ebook img

Efficient Water Allocation and Water Conservation Policy Modeling in the Aral Sea Basin PDF

257 Pages·2014·6.31 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Efficient Water Allocation and Water Conservation Policy Modeling in the Aral Sea Basin

ZENTRUM FÜR ENTWICKLUNGSFORSCHUNG - RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT BONN Efficient Water Allocation and Water Conservation Policy Modeling in the Aral Sea Basin Inaugural-Dissertation zur Erlangung des Grades Doktor der Agrarwissenschaften (Dr.agr.) der Landwirtschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt am 31.10.2013 von Maksud Bahodirovich Bekchanov aus Khorezm (Usbekistan) Referent: Prof. Dr. Joachim von Braun Korreferent: Prof. Dr. Thomas Heckelei Tag der mündlichen Prüfung: 26.03.2014 Erscheinungsjahr: 2014 Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert. 1 EFFICIENT WATER ALLOCATION AND WATER CONSERVATION POLICY MODELING IN THE ARAL SEA BASIN ABSTRACT Increasing water demand challenges policy makers to implement in-time and effective water management measures to mitigate both the on-going and upcoming water crisis in the Aral Sea basin (ASB) of Central Asia. The shrinkage of the Aral Sea due to the rapid expansion of irrigated agriculture along the two main rivers of the basin – the Amu Darya and Syr Darya – which accompanied by water overuse is at the core of the all water related problems. Various hypothetical “solutions”, including massive inter-basin water transfers, have been considered to ease the water challenge. Yet, given the enormous conveyance and water application losses in the irrigation system combined with ineffective coordination of the basin resources among the riparian countries in both the Amu and Syr Darya basins, increasing the efficiency of using internal water resources is more technically and financially feasible option. Furthermore, water management measures must address the root causes of water scarcity and ecological deterioration rather than attempting to deal with the consequences of the problem only. This study examines therefore three important options for addressing the core reasons of aggravated water (ab)use in the ASB. In the first option, sectoral transformations (e.g., economic restructuring) are considered by prioritizing economic activities with relatively high economic growth impacts and low water consumption requirements. In the second option, it is assessed to replace the current administrative water management institutions with more effective market-based water allocation institutions to encourage cooperation among regional water users for attaining optimal basin-wide benefits. In the third option, technological and infrastructural improvements are evaluated following an increased efficiency of the irrigation systems and building reservoirs in the upper reaches of the rivers to regulate river flow. Economic restructuring was analyzed by ranking all economic sectors based on their sustainable economic growth potentials using an environmentally extended input-output model. The forward and backward linkages and the total (direct and indirect) water requirements of the different economic activities were estimated and compared as well. The results indicated that water demand in the ASB can be reduced substantially by decreasing the production of the water intensive sectors such as agriculture in favor of the development of less water demanding, non-agricultural sectors. Within the agriculture sector, crop diversifications are recommendable, e.g. by partially replacing rice cultivation and cotton production, which have the highest total (direct and indirect) water use contents of 36 m3/USD and 18.4 m3/USD respectively, with high water productive crops such as fruits/vegetables with total water use of 9.1 m3/USD. Potential effects of replacing the traditional administrative water allocation system with market- based water allocation approaches were examined through an aggregated hydro-economic model. Substantial basin-wide economic gains is appeared feasible when the trade of water rights among all irrigation zones is allowed in each river basin (the Amu Darya or Syr Darya). Total benefits under restricted water rights trading by permitting a trade only among the regions located within each upstream, midstream, and downstream sub-basins (catchments) is lower than the total economic gains of unrestricted water rights trading but is still higher than total benefits of the option without trading. Depending on water availability, the amount of additional annual gains ranged between $373 and 476 million USD under an inter-catchment (unrestricted) water rights trading system whereas additional annual