1 EICHLER-SHIMURA ISOMORPHISM AND GROUP COHOMOLOGY ON ARITHMETIC GROUPS SANTIAGOMOLINA 7 1 0 Introduction 2 The Eichler-Shimura isomorphism establishes a bijection between the space of n modular forms and certain cohomology groups with coefficients in a space of poly- a J nomials. Moreprecisely,letk ≥2beanintegerandletΓ⊆SL2(Z)beacongruence 3 subgroup, then we have the following isomorphism of Hecke modules (0.1) M (Γ,C)⊕S (Γ,C)≃H1(Γ,V(k)∨), ] k k T whereV(k)∨ isthedualoftheC-vectorspaceofhomogenouspolynomialsofdegree N k−2,M (Γ,C)isthe spaceofmodularformsofweightk andS (Γ,C)⊂M (Γ,C) k k k . h is the subspace of cuspidal modular forms (see [6, Thm. 8.4] and [4, Thm. 6.3.4]). t This isomorphism can be interpreted in geometric terms. Indeed, a modular a m form of weight k can be interpreted as a section of certain sheaf of differential forms on the open modular curve attached to Γ. With this in mind, the Eichler- [ ShimuraisomorphismcanbeobtainedcomparingdeRhamandsingularcohomology, 1 noticing that the singular cohomology of the open modular curve is given by the v group cohomology H•(Γ,V(k)∨). The aim of this paper is to omit this geometric 1 interpretation and to provide a new group cohomologicalinterpretation. 1 6 The restriction of the Eichler-Shimura isomorphism to the spaces of cuspidal 0 modular forms is given by the morphisms 0 1. ∂± :Sk(Γ,C)−→H1(Γ,V(k)∨), 0 where 7 γz0 γz0 1 ∂±(f)(γ)(P)= P(1,−τ)f(τ)dτ ± P(1,τ¯)f(−τ¯)d(−τ¯). : v Zz0 Zz0 i foranyz inHthePoincar´ehyperplane,γ ∈ΓandP ∈V(k). Infact,themorphism X 0 defining the cuspidal part of (0.1) is given by r a S (Γ,C)⊕S (Γ,C) −→ H1(Γ,V(k)∨) k k (f ,f¯) 7−→ (∂++∂−)(f )+(∂+−∂−)(f∗), 1 2 1 2 where f∗ ∈ S (Γ,C) is obtained from f by complex conjugating its Fourier co- 2 k 2 efficients. The image of ∂± lies in the subspaces H1(Γ,V(k)∨)± ⊂ H1(Γ,V(k)∨) 1 0 where the natural action of ω = normalizing Γ acts by ±1. 0 −1 (cid:18) (cid:19) In a general setting, F is a totally real number field of degree d, G is the multi- plicativegroupofaquaternionalgebraAoverF,andφisaweightk =(k ,··· ,k ) 1 d cuspidal automorphic form of G with level U ⊂ G(A∞) and central character ψ : A×/F× → C×. We assume that ψσi(x) = sign(x)ki|x|µi, for any archimedean place σ :F ֒→R. In this scenario,by an automorphicformwe meana function on i Hr×G(A∞)/U,whereHisthePoincar´eupperplaneandr isthecardinaloftheset Σ of archimedeanplaces where A splits, with values in V (k )∨ (see §1.2 σi∈∞\Σ µi i for a precisedefinition ofV (k )), that satisfies the usualtransformationlaws with µi i N 1 Theauthor issupportedinpartbyDGICYTGrantMTM2015-63829-P. 1 2 SANTIAGOMOLINA respectto the weight-k -actions ofG(F). The interestingcohomologysubgroupsto i consider are: n Hr(G(F)+,A(V (k),C)U)= Hr(Γ ,V (k)∨), Γ =G(F)+∩g Ug−1, ψ gi ψ gi i i i=1 M where V (k) is the tensor product of the polynomial spaces V (k ) (j =1,··· ,d), ψ µi j G(F)+ ⊆G(F)isthesubgroupoftotallypositiveelements,{g } ⊂G(A∞)is i i=1,···,n asetofrepresentativesofthedoublecosetspaceG(F)+\G(A∞)/U,andA(V (k),C)U = ψ C(G(A∞)/U,V (k)∨). Similarly as in the classical case, for any character ε : ψ G(F)/G(F)+ −→±1 we can define a morphism ∂ε :S (U,ψ)−→Hr(G(F)+,A(V (k),C)U)(ε), k ψ from the set S (U,ψ) of automorphic cuspforms of weight k, level U and central k character ψ, to the ε-isotypical component of Hr(G(F)+,A(V (k),C)U). Such a ψ map is given by: ∂ǫφ= ǫ(γ)∂φγ, γ∈G(FX)/G(F)+ where ∂φ∈Hr(G(F)+,A(V (k),C)) is the class of the cocycle ψ g1τ1 g1···grτr (G(F)+)r ∋(g ,g ,··· ,g )7−→ ··· P (1,−z)hφ(z,g),PΣidz, 1 2 r Σ Zτ1 Zg1···gr−1τr withP ∈ r V (k ), PΣ ∈ d V (k )andz =(z ,··· ,z ),(τ ,··· ,τ )∈ Σ j=1 µj j j=r+1 µj j 1 r 1 r Hr. Ourresultwillprovidea groupcohomologicalinterpretationto the morphisms N N ∂ε, for any character ε. LetF ≃Rd betheproductofthearchimedeancompletionsofF,letG bethe ∞ ∞ LiealgebraofG(F )andletK ⊆G(F )beamaximalcompactsubgroup. Then ∞ ∞ ∞ the (G ,K )-module generated by φ is isomorphic to D (k), the tensor product ∞ ∞ ψ of discrete series of weight k at archimedean places in Σ and polynomial spaces j V (k )atarchimedeanplacesnotinΣ. Thisimpliesthatanyφ∈S (U,ψ)provides µj j k an element φ∈H0(G(F),A(D (k),C)U); A(D (k),C)U :=Hom (D (k),AU), ψ ψ (G∞,K∞) ψ whereAU isthe(G ,K )-moduleofsmoothadmissiblefunctionsf :G(A)/U →C. ∞ ∞ Our main result (Theorem 2.4) can be rewritten as follows: Theorem 0.1. There exists an exact sequence of G(F)-modules 0→A(V (k)(ε),C)U →A(Iε(k),C)U →A(Iε(k),C)U →···→A(D (k),C)U →0, ψ 1 2 ψ such that, up to an explicit constant, the morphism ∂ǫ is given by the corresponding connection morphism H0(G(F),A(D (k),C)U)−→Hr(G(F),A(V (k)(ε),C)U)≃Hr(G(F)+,A(V (k),C)U)(ε). ψ ψ ψ We obtain the above exact sequence from extensions of the (G ,K )-modules σi σi of discrete series D (k ) at every place σ ∈ Σ. The archimedean local nature of µi i i theseconnectionmorphisms∂εimpliesthattheG(A∞)-representationgeneratedby ∂εφ coincides with the restriction to G(A∞) of π , the automorphic representation φ attached to φ. The image of a cuspidal automorphic representation π through the morphisms φ ∂ε isusedinmanypaperstogiveagroupcohomologicalconstructionofcyclotomic andanti-cyclotomicp-adicL-functions andStickelbergerelements attachedto qua- dratic extensions of a totally real number field (see for instance [7], [5] and [1]). The explicit form of ∂ε given in Theorem 2.4 provides the interpolation properties of these objects. Another application is the construction of Stark-Heegner points. By means of the connection morphisms ∂ε±1, where (ε+,ε−) is a well chosen pair of characters, EICHLER-SHIMURA ISOMORPHISM AND GROUP COHOMOLOGY ON ARITHMETIC GROUPS3 one can construct a complex torus C[L:Q]/Λ attached to a weight 2 automorphic representation π with field of coefficients L. It is conjectured that such complex φ torus coincides with the abelian variety of GL -type attached to π . In [3], we 2 φ use the cohomologicaldescription of ∂ε±1 to construct Stark-Heegner points in the complex torus, that we conjecture to be global points in the corresponding abelian variety. Suchpointsareconjecturallydefinedoverclassfieldsofquadraticextensions