=0,···,k−2 basis for the C-vector space V (k). We compute that µ ϕ(f)(x,y) = f(θ)((2i−1)(z−z¯)sinθ+2−1(z+z¯)cosθ)k−2dθ ZS1 = 22−kf(θ)(ze−iθ+z¯eiθ)k−2dθ ZS1 k−2 k−2 = 22−k P (x,y) f(θ)e−i(2n−k+2)θdθ n n n=0(cid:18) (cid:19) ZS1 X By orthogonality, we deduce that ϕ(f )=22−kπ k−2 P (x,y). 2n−k+2 n n (cid:0) (cid:1) EICHLER-SHIMURA ISOMORPHISM AND GROUP COHOMOLOGY ON ARITHMETIC GROUPS5 Since κ(θ)P =e(2n−k+2)iθP , the morphism of C-vector spaces n n 2k−2 k−2 −1 (1.7) s:V (k)−→I (k); s(P )= f , µ µ n 2n−k+2 π n (cid:18) (cid:19) defines a section of ϕ as SO(2)R+-modules. Remark 1.2. Since (1.3) is an isomorphism, we can define a non-degenerate GL (R)+-invariant bilinear pairing V (k)×V (k)→C 2 µ −µ hP ,Qi=hF,Qi , F ∈V (k)∨, Q∈V (k), F V −µ C −µ which is symmetric or antisymmetric depending onthe parity of k, by Remark 1.1. Moreover,by the definition of (1.3), P(s,t)=hP,Q i, Q (x,y)=(ys−xt)k−2. s,t s,t In particular, (1.8) P(−1,i)=i2−khP,P i=ik−2hP ,Pi. 0 0 Since s is a section of ϕ, we compute (1.9) hP,Qi=hϕ¯(s(P)),Qi =hs(P),ι(Q)i , V I for all P,Q∈V (k). µ 1.3. The (GL (R),O(2))-module of discrete series. We want to give structure 2 of (GL (R),O(2))-module to I (k). Hence, we have to define the action of ω = 2 µ 1 ∈O(2)\SO(2). That is to say,we have to define ω ∈End(I (k)) such −1 µ (cid:18) (cid:19) that (i) ωf ∈Cf ; (ii) ω2 =1; (iii) ωR=Lω. t −t If we write ωf = λ(t)f , condition (ii) implies that λ(t)λ(−t) = 1. Moreover, t −t condition(iii) implies thatλ(t)=λ(t+2). We obtaintwo possible (GL (R),O(2))- 2 module structures for I (k): Letting λ(t) = 1 for all t ≡ k mod 2, or letting µ λ(t) = −1 for all t ≡ k mod 2. Write I (k)± for the (GL (R),O(2))-module such µ 2 that ωf =±f , respectively. t −t By abuse of notation, write also V (k) and V (k) (in case µ ∈ R) for the µ µ R GL (R)-representations 2 Vµ(k)=Vµ(k)C =PkC−2⊗|det|2−k2+µ, Vµ(k)R =PkR−2⊗|det|2−k2+µ . Remark 1.3. With this GL (R)-module structure, the pairing h·,·i introduced in 2 Remark 1.2 is not a GL (R)-invariant in general. In fact one can show that 2 hgP,Qi=sign(detg)khP,g−1Qi. Notethat,foranyf ∈I (k)±,wehavethatωf(θ)=±f(−θ),hencewecompute µ that, ϕ(ωf)(x,y) = ωf(θ)(xcosθ+ysinθ)k−2dθ ZS1 = ± f(−θ)(xcosθ+ysinθ)k−2dθ ZS1 = ± f(θ)(xcosθ−ysinθ)k−2dθ =±ω(ϕ(f))(x,y) ZS1 Thisimpliesthattheexactsequenceof(GL (R),SO(2))-modules(1.4)providesthe 2 exact sequences of (GL (R),O(2))-modules 2 (1.10) 0−→D (k)−→ι I (k)+ −→V (k)−→0, µ µ µ (1.11) 0−→D (k)−ι◦→I I (k)− −→V (k)(ε)−→0, µ µ µ 6 SANTIAGOMOLINA where ε : GL (R) → ±1 is the character given by ε(g) = signdet(g), D (k) is the 2 µ (GL (R),O(2))-module with fixed action of ω given by ωf(θ) = f(θ), and I is the 2 automorphism of (GL (R),SO(2))-modules 2 I :D (k)−→D (k): I(f )=sign(t)f . µ µ t t Note that ι◦I is a monomorphism of (GL (R),O(2))-modules because I(ωf) = 2 −ω(I(f)). 1.4. Matrix coefficients. Let us consider A(C) the (GL (R),SO(2))-module of 2 admissible C∞ functions f :GL (R)+ →C. For any f ∈I (2−k), I claim that 2 0 −µ ϕ :I (k)−→A(C), ϕ (f)(g )=hg f,f i , g ∈GL (R)+, f0 µ f0 ∞ ∞ 0 I ∞ 2 provides a well defines morphism of (GL (R),SO(2))-modules. Indeed, for any 2 element of the Lie algebra G∈GL (R), 2 d d Gϕ (f)(g ) = (ϕ (g exp(tG)))| = (hg exp(tG)f,f i )| f0 ∞ dt f0 ∞ t=0 dt ∞ 0 I t=0 = ϕ (Gf)(g ). f0 ∞ 1.5. R-structures of Discrete series. Aswecanseein[2,§2.2],RandLarenot in GL (R), they are Caley transformations in GL (C) of elements in GL (R). In 2 2 2 fact, GL (R) is generated by 2 ∂ ∂ ∂ ∂ R+L = −2ysin(2θ) +2ycos(2θ) +sin(2θ) ; u ; ∂x ∂y ∂θ ∂u ∂ ∂ ∂ ∂ i(R−L) = −2ycos(2θ) −2ysin(2θ) +cos(2θ) ; and . ∂x ∂y ∂θ ∂θ If we define h := f +f ∈ I (k)± and g := i(f −f ) ∈ I (k)±, it is easy to t t −t µ t t −t µ compute that k+t k−t ∂ (R+L)h = h + h , h =−tg , t t+2 t−2 t t 2 2 ∂θ (cid:18) (cid:19) (cid:18) (cid:19) k+t k−t i(R−L)h = g − g , ωh =±h t t+2 t−2 t t 2 2 (cid:18) (cid:19) (cid:18) (cid:19) κ(θ)h =cos(tθ)h −sin(tθ)g , ωg =∓g . t t t t t Hence the R-vector space I (k)± ⊂ I (k)± generated by h and g defines a µ R µ t t (GL (R),O(2))-module over R. 2 We check that the morphisms ϕ : I (k)+→V (k) and ϕ : I (k)−→V (k)(ε) µ µ C µ µ C descend to morphisms of (GL (R),O(2))-modules over R 2 ϕ+ :I (k)+ −→V (k) , ϕ− :I (k)− −→V (k) (ε). µ R µ R µ R µ R Hence the kernel D (k) ⊂ D (k) of ϕ+ defines a (GL (R),O(2))-module over R, µ R µ 2 generatedbyh ,suchthatD (k) ⊗ C=D (k). Nevertheless,theautomorphism k µ R R µ of (GL (R),SO(2))-modules I : D (k)→D (k) does not descend to an automor- 2 µ µ phism of (GL (R),SO(2))-modules over R since I(h )=−sign(t)ig . In fact, 2 t t I(D (k) )=iD (k) ⊂D (k). µ R µ R µ We obtain the exact sequences of (GL (R),O(2))-modules over R 2 (1.12) 0−→D (k) −→ι I (k)+ −→V (k) −→0, µ R µ R µ R (1.13) 0−→D (k) −ι◦→I iI (k)− −→iV (k) (ε)−→0. µ R µ R µ R EICHLER-SHIMURA ISOMORPHISM AND GROUP COHOMOLOGY ON