gains of $259–339 million USD were predicted under intra-catchment (restricted) water rights trading. Benefits from water rights trading increase with growing water scarcity. When purchase of water use rights is considered to enhance environmental flow into the Aral Sea while compensating reduced water withdrawals of agricultural producers, basin-wide economic gains are expected to be higher if water rights trading among irrigation zones 2 are allowed rather than prohibited. Moreover, the cost of purchasing water use rights for environmental needs is less expensive compared to an interbasin water transfer. Since the establishment and operation of market-based water allocation institutions comes with costs, the transaction costs of introducing tradable water use rights were considered in assessing the effectiveness of such institutional changes. An inverse relationship were found between the benefits of water rights trading and its transaction costs. Results showed furthermore that transaction costs of more than $0.05 USD per m3 of water use rights eliminate the potential benefits of a water trading option. Technical improvements to raise the efficiency of water use and water coordination were analyzed through a disaggregated hydro-economic model. Substantial benefits can be expected from improving irrigation (conveyance and water application) efficiencies in the ASB. Total basin-wide benefits can increase by 20% to 40% depending on basin-wide water availability when irrigation system efficiencies are optimized across the basin. The findings showed also that a construction of upstream reservoirs as intensely debated at present by up- and downstream countries in Central Asia does not considerably influence on the irrigation water availability if these reservoirs are operated with the objective of providing optimal basin-wide benefits. In constrast, constructing additional dams can boost hydropower production. Particulalry, additional hydropower produciton benefits are expected to be considerably higher from the construction of the Kambarata reservoir than those from the construction of the Rogun dam because of higher investment costs of the latter. Thus, the construction of dams upstream can increase national and regional energy security due to 65-67% increase in hydropower production levels. Yet, the risks of flooding related to natural and political calamities and reduced downstream water availability during the period of filling the reservoirs should be evaluated further for a more comprehensive assessment of such infrastructural developments. High risks of using upstream reservoirs as a tool of geopolitical influence and consequent damage on downstream irrigation and environmental systems should not be forgotten as well. Establishing effective relationships among the riparian countries, ensuring the rule of law, empowering water users for decision making, raising their awareness on ecological sustainability and market-based management approaches, and maintaining human and technological capacities are also essential for finding a compromise in sharing common basin resources in the ASB. Keywords: Water rights trading, Transaction costs, Environmental flow, Hydro-economic model, irrigation technology, infrastructural development, Rogun dam, Kambarata reservoir, Sectoral transformation, Virtual water, Input-output analysis 3 MODELLIERUNG VON STRATEGIEN ZUR EFFIZIENTEN ALLOKATION UND SCHONUNG VON WASSERRESSOURCEN IM EINZUGSGEBIET DES ARALSEES ZUSAMMENFASSUNG Im Einzugsgebiet des Aralsees (ASB) stellt der steigende Wasserbedarf eine Herausforderung an die Entscheidungsträger dar, zeitnah Maßnahmen für eine effiziente Wasserbewirtschaftung einzuführen, um die derzeitige und zukünftige Wasserkrise in der Region zu entschärfen. Die schnelle Ausdehnung der bewässerten Landwirtschaft in Verbindung mit einer Über-Nutzung der Wasserressourcen führte zum Schrumpfen des Aralsees; zur Lösung dieses Problems wurden zahlreiche hypothetische Ansätze vorgeschlagen, die auch den massiven Wassertransfer aus anderen Einzugsgebieten einbezogen. Bedenkt man allerdings die enormen Transport- und Wasseraufleitungsverluste in den Bewässerungssystemen und die ineffektive Koordination in der Bewirtschaftung von Ressourcen aufgrund unzureichender Zusammenarbeit zwischen den Staaten in den Einzugsgebieten der Flüsse Amu Darya und Syr Darya, erscheint die Erhöhung der internen Effizienz bei der Nutzung der Wasserressourcen ein in technischer und finanzieller Hinsicht eher Erfolg versprechender Ansatz. Darüber hinaus sollten diese Maßnahmen der Wasserbewirtschaftung auch und vor allem die wesentlichen Ursachen des Wassermangels und der ökologischen Probleme angehen, anstatt