of F and satisfy explicit reciprocity laws. Notation. Throughout this paper, we will denote by dθ = dθ the Haar S1 SO(2) measure of S1 =SO(2) such that vol(S1)=π. R R LetF beanumberfield. Foranyplacev ofF,wedenotebyF itscompletionat v v. GivenafinitesetofplacesS ofF,wedenotebyF theproductofcompletionsat S everyplaceinS. WedenotebyF theproductofcompletionsateveryarchimedean ∞ place. Similarly, for any subset Σ of archimedeanplaces, F will be the product ∞\Σ of completions at every archimedean place not in Σ. We denote by A the ring of adeles of F. For any set S of places of F, we write AS for the ring adeles outside S. Consistent with this notation, we denote by A∞ the ring of finite adeles of F. 1. Discrete series 1.1. Finitedimensionalrepresentations. LetAbeaquaternionalgebradefined over a local field F. Let K/F be an extension where A splits. For any natural numberk ∈N,letPK ≃Symk−2(K2)bethefiniteK-vectorspaceofhomogeneous k−2 polynomials of degree k−2. We have a well defined action of GL (K) on PK 2 k−2 given by a b a b (1.2) ∗P (x,y):=P (x,y) =P (ax+cy,bx+dy). c d c d (cid:18)(cid:18) (cid:19) (cid:19) (cid:18) (cid:18) (cid:19)(cid:19) If we fix an embedding ι:A−→A⊗ K ≃M (K), F 2 then PK is equipped with an action of A×. k−2 We denote by det:A→F the reduced norm of A, and let us consider A+ ={a∈A: det(a)∈F2}. We write V(k)K = PkK−2⊗det2−2k with the natural action of A+. It is clear that the centreofA× acts triviallyonV(k) . Notice that, ifk is even,the actionofA+ K on V(k) extends to a natural action of A. K 1.2. Discreteseriesandexactsequences. AssumethatF =RandA=M (R). 2 Let GL (R) be the Lie algebra of GL (R). For any k ∈ Z and µ ∈ C, we define 2 2 I (k) as the (GL (R),SO(2))-module of smooth admissible vectors in µ 2 k (f :GL2(R)+ →C: f(cid:18)(cid:18) t1 tx2 (cid:19)g(cid:19)=sign(t1)k(t1t2)µ2 (cid:18)tt12(cid:19)2 f(g)). µ Write Vµ(k)=V(k)C⊗det2. If we assume that k ≥2, we have the well defined morphism of (GL (R),SO(2))-modules 2 a b 2−k+µ ι:Vµ(k)−→Iµ(2−k); ι(P) c d =(ad−bc) 2 P(c,d). (cid:18) (cid:19) Moreover,we have a (GL (R),SO(2))-invariant pairing (see [2, §2]) 2 h, i :I (k)×I (2−k)−→C; (f,g)7−→ f(θ)g(θ)dθ, I µ −µ ZSO(2) 4 SANTIAGOMOLINA providing the morphism of (GL (R),SO(2))-modules 2 ϕ¯:I (k)−→V (k)∨; hϕ¯(f),Pi :=hf,ι(P)i . µ −µ V I Composing with the natural GL (R)+-morphism 2 (1.3) V (k)∨ −→V (k); F 7−→P (x,y)=hF,(Yx−Xy)k−2i , −µ µ F V(X,Y) we obtain a map ϕ:I (k) −→ V (k); µ µ ϕ(f)(x,y) = hϕ¯(f),(Yx−Xy)k−2i = f(θ)(ysinθ+xcosθ)k−2dθ V(X,Y) ZS1 Remark 1.1. Notice that we have the symmetry hF,P i = hF,hG,(Yx−Xy)k−2i i G V V(X,Y) V(x,y) = (−1)khG,hF,(Xy−Yx)k−2i i =(−1)khG,P i , V(x,y) V(X,Y) F V for all F,G∈V (k)∨. µ The kernelof ϕ is D (k) the Discrete Series (GL (R),O(2))-module of weightk µ 2 and central character x 7→ sign(x)k|x|µ. This definition implies that D (k) lies in µ the following exact sequence of (GL (R),SO(2))-modules: 2 ϕ (1.4) 0−→D (k)−→I (k)−→V (k)−→0. µ µ µ Since any g ∈GL (R)+ can be written uniquely as g =u·τ(x,y)·κ(θ), where 