ARITHMETIC GROUPS7 2. Connection morphisms In this section, we assume that G is the multiplicative group of a quaternion algebra that splits at the set of archimedean places Σ. Write r = #Σ. Let us consider the C-vector space A(C) of functions f :G(A)−→C such that: • There exists an open compact subgroup U ⊆ G(A∞) such that f(gU) = f(g), for all g ∈G(A). • UnderafixedidentificationG(F )≃GL (R)r,f | ∈C∞(GL (R)r,C). Σ 2 G(FΣ) 2 • Fixing K , a maximal compact subgroup of G(F ) isomorphic to O(2)r, Σ Σ we assume that any f ∈ A(C) is K -finite, namely, its right translates by Σ elements of K span a finite-dimensional vector space. Σ • We assume that any f ∈ A(C) is Z-finite, where Z is the centre of the universal enveloping algebra of G(F ). Σ Write ρ for the action of G(A) given by right translation, then (A(C),ρ) defines a smoothG(A∞)-representationanda(G ,K )-module,whereG istheLiealgebra ∞ ∞ ∞ of G(F ) and K = K ×G(F ). Moreover, A(C) is also equipped with the Σ ∞ Σ ∞\Σ G(F)-action: (h·f)(g)=f(h−1g), h∈G(F), where g ∈ G(A), f ∈ A(C). Let us fix an isomorphism G(F ) ≃ GL (R)r that Σ 2 maps K to O(2)r and let V be a (G ,K )-module. We define Σ ∞ ∞ A(V,C):=Hom (V,A(C)), (G∞,K∞) endowed with the natural G(F)- and G(A∞)-actions. Remark2.1. Notethatifthe(G ,K )-moduleV comesfromafinitedimensional ∞ ∞ G(F )-representation V, ∞ A(V,C)≃C(G(A∞),Hom(V,C))=C(G(A∞),V∨), whereV∨isseenasaG(F)-modulebymeansoftheusualinjectionG(F)֒→G(F ), ∞ and the action of G(F) on C(G(A∞),V∨) is given by (h∗f)(g)=h(f(h−1g)). Fix σ ∈ Σ, µ ∈ C and let us consider D (k), V (k) and V (k)(ε) as (G ,K )- µ µ µ ∞ ∞ modules by means of the projection G(F )→G(F ). The exact sequences (1.10) ∞ σ and (1.11) provide the connection morphisms ∂ǫσ :Hi(G(F),A(V ⊗D (k),C))−→Hi+1(G(F),A(V ⊗V (k)(ǫ ),C)), σ µ µ σ for any of the two characters ǫ :G(F )/G(F )+→±1. σ σ σ LetV bea(G ,K )-representationoverRsuchthatV =V ⊗C. Thisimplies R ∞ ∞ R thatwehaveawelldefinedcomplexconjugationonV byconjugatingonthesecond factor. Thus, we have a complex conjugation on A(V,C), given by A(V,C)∋φ7−→φ¯∈A(V,C); φ¯(v)=φ(v¯). Lemma 2.2. Assume that V = V ⊗ C for some (G ,K )-module V over R, R R ∞ ∞ R and let µ∈R. Then, for any φ∈Hi(G(F),A(V ⊗D (k),C)), we have µ ∂σǫσ(φ)=ǫσ(c)·∂σǫσ(φ) for any c∈G(F )\G(F )+ σ σ Proof. We denote by A(V ⊗D (k),C)±1 ⊂A(V ⊗D (k),C) the subspaces where µ µ complex conjugation acts by ±1, respectively. Since exact