lediglich deren Folgen zu behandeln. Diese Studie untersucht drei wichtige Ansätze, um die grundlegenden Ursachen der sich verschärfenden Wasserbewirtschaftungsprobleme im ASB zu bearbeiten. Die erste Option ist die sektorale Transformation (ökonomische Neuordnung), bei der man wirtschaftliche Aktivitäten mit hoher Priorität versieht, die einen relativ hohen Impuls auf das Wirtschaftswachstum ausüben und einen niedrigen Wasserverbrauch erfordern. Die zweite Option besteht darin, die bürokratischen Wassermanagement-Institutionen durch effektivere Markt-basierte Wasserallokations-Institutionen zu ersetzen, die die Zusammenarbeit zwischen regionalen Wassernutzern fördern, um in Bezug auf das gesamte Einzugsgebiet Vorteile zu erzielen. Die dritte Option beinhaltet die Verbesserung der Effizienz der Bewässerungssysteme und den Bau von Speichern zur Regulierung des Abflusses an den Oberläufen der Flüsse. Die Möglichkeit der ökonomischen Restrukturierung wurde mit Hilfe eines auf die Umweltfaktoren ausgeweiteten Input-Output Modells analysiert, so dass im Ergebnis alle ökonomischen Sektoren im Hinblick auf ihren potenziellen Beitrag zu einem nachhaltigen Wirtschaftswachstum beurteilt und in eine Rangliste gebracht wurden. Hierfür wurden Vorwärts- und Rückwärtsverknüpfungen und die gesamten (direkten und indirekten) Wasserbedarfswerte der verschiedenen wirtschaftlichen Aktivitäten geschätzt und miteinander verglichen. Die Ergebnisse zeigten, dass der Wasserbedarf im ASB reduziert werden kann, indem die Produktion wasserintensiver Sektoren wie Landwirtschaft verringert wird, während die Entwicklung weniger wasserintensiver Sektoren außerhalb der Landwirtschaft gefördert wird. Innerhalb der Landwirtschaft ist eine Diversifizierung ratsam, die den Anbau von Reis und Baumwolle mit jeweils hohem Gesamtwasserverbrauch (direkt und indirekt) von 36 m3/USD bzw. 18,4 m3/USD teilweise ersetzt durch Wasser-produktivere Pflanzen, wie beispielsweise Obst/Gemüse mit einem Gesamtwasserverbrauch von 9,1 m3/USD. Mit einem aggregiertem hydro-ökonomischen Modell wurden potenzielle Auswirkungen untersucht, die mit dem Ersetzen des traditionellen administrativen Wasserallokations-System durch Markt-basierte Wasserallokation erzielt werden können. Bedeutende ökonomische Gewinne im gesamten Einzugsgebiet sind erreichbar, wenn der Handel von Wasserrechten zwischen allen Bewässerungszonen in jedem der Einzugsgebiete (Amu Darya oder Syr Darya) erlaubt wurde. Die Begrenzung des Handels von Wasserrechten auf jeweils Untereinheiten der Einzugsgebiete (oberer, mittlerer, unterer Teil) führte zu einem Gesamtgewinn, der zwar geringer ausfiel als im Fall des 4 unbegrenzten Handels aber höher war als bei der Option ohne Wasserhandel. Die Ergebnisse zeigen ein Potential von zusätzlichen jährlichen Gewinnen zwischen 373 bis 476 Millionen USD durch den Handel mit Wassernutzungsrechten im gesamten Einzugsgebieten (zwischen den Untereinheiten) in Abhängigkeit von der Wasserverfügbarkeit. Gleichermaßen ergeben sich zusätzliche Erträge von 259 bis 339 Millionen USD durch den Handel innerhalb von Untereinheiten desEinzugsgebietes. Die durch Wasserhandel erzielbaren Gewinne steigen mit zunehmenden Wassermangel. Wenn Wasserhandel zwischen den Bewässerungszonen eingesetzt würde, um den ökologisch motivierten Mindestwasserfluss zum Aralsee zu erhöhen (und gleichzeitig die entsprechend geringere Wasserverfügbarkeit für die Produzenten in der bewässerten Landwirtschaft kompensiert würde), lässt der Wasserhandel größere ökonomische Vorteile auf der Ebene des gesamten Einzugsgebietes erwarten als ohne die Möglichkeit des Wasserhandels . Zudem wären die Kosten für den ökologisch motivierten Wasserkauf kostengünstiger als die Überleitung von Wasser aus anderen Einzugsgebieten. Da der Aufbau und der Betrieb von Markt-basierten Wassermanagement-Institutionen mit Kosten verbunden sind, werden die Transaktionskosten für die Einführung von handelbaren Wasserrechten berücksichtigt, um die Effektivität der institutionellen Veränderungen zu bewerten. Die Ergebnisse weisen auf eine umgekehrt proportionale Beziehung zwischen den Vorzügen des Wasserrechthandels und dessen Transaktionskosten. Die Ergebnisse zeigen, dass Transaktionskosten von über 0.05 USD/m3 pro Einheit gehandelter Wasserhandelsrechte die potenziellen Vorteile der Wasserhandelsoption eliminieren würden. Technische Ansätze zur Verbesserungen der Effizienz der Wassernutzung und -koordination wurden mit einem dis-aggregierten hydro-ökonomischen Modell analysiert. Erhebliche Vorteile werden von der Verbesserung der Bewässerungswirkungsgrade (Bewässerungsnetz und Feldebene) im ASB erwartet. Aufgrund der Ergebnisse lässt sich der Gewinn im gesamten Einzugsgebiet um 20 bis 40% steigern (in Abhängigkeit von der Wasserverfügbarkeit), wenn die Bewässerungswirkungsgrade im gesamten Einzugsgebiet optimiert würden. Weiterhin belegen die Ergebnisse, dass die Konstruktion von Speicher an den Oberläufen der Flüsse (wie derzeit intensiv zwischen Ober- sowie Unterliegerstaaten in Zentralasien diskutiert) die Verfügbarkeit von Bewässerungswasser in der Region nicht erheblich beeinträchtigt, wenn diese Speicher unter der Zielvorgabe optimaler Einzugsgebiets-weiter Vorteile betrieben werden. Der Bau des Kambarata- Speichers lässt erhebliche Gewinne durch Stromerzeugung erwarten, wohingegen dies beim Rogun-Speicher aufgrund der hohen Investitionskosten nicht der Fall sein wird. Dennoch verstärkt die Konstruktion von Dämmen an den Oberläufen die nationale und regionale Energiesicherheit durch eine Zunahme der Energiegewinnung aus Wasserkraft um 65-67%. Jedoch sollten mögliche Überflutungsrisiken durch Erdbeben und politische Instabilitäten sowie die verringerte Wasserverfügbarkeit flussabwärts während der Periode der Füllung der Speicher weiterführend untersucht werden, um eine fundierte Bewertung dieser Infrastrukturmaßnahmen zu ermöglichen. Es sollte nicht vernachlaessigt werden, dass die hohen Risiken von Speichern in oberen Bereichen der Einzugsgebiete durch die Nutzung als Instrumente geopolitischer Einflussnahne und aufgrund von Folgen fuer unterliegende Bewaesserungsgebiete sowie Oekoststeme die Vorteile der Speicher bei der infratsrukturellen Entwicklung eliminieren koennen. Wirksame Beziehungen zwischen den Anrainerstaaten, die Sicherung der Rechtstaatlichkeit, die Stärkung der Mitwirkungsmöglichkeiten der Wassernutzer an Entscheidungen undihres Bewusstseins für ökologische Nachhaltigkeit sowie Markt-basierte Managementansätze und die Aufrechterhaltung von menschlichen und technischen Fähigkeiten sind ebenfalls wichtig, um einen Kompromiss zu finden bei der Aufteilung gemeinsamer Ressourcen im Einzugsgebiet im ASB. Schlüsselwörter: Wasserhandel, Transaktionskosten, Ökologischer Mindestabfluß, Hydro- ökonomisches Modell, Bewässerungstechnologie, Infrastrukturelle Entwicklung, Rogun Damm, Kambarata Speicher, Sektor-Transformation, Virtuelles Wasser, Input-Output Analyse 5 ACKNOWLEDGEMENTS Many similarities exist between the structure of water and knowledge networks. Like water moves from mountains to forests, fields, and lakes, giving a life to the living beings, knowledge is also spread from the science centers, enlightening minds and improving the lives of millions. Like one must travel long along the waterways to reach the spring—the source of pure water—one must trace the flows of knowledge long to taste the real flavor of knowledge. My tracing water started long ago to bring water to our garden and thus learn the sources that water comes from. However, I did not imagine that this tracing would continue in parallel to my journey in the world of knowledge and gradually lead me to get acquainted with local/global water issues and study the complex water systems, and coming to Bonn. I am very thankful for the Almighty for creating this chance and his help and guidance throughout my studies. Indeed, I am indebted to many people— my supervisors, tutors, colleagues, and friends—who helped a lot during the period of tracing water and provided priceless recommendations for successful accomplishment of this work. I would like to express my deep gratitude to my academic supervisor Prof. Joachim von Braun for his encouragement to study the role of market-based water management instruments for efficient water use at basin scale and for his invaluable guidance and advice throughout this study. He also inspired me to grasp philosophical, institutional, political, and practical aspects of economics. Due to the broad scale of the study region, this study was also interesting and invaluable exercise to study cultural, historical, and political backgrounds of the Central Asian countries. I also wish to thank my second supervisor Prof. Thomas Heckelei for agreeing to provide co-supervision for this study. Heartful thanks to my tutor Dr. Anik Bhaduri who was always welcome to share his knowledge on complex water management and governance systems and provided invaluable support throughout the study. I am very grateful to Dr. Claudia Ringler who contributed a lot to the preparation and improvement of the thesis in all stages by providing expert advice, invaluable comments and guidance. I am also thankful to Prof. Dr. Manfred Lenzen for his close collaboration and expert advice in input-output modeling analysis. I wish to express my sincere thanks to Dr. Arnim Kuhn and Dr. Bernhard Tischbein for their careful