2 y1/2 xy−1/2 cosθ sinθ u∈R+, τ(x,y)= ∈B, κ(θ)= ∈SO(2), y−1/2 −sinθ cosθ (cid:18) (cid:19) (cid:18) (cid:19) we have that Iµ(k)= Cft; ft(u·τ(x,y)·κ(θ))=uµyk2etiθ. t≡kM(mod2) The (GL (R),SO(2))-module structure of I (k) can be described as follows: Let 2 s L,R∈GL (R) be the Maass differential operators defined in [2, §2.2] 2 ∂ ∂ 1 ∂ ∂ ∂ 1 ∂ L=e−2iθ −iy +y − , R=e2iθ iy +y + . ∂x ∂y 2i∂θ ∂x ∂y 2i∂θ (cid:18) (cid:19) (cid:18) (cid:19) Then, the (GL (R),SO(2))-module I (k) is characterizedby the relations: 2 s k+t k−t (1.5) Rf = f ; Lf = f ; t t+2 t t−2 2 2 (cid:18) (cid:19) (cid:18) (cid:19) (1.6) κ(θ)f =etiθf ; uf =uµf , t t t t for any κ(θ)∈SO(2) and u∈R+ ⊂GL (R)+. 2 Write z = x+iy and z¯= x−iy. For n ∈ {0,1,··· ,k−2}, let us consider the elements P ∈ V (k), P (x,y) = znz¯k−2−n. It is clear that {P } is a n µ n n n=0,···,k−2 basis for the C-vector space V (k). We compute that µ ϕ(f)(x,y) = f(θ)((2i−1)(z−z¯)sinθ+2−1(z+z¯)cosθ)k−2dθ ZS1 = 22−kf(θ)(ze−iθ+z¯eiθ)k−2dθ ZS1 k−2 k−2 = 22−k P (x,y) f(θ)e−i(2n−k+2)θdθ n n n=0(cid:18) (cid:19) ZS1 X By orthogonality, we deduce that ϕ(f )=22−kπ k−2 P (x,y). 2n−k+2 n n (cid:0) (cid:1) EICHLER-SHIMURA ISOMORPHISM AND GROUP COHOMOLOGY ON ARITHMETIC GROUPS5 Since κ(θ)P =e(2n−k+2)iθP , the morphism of C-vector spaces n n 2k−2 k−2 −1 (1.7) s:V (k)−→I (k); s(P )= f , µ µ n 2n−k+2 π n (cid:18) (cid:19) defines a section of ϕ as SO(2)R+-modules. Remark 1.2. Since (1.3) is an isomorphism, we can define a non-degenerate GL (R)+-invariant bilinear pairing V (k)×V (k)→C 2 µ −µ hP ,Qi=hF,Qi , F ∈V (k)∨, Q∈V (k), F V −µ C −µ which is symmetric or antisymmetric depending onthe parity of k, by Remark 1.1. Moreover,by the definition of (1.3), P(s,t)=hP,Q i, Q (x,y)=(ys−xt)k−2. s,t s,t In particular, (1.8) P(−1,i)=i2−khP,P i=ik−2hP ,Pi. 0 0 Since s is a section of ϕ, we compute (1.9) hP,Qi=hϕ¯(s(P)),Qi =hs(P),ι(Q)i , V I for all P,Q∈V (k). µ 1.3. The (GL (R),O(2))-module of discrete series. We want to give structure 2 of (GL (R),O(2))-module to I (k). Hence, we have to define the action of ω = 2 µ 1 ∈O(2)\SO(2). That is to say,we have to define ω ∈End(I (k)) such −1 µ (cid:18) (cid:19) that (i) ωf ∈Cf ; (ii) ω2 =1; (iii) ωR=Lω. t −t If we write ωf = λ(t)f , condition (ii) implies that λ(t)λ(−t) = 1. Moreover, t −t condition(iii) implies thatλ(t)=λ(t+2). We obtaintwo possible (GL (R),O(2))- 2 module structures for I (k): Letting λ(t) = 1 for all t ≡ k mod 2, or letting µ λ(t) = −1 for all t ≡ k mod 2. Write I (k)± for the (GL (R),O(2))-module such µ 2 that ωf =±f , respectively. t −t By abuse of notation, write also V (k) and V (k) (in case µ ∈ R) for the µ µ R GL (R)-representations 2 Vµ(k)=Vµ(k)C =PkC−2⊗|det|2−k2+µ, Vµ(k)R =PkR−2⊗|det|2−k2+µ . Remark 1.3. With this GL (R)-module structure, the pairing h·,·i introduced in 2 Remark 1.2 is not a GL (R)-invariant in general. In fact one can show that 2 hgP,Qi=sign(detg)khP,g−1Qi. Notethat,foranyf ∈I (k)±,wehavethatωf(θ)=±f(−θ),hencewecompute µ that, ϕ(ωf)(x,y) = ωf(θ)(xcosθ+ysinθ)k−2dθ ZS1 = ± f(−θ)(xcosθ+ysinθ)k−2dθ ZS1 = ± f(θ)(xcosθ−ysinθ)k−2dθ =±ω(ϕ(f))(x,y) ZS1 Thisimpliesthattheexactsequenceof(GL (R),SO(2))-modules(1.4)providesthe 2 exact sequences of (GL (R),O(2))-modules 2 (1.10) 0−→D (k)−→ι I (k)+ −→V (k)−→0, µ µ µ (1.11) 0−→D (k)−ι◦→I I (k)− −→V (k)(ε)−→0, µ µ µ 6 SANTIAGOMOLINA where ε : GL (R) → ±1 is the character given by ε(g) = signdet(g), D (k) is the 2 µ (GL (R),O(2))-module with fixed action of ω given by ωf(θ) = f(θ), and I is the 2 automorphism of (GL (R),SO(2))-modules 2 I :D (k)−→D (k): I(f )=sign(t)f . µ µ t t Note that ι◦I is a monomorphism of (GL (R),O(2))-modules because I(ωf) = 2 −ω(I(f)). 1.4. Matrix coefficients. Let us consider A(C) the (GL (R),SO(2))-module of 2 admissible C∞ functions f :GL (R)+ →C. For any f ∈I (2−k), I claim that 2 0 −µ ϕ :I (k)−→A(C), ϕ (f)(g )=hg f,f i , g ∈GL (R)+, f0 µ f0 ∞ ∞ 0 I ∞ 2 provides a well defines morphism of (GL (R),SO(2))-modules. Indeed, for any 2 element of the Lie algebra G∈GL (R), 2 d d Gϕ (f)(g ) = (ϕ (g exp(tG)))| = (hg exp(tG)f,f i )| f0 ∞ dt f0 ∞ t=0 dt ∞ 0 I t=0 = ϕ (Gf)(g ). f0 ∞ 1.5. R-structures of Discrete series. Aswecanseein[2,§2.2],RandLarenot in GL (R), they are Caley transformations in GL (C) of elements in GL (R). In 2 2 2 fact, GL (R) is generated by 2 ∂ ∂ ∂ ∂ R+L = −2ysin(2θ) +2ycos(2θ) +sin(2θ) ; u ; ∂x ∂y ∂θ ∂u ∂ ∂ ∂ ∂ i(R−L) = −2ycos(2θ) −2ysin(2θ) +cos(2θ) ; and . ∂x ∂y ∂θ ∂θ If we define h := f +f ∈ I (k)± and g := i(f −f ) ∈ I (k)±, it is easy to t t −t µ t t −t µ compute that k+t k−t ∂ (R+L)h = h + h , h =−tg , t t+2 t−2 t t 2 2 ∂θ (cid:18) (cid:19) (cid:18) (cid:19) k+t k−t i(R−L)h = g − g , ωh =±h t t+2 t−2 t t 2 2 (cid:18) (cid:19) (cid:18) (cid:19) κ(θ)h =cos(tθ)h −sin(tθ)g , ωg =∓g . t t t t t Hence the R-vector space I (k)± ⊂ I (k)± generated by h and g defines a µ R µ t t (GL (R),O(2))-module over R. 2 We check that the morphisms ϕ : I (k)+→V (k) and ϕ : I (k)−→V (k)(ε) µ µ C µ µ C descend to morphisms of (GL (R),O(2))-modules over R 2 ϕ+ :I (k)+ −→V (k) , ϕ− :I (k)− −→V (k) (ε). µ R µ R µ R µ R Hence the kernel D (k) ⊂ D (k) of ϕ+ defines a (GL (R),O(2))-module over R, µ R µ 2 generatedbyh ,suchthatD (k) ⊗ C=D (k). Nevertheless,theautomorphism k µ R R µ of (GL (R),SO(2))-modules I : D (k)→D (k) does not descend to an automor- 2 µ µ phism of (GL (R),SO(2))-modules over R since I(h )=−sign(t)ig . In fact, 2 t t I(D (k) )=iD (k) ⊂D (k). µ R µ R µ We obtain the exact sequences of (GL (R),O(2))-modules over R 2 (1.12) 0−→D (k) −→ι I (k)+ −→V (k) −→0, µ R µ R µ R (1.13) 0−→D (k) −ι◦→I iI (k)− −→iV (k) (ε)−→0. µ R µ R µ R EICHLER-SHIMURA ISOMORPHISM AND GROUP COHOMOLOGY ON ARITHMETIC GROUPS7 2. Connection morphisms In this section, we assume that G is the multiplicative group of a quaternion algebra that splits at the set of archimedean places Σ. Write r = #Σ. Let us consider the C-vector space A(C) of functions f :G(A)−→C such that: • There exists an open compact subgroup U ⊆ G(A∞) such that f(gU) = f(g), for all g ∈G(A). • UnderafixedidentificationG(F )≃GL (R)r,f | ∈C∞(GL (R)r,C). Σ 2 G(FΣ) 2 • Fixing K , a maximal compact subgroup of G(F ) isomorphic to O(2)r, Σ Σ we assume that any f ∈ A(C) is K -finite, namely, its right translates by Σ elements of K span a finite-dimensional vector space. Σ • We assume that any f ∈ A(C) is Z-finite, where Z is the centre of the universal enveloping algebra of G(F ). Σ Write ρ for the action of G(A) given by right translation, then (A(C),ρ) defines a smoothG(A∞)-representationanda(G ,K )-module,whereG istheLiealgebra ∞ ∞ ∞ of G(F ) and K = K ×G(F ). Moreover, A(C) is also equipped with the Σ ∞ Σ ∞\Σ G(F)-action: (h·f)(g)=f(h−1g), h∈G(F), where g ∈ G(A), f ∈ A(C). Let us fix an isomorphism G(F ) ≃ GL (R)r that Σ 2 maps K to O(2)r and let V be a (G ,K )-module. We define Σ ∞ ∞ A(V,C):=Hom (V,A(C)), (G∞,K∞) endowed with the natural G(F)- and G(A∞)-actions. Remark2.1. Notethatifthe(G ,K )-moduleV comesfromafinitedimensional ∞ ∞ G(F )-representation V, ∞ A(V,C)≃C(G(A∞),Hom(V,C))=C(G(A∞),V∨), whereV∨isseenasaG(F)-modulebymeansoftheusualinjectionG(F)֒→G(F ), ∞ and the action of G(F) on C(G(A∞),V∨) is given by (h∗f)(g)=h(f(h−1g)). Fix σ ∈ Σ, µ ∈ C and let us consider D (k), V (k) and V (k)(ε) as (G ,K )- µ µ µ ∞ ∞ modules by means of the projection G(F )→G(F ). The exact sequences (1.10) ∞ σ and (1.11) provide the connection morphisms ∂ǫσ :Hi(G(F),A(V ⊗D (k),C))−→Hi+1(G(F),A(V ⊗V (k)(ǫ ),C)), σ µ µ σ for any of the two characters ǫ :G(F )/G(F )+→±1. σ σ σ LetV bea(G ,K )-representationoverRsuchthatV =V ⊗C. Thisimplies R ∞ ∞ R thatwehaveawelldefinedcomplexconjugationonV byconjugatingonthesecond factor. Thus, we have a complex conjugation on A(V,C), given by A(V,C)∋φ7−→φ¯∈A(V,C); φ¯(v)=φ(v¯). Lemma 2.2. Assume that V = V ⊗ C for some (G ,K )-module V over R, R R ∞ ∞ R and let µ∈R. Then, for any φ∈Hi(G(F),A(V ⊗D (k),C)), we have µ ∂σǫσ(φ)=ǫσ(c)·∂σǫσ(φ) for any c∈G(F )\G(F )+ σ σ Proof. We denote by A(V ⊗D (k),C)±1 ⊂A(V ⊗D (k),C) the subspaces where µ µ complex conjugation acts by ±1, respectively. Since exact sequences (1.10) and (1.11) descend to exact sequences (1.12) and (1.13), we obtain 0−→A(V⊗V (k)(ε ),C)±εσ −→A(V⊗I (k)εσ,C)±εσ −→A(V⊗D (k),C)±1 −→0. µ σ µ µ Hence the connection morphism satisfies δǫσ Hi(G(F),A(V ⊗D (k),C)±1) ⊆Hi+1(G(F),A(V ⊗V (k)(ε ),C)±εσ) σ µ µ σ and th(cid:0)e result follows. (cid:1) (cid:3) 8 SANTIAGOMOLINA 2.1. Explicitcomputationofthe connection morphisms. Letusconsiderthe section s:V (k) →I (k) of (1.7). µ C µ We compute that hf ,ιP i = emiθP (−sinθ,cosθ)dθ m n I n ZS1 = i2n−k+2emiθeniθe(n−k+2)iθdθ =πi2n−k+2δ(2n−k+2+m), ZS1 where δ(n) is the Dirac delta. Thus, g−1P = k−2α (g )P , where ∞ n=0 n ∞ n α (g )= ik−2−2nhf ,ι(g−1P)i P= ik−2−2nhg f ,ι(P)i . n ∞ π k−2−2n ∞ I π ∞ k−2−2n I Since V (k) is generated by {P ,··· ,P }, we deduce that α = 0 unless n ∈ µ 0 k−2 n {0,··· ,k−2}. Since matrix coefficient morphism are (G ,K )-module morphisms σ σ by §1.4, we can compute on the one side ik−2−2n Rα (g ) = hg (Rf ),ι(P)i n ∞ ∞ k−2−2n I π ik−2−2n = (k−n−1) hg f ,ι(P)i =(n+1−k)α (g ), ∞ k−2n I n−1 ∞ π ik−2−2n Lα (g ) = hg (Lf ),ι(P)i n ∞ ∞ k−2−2n I