sequences (1.10) and (1.11) descend to exact sequences (1.12) and (1.13), we obtain 0−→A(V⊗V (k)(ε ),C)±εσ −→A(V⊗I (k)εσ,C)±εσ −→A(V⊗D (k),C)±1 −→0. µ σ µ µ Hence the connection morphism satisfies δǫσ Hi(G(F),A(V ⊗D (k),C)±1) ⊆Hi+1(G(F),A(V ⊗V (k)(ε ),C)±εσ) σ µ µ σ and th(cid:0)e result follows. (cid:1) (cid:3) 8 SANTIAGOMOLINA 2.1. Explicitcomputationofthe connection morphisms. Letusconsiderthe section s:V (k) →I (k) of (1.7). µ C µ We compute that hf ,ιP i = emiθP (−sinθ,cosθ)dθ m n I n ZS1 = i2n−k+2emiθeniθe(n−k+2)iθdθ =πi2n−k+2δ(2n−k+2+m), ZS1 where δ(n) is the Dirac delta. Thus, g−1P = k−2α (g )P , where ∞ n=0 n ∞ n α (g )= ik−2−2nhf ,ι(g−1P)i P= ik−2−2nhg f ,ι(P)i . n ∞ π k−2−2n ∞ I π ∞ k−2−2n I Since V (k) is generated by {P ,··· ,P }, we deduce that α = 0 unless n ∈ µ 0 k−2 n {0,··· ,k−2}. Since matrix coefficient morphism are (G ,K )-module morphisms σ σ by §1.4, we can compute on the one side ik−2−2n Rα (g ) = hg (Rf ),ι(P)i n ∞ ∞ k−2−2n I π ik−2−2n = (k−n−1) hg f ,ι(P)i =(n+1−k)α (g ), ∞ k−2n I n−1 ∞ π ik−2−2n Lα (g ) = hg (Lf ),ι(P)i n ∞ ∞ k−2−2n I π ik−2−2n = (n+1) hg f ,ι(P)i =−(n+1)α (g ). ∞ k−2n−4 I n+1 ∞ π On the other side, we have that s(P )= 2k−2 k−2 −1f . Hence, n π n 2n−k+2 2k−2 k−2 −1 (cid:0) (cid:1) (n<k−2)Rs(P ) = (n+1)f =(k−2−n)s(P ), n 2n−k+4 n+1 π n (cid:18) (cid:19) 2k−2 k−2 −1 (n>0) Ls(P ) = (k−n−1)f =ns(P ). n 2n−k n−1 π n (cid:18) (cid:19) Assume that φ˜∈A(V ⊗I (k),C) andthe actionof(G ,K )on V is trivial. For µ σ σ any f ∈I (k) and v ∈V, we will usually denote by φ˜ (f) the expression φ˜(v⊗f). µ v We aim to compute h (g ):=φ˜ (s(g−1P))(g ,g), g ∈G(F )+ ≃GL (R)+, P ∞ v ∞ ∞ ∞ σ 2 forallg ∈G(Aσ),P ∈V (k),andv ∈V. Sinceh (g )= k−2α (g )φ˜ (s(P ))(g ,g), µ P ∞ n=0 n ∞ v n ∞ we compute P k−2 Rh = (Rα )φ˜ (s(P ))+α φ˜ (Rs(P )) = P n v n n v n nX=0(cid:16) (cid:17) k−2 k−3 k−1 = (n+1−k)α φ˜ (s(P ))+ α φ˜ (f )+ (k−2−n)α φ˜ (s(P )) n−1 v n 22−kπ k−2 v k n v n+1 n=0 n=0 X X k−1 k−1 = 2k−2 α φ˜ (f )−α φ˜ (f ) = 2k−2α φ˜ (f ), k−2 v k −1 v 2−k k−2 v k π π k−2 (cid:16) (cid:17) Lh = (Lα )φ˜ (s(P ))+α φ˜ (Ls(P )) = P n v n n v n nX=0(cid:16) (cid:17) k−2 k−2 k−1 = (−n−1)α φ˜ (s(P ))+ α φ˜ (f )+ nα φ˜ (s(P )) n+1 v n 22−kπ 0 v −k n v n−1 n=0 n=1 X X k−1 k−1 = 2k−2 α φ˜ (f )−α φ˜ (f ) = 2k−2α φ˜ (f ), 0 v −k k−1 v k−2 0 v −k π π (cid:16) (cid:17) EICHLER-SHIMURA ISOMORPHISM AND GROUP COHOMOLOGY ON ARITHMETIC GROUPS9 Notice that R = e2iθ2iy( ∂ − 1 ∂ ) and L = −e−2iθ2iy( ∂ − 1 ∂ ) with ∂τ 4y∂θ ∂τ¯ 4y∂θ τ = x + iy. Since s is a morphism of SO(2)R+-modules, h is a function of P GL (R)+/SO(2)R+ ≃ H, thus h is a function on τ and τ¯. Let us compute ∂hP 2 P ∂τ and ∂hP: By (1.9) and (1.8), ∂τ¯ ∂h y−1e−4πiθ (k−1) P(τ,τ¯) = R(h )= i2−khg P ,Piφ˜ (f ) ∂τ 2i P 2πiye2iθ ∞ 0 v k (k−1) (k−1) φ˜ (f ) = (g−1P)(1,−i)φ˜ (f )= P(1,−τ) v k (τ,τ¯,g), 2πiye2iθ ∞ v k 2πi f k ∂h −y−1e2iθ (1−k) P(τ,τ¯) = L(h )= ik−2hg ωP ,Piφ˜ (f ) ∂τ¯ 2i P 2πiye−2iθ ∞ 0 v −k (1−k) (1−k) φ˜ (f ) = (g−1P)(1,i)φ˜ (f )= P(1,−τ¯) v −k (τ,τ¯,g), 2πiye−2iθ ∞ v −k 2πi f −k byRemark1.3,whereφ˜ (f )f−1andφ˜ (f )f−1areseenasfunctionsofGL (R)+/SO(2)R+ ≃ v k k v −k −k 2 H. A similar (and classical) calculation shows that φ˜ (f )f−1 and φ˜ (f )f−1 are v k k v −k −k holomorphic and anti-holomorphic,respectively. For any P ∈V (k), g ∈G(Aσ), v ∈V and φ∈A(V ⊗D (k),C) the expressions µ µ φ(v⊗f ) k (2.14) ω (P,v,g)(τ) := P(1,−τ) (τ,g)dτ, φ 2πif k φ(v⊗f ) −k (2.15) ω¯ (P,v,g)(τ¯) := P(1,−τ¯) (τ¯,g)dτ¯, φ 2πif −k define holomorphic and anti-holomorphic forms in H, respectively. Moreover, it is easy to check that ω (P,v,g)(γ−1τ)=ω (γP,v,γg)(τ), ω¯ (P,v,g)(γ−1τ¯)=ω¯ (γP,v,γg)(τ¯), φ γφ φ γφ for any γ ∈ G(F)∩G(F )+. Assume that c ∈ Hn(G(F),A(V ⊗D (k),C)) is σ φ µ represented by the n-cocycle φ : G(F)n → A(V ⊗ Dµ(k),C). Then ∂σǫσ(cφ) is represented by the (n + 1)-cocycle dnφ˜, where φ˜(γ) ∈ A(V ⊗ I (k) ,C) is any µ C preimage of φ(γ) for all γ ∈ G(F)n. We consider the (n+1)-cocycle ∂εσ(φ) = σ dnφ˜− dnb, where b(γ)(g)(v ⊗ P) = φ˜(γ)(v ⊗ s(P))(1,g). We compute, for all P ∈V (k), v ∈V, γ =(γ ,··· ,γ )∈G(F)n, α∈G(F) and g ∈G(Aσ), µ 1 n ∂ǫσφ(α,γ)(g)(v⊗P) = α (φ˜−b)(γ) (v⊗s(P))(1,g)+ σ (cid:16)n+1 (cid:17) + (−1)i(φ˜−b)(αγ )(v⊗s(P))(1,g), i i=1 X whereαγ =(α,γ ,··· ,γ γ ,··· ,γ )fori=1,··· ,n,andαγ =(α,γ ,··· ,γ ). i 1 i−1 i n n+1 1 n−1 Since (φ˜−b)(γ)(v⊗s(P))=0 by construction, we obtain ∂ǫσφ(α,γ)(g)(v⊗P) = α φ˜(γ) (v⊗s(P))(1,g)−α b(γ) (v⊗P)(g) σ = φ˜((cid:16)γ)(v⊗(cid:17)s(P))(α−1,α−1g)−φ(cid:0)˜(γ)((cid:1)v⊗s(α−1P))(1,α−1g) Since φ˜(γ)(v ⊗f ) = φ(γ)(v ⊗f ) and φ˜(γ)(v ⊗f ) = ǫ (c)φ(γ)(v ⊗f ), we k k −k σ −k deduce from the above computations that, for any α∈G(F)∩G(F )+, σ α−1i ∂ǫσφ(α,γ)(g)(v⊗P) = (k−1) ω (α−1P,v,α−1g)−ǫ (c)ω¯ (α−1P,v,α−1g) σ φ(γ) σ φ(γ) Zi αi = (1−k) ω (P,v,g)−ǫ (c)ω¯ (P,v,g). αφ(γ) σ αφ(γ) Zi 10 SANTIAGOMOLINA Remark 2.3. We have a well defined action of G(F)/G(F)+ on Hr(G(F)+,M), for any G(F)-module M, given by cγ(α ,··· ,α )=γ c(γ−1α γ,··· ,γ−1α γ) , 1 r 1 r for γ ∈G(F), and α ∈G(F)+. The i(cid:0)mage of the restriction m(cid:1)ap i Hr(G(F),M)−→Hr(G(F)+,M) lies in H0(G(F)/G(F)+,Hr(G(F)+,M)). Letψ :A×/F× →C× beaHeckecharactersuchthat,foranyarchimedeanplace σi :F ֒→R, ψσi(x)=sign(x)ki|x|µi. Let Dψ(k) be the (G∞,K∞)-module obtained by making the tensor product of D (k ) at the place σ , if σ ∈Σ, and V (k ) at µi i i i µj j the place σ , if σ 6∈ Σ. An element of D (k) is f ⊗PΣ, where f = f , j j ψ k k σi∈Σ ki f ∈D (k ) are the elements defined above, and PΣ ∈ V (k ). Let V (k) ki µi i σi6∈Σ µi i N ψ bethe(G ,K )-moduleobtainedbymakingthetensorproductofV (k )atallthe ∞ ∞ N µi i places σ . For any character ǫ:G(F )/G(F )+ ≃G(F)/G(F)+ →±1, we denote i ∞ ∞ by Hr(G(F)+,A(V (k),C))(ǫ) the ε-isotypical component, namely, the subspace ψ of Hr(G(F)+,A(V (k),C)) such that the action of G(F)/G(F)+ is given by the ψ character. By the above remark, the restriction map provides an isomorphism Hr(G(F),A(V (k)(ε),C))≃Hr(G(F)+,A(V (k),C))(ǫ). ψ ψ Usingtheabovecomputations,weaimtogiveanexplicitformulafortheconnection morphism: Theorem2.4. LetφbeaweightkautomorphicformofG(A)withcentralcharacter ψ. Then φdefines an element of φ∈H0(G(F),A(D (k),C)). For achoice of signs ψ at the places at infinity ǫ:G(F )/G(F )+ ≃G(F)/G(F)+ →±1, ∞ ∞ the composition of the connection morphisms δ , for σ ∈Σ, ǫσ ∂ :H0(G(F),A(D (k),C))−→Hr(G(F),A(V (k)(ǫ),C))≃Hr(G(F)+,A(V (k),C))(ǫ), ǫ ψ ψ ψ can be computed as follows: r ∂ φ= (1−k ) ǫ(γ)∂φγ, ǫ j jY+1 γ∈G(FX)/G(F)+ where ∂φ∈Hr(G(F)+,A(V (k),C)) is the class of the cocycle ψ g1τ1 g1···grτr φ(f ⊗PΣ) (G(F)+)r ∋(g ,g ,··· ,g )7−→ ··· P (1,−z) k (z,1,g)dz, 1 2 r Σ (2πi)rf Zτ1 Zg1···gr−1τr k for any P =PΣ⊗P ∈V (k), z =(z ,··· ,z ),(τ ,··· ,τ )∈Hr. Σ µ 1 r 1 r Proof. Let S ⊂ Σ be a subset of archimedean places such that #S = s < r. Assume that σ =σ ∈Σ\S and let k be its correspondingweight and µ=µ . Let j j V = D (k )⊗ V (k )(ε ), where S′ =Σ\(S∪{σ}). Thus, σi∈S′ µi i σi∈∞\(Σ\S) µi i σi the composition of the connection morphisms corresponding to σ ∈ S, provides a i N N morphism δ :H0(G(F),A(D (k),C))−→Hs(G(F),A(V ⊗D (k),C)). S ψ µ By the previous computations, if P ∈V (k), g ∈G(Aσ), v ∈V, µ αi ∂ǫσ∂ φ(α,γ)(g)(v⊗P)=(1−k) ω (P,v,g)−ǫ (c)ω¯ (P,v,g). σ S α∂Sφ(γ) σ α∂Sφ(γ) Zi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.