π ik−2−2n = (n+1) hg f ,ι(P)i =−(n+1)α (g ). ∞ k−2n−4 I n+1 ∞ π On the other side, we have that s(P )= 2k−2 k−2 −1f . Hence, n π n 2n−k+2 2k−2 k−2 −1 (cid:0) (cid:1) (n<k−2)Rs(P ) = (n+1)f =(k−2−n)s(P ), n 2n−k+4 n+1 π n (cid:18) (cid:19) 2k−2 k−2 −1 (n>0) Ls(P ) = (k−n−1)f =ns(P ). n 2n−k n−1 π n (cid:18) (cid:19) Assume that φ˜∈A(V ⊗I (k),C) andthe actionof(G ,K )on V is trivial. For µ σ σ any f ∈I (k) and v ∈V, we will usually denote by φ˜ (f) the expression φ˜(v⊗f). µ v We aim to compute h (g ):=φ˜ (s(g−1P))(g ,g), g ∈G(F )+ ≃GL (R)+, P ∞ v ∞ ∞ ∞ σ 2 forallg ∈G(Aσ),P ∈V (k),andv ∈V. Sinceh (g )= k−2α (g )φ˜ (s(P ))(g ,g), µ P ∞ n=0 n ∞ v n ∞ we compute P k−2 Rh = (Rα )φ˜ (s(P ))+α φ˜ (Rs(P )) = P n v n n v n nX=0(cid:16) (cid:17) k−2 k−3 k−1 = (n+1−k)α φ˜ (s(P ))+ α φ˜ (f )+ (k−2−n)α φ˜ (s(P )) n−1 v n 22−kπ k−2 v k n v n+1 n=0 n=0 X X k−1 k−1 = 2k−2 α φ˜ (f )−α φ˜ (f ) = 2k−2α φ˜ (f ), k−2 v k −1 v 2−k k−2 v k π π k−2 (cid:16) (cid:17) Lh = (Lα )φ˜ (s(P ))+α φ˜ (Ls(P )) = P n v n n v n nX=0(cid:16) (cid:17) k−2 k−2 k−1 = (−n−1)α φ˜ (s(P ))+ α φ˜ (f )+ nα φ˜ (s(P )) n+1 v n 22−kπ 0 v −k n v n−1 n=0 n=1 X X k−1 k−1 = 2k−2 α φ˜ (f )−α φ˜ (f ) = 2k−2α φ˜ (f ), 0 v −k k−1 v k−2 0 v −k π π (cid:16) (cid:17) EICHLER-SHIMURA ISOMORPHISM AND GROUP COHOMOLOGY ON ARITHMETIC GROUPS9 Notice that R = e2iθ2iy( ∂ − 1 ∂ ) and L = −e−2iθ2iy( ∂ − 1 ∂ ) with ∂τ 4y∂θ ∂τ¯ 4y∂θ τ = x + iy. Since s is a morphism of SO(2)R+-modules, h is a function of P GL (R)+/SO(2)R+ ≃ H, thus h is a function on τ and τ¯. Let us compute ∂hP 2 P ∂τ and ∂hP: By (1.9) and (1.8), ∂τ¯ ∂h y−1e−4πiθ (k−1) P(τ,τ¯) = R(h )= i2−khg P ,Piφ˜ (f ) ∂τ 2i P 2πiye2iθ ∞ 0 v k (k−1) (k−1) φ˜ (f ) = (g−1P)(1,−i)φ˜ (f )= P(1,−τ) v k (τ,τ¯,g), 2πiye2iθ ∞ v k 2πi f k ∂h −y−1e2iθ (1−k) P(τ,τ¯) = L(h )= ik−2hg ωP ,Piφ˜ (f ) ∂τ¯ 2i P 2πiye−2iθ ∞ 0 v −k (1−k) (1−k) φ˜ (f ) = (g−1P)(1,i)φ˜ (f )= P(1,−τ¯) v −k (τ,τ¯,g), 2πiye−2iθ ∞ v −k 2πi f −k byRemark1.3,whereφ˜ (f )f−1andφ˜ (f )f−1areseenasfunctionsofGL (R)+/SO(2)R+ ≃ v k k v −k −k 2 H. A similar (and classical) calculation shows that φ˜ (f )f−1 and φ˜ (f )f−1 are v k k v −k −k holomorphic and anti-holomorphic,respectively. For any P ∈V (k), g ∈G(Aσ), v ∈V and φ∈A(V ⊗D (k),C) the expressions µ µ φ(v⊗f ) k (2.14) ω (P,v,g)(τ) := P(1,−τ) (τ,g)dτ, φ 2πif k φ(v⊗f ) −k (2.15) ω¯ (P,v,g)(τ¯) := P(1,−τ¯) (τ¯,g)dτ¯, φ 2πif −k define holomorphic and anti-holomorphic forms in H, respectively. Moreover, it is easy to check that ω (P,v,g)(γ−1τ)=ω (γP,v,γg)(τ), ω¯ (P,v,g)(γ−1τ¯)=ω¯ (γP,v,γg)(τ¯), φ γφ φ γφ for any γ ∈ G(F)∩G(F )+. Assume that c ∈ Hn(G(F),A(V ⊗D (k),C)) is σ φ µ represented by the n-cocycle φ : G(F)n → A(V ⊗ Dµ(k),C). Then ∂σǫσ(cφ) is represented by the (n + 1)-cocycle dnφ˜, where φ˜(γ) ∈ A(V ⊗ I (k) ,C) is any µ C preimage of φ(γ) for all γ ∈ G(F)n. We consider the (n+1)-cocycle ∂εσ(φ) = σ dnφ˜− dnb, where b(γ)(g)(v ⊗ P) = φ˜(γ)(v ⊗ s(P))(1,g). We compute, for all P ∈V (k), v ∈V, γ =(γ ,··· ,γ )∈G(F)n, α∈G(F) and g ∈G(Aσ), µ 1 n ∂ǫσφ(α,γ)(g)(v⊗P) = α (φ˜−b)(γ) (v⊗s(P))(1,g)+ σ (cid:16)n+1 (cid:17) + (−1)i(φ˜−b)(αγ )(v⊗s(P))(1,g), i i=1 X whereαγ =(α,γ ,··· ,γ γ ,··· ,γ )fori=1,··· ,n,andαγ =(α,γ ,··· ,γ ). i 1 i−1 i n n+1 1 n−1 Since (φ˜−b)(γ)(v⊗s(P))=0 by construction, we obtain ∂ǫσφ(α,γ)(g)(v⊗P) = α φ˜(γ) (v⊗s(P))(1,g)−α b(γ) (v⊗P)(g) σ = φ˜((cid:16)γ)(v⊗(cid:17)s(P))(α−1,α−1g)−φ(cid:0)˜(γ)((cid:1)v⊗s(α−1P))(1,α−1g) Since φ˜(γ)(v ⊗f ) = φ(γ)(v ⊗f ) and φ˜(γ)(v ⊗f ) = ǫ (c)φ(γ)(v ⊗f ), we k k −k σ −k deduce from the above computations that, for any α∈G(F)∩G(F )+, σ α−1i ∂ǫσφ(α,γ)(g)(v⊗P) = (k−1) ω (α−1P,v,α−1g)−ǫ (c)ω¯ (α−1P,v,α−1g) σ φ(γ) σ φ(γ) Zi αi = (1−k) ω (P,v,g)−ǫ (c)ω¯ (P,v,g). αφ(γ) σ αφ(γ) Zi 10 SANTIAGOMOLINA Remark 2.3. We have a well defined action of G(F)/G(F)+ on Hr(G(F)+,M), for any G(F)-module M, given by cγ(α ,··· ,α )=γ c(γ−1α γ,··· ,γ−1α γ) , 1 r 1 r for γ ∈G(F), and α ∈G(F)+. The i(cid:0)mage of the restriction m(cid:1)ap i Hr(G(F),M)−→Hr(G(F)+,M) lies in H0(G(F)/G(F)+,Hr(G(F)+,M)). Letψ :A×/F× →C× beaHeckecharactersuchthat,foranyarchimedeanplace σi :F ֒→R, ψσi(x)=sign(x)ki|x|µi. Let Dψ(k) be the (G∞,K∞)-module obtained by making the tensor product of D (k ) at the place σ , if σ ∈Σ, and V (k ) at µi i i i µj j the place σ , if σ 6∈ Σ. An element of D (k) is f ⊗PΣ, where f = f , j j ψ k k σi∈Σ ki f ∈D (k ) are the elements defined above, and PΣ ∈ V (k ). Let V (k) ki µi i σi6∈Σ µi i N ψ bethe(G ,K )-moduleobtainedbymakingthetensorproductofV (k )atallthe ∞ ∞ N µi i places σ . For any character ǫ:G(F )/G(F )+ ≃G(F)/G(F)+ →±1, we denote i ∞ ∞ by Hr(G(F)+,A(V (k),C))(ǫ) the ε-isotypical component, namely, the subspace ψ of Hr(G(F)+,A(V (k),C)) such that the action of G(F)/G(F)+ is given by the ψ character. By the above remark, the restriction map provides an isomorphism Hr(G(F),A(V (k)(ε),C))≃Hr(G(F)+,A(V (k),C))(ǫ). ψ ψ Usingtheabovecomputations,weaimtogiveanexplicitformulafortheconnection morphism: Theorem2.4. LetφbeaweightkautomorphicformofG(A)withcentralcharacter ψ. Then φdefines an element of φ∈H0(G(F),A(D (k),C)). For achoice of signs ψ at the places at infinity ǫ:G(F )/G(F )+ ≃G(F)/G(F)+ →±1, ∞ ∞ the composition of the connection morphisms δ , for σ ∈Σ, ǫσ ∂ :H0(G(F),A(D (k),C))−→Hr(G(F),A(V (k)(ǫ),C))≃Hr(G(F)+,A(V (k),C))(ǫ), ǫ ψ ψ ψ can be computed as follows: r ∂ φ= (1−k ) ǫ(γ)∂φγ, ǫ j jY+1 γ∈G(FX)/G(F)+ where ∂φ∈Hr(G(F)+,A(V (k),C)) is the class of the cocycle ψ g1τ1 g1···grτr φ(f ⊗PΣ) (G(F)+)r ∋(g ,g ,··· ,g )7−→ ··· P (1,−z) k (z,1,g)dz, 1 2 r Σ (2πi)rf Zτ1 Zg1···gr−1τr k for any P =PΣ⊗P ∈V (k), z =(z ,··· ,z ),(τ ,··· ,τ )∈Hr. Σ µ 1 r 1 r Proof. Let S ⊂ Σ be a subset of archimedean places such that #S = s < r. Assume that σ =σ ∈Σ\S and let k be its correspondingweight and µ=µ . Let j j V = D (k )⊗ V (k )(ε ), where S′ =Σ\(S∪{σ}). Thus, σi∈S′ µi i σi∈∞\(Σ\S) µi i σi the composition of the connection morphisms corresponding to σ ∈ S, provides a i N N morphism δ :H0(G(F),A(D (k),C))−→Hs(G(F),A(V ⊗D (k),C)). S ψ µ By the previous computations, if P ∈V (k), g ∈G(Aσ), v ∈V, µ αi ∂ǫσ∂ φ(α,γ)(g)(v⊗P)=(1−k) ω (P,v,g)−ǫ (c)ω¯ (P,v,g). σ S α∂Sφ(γ) σ α∂Sφ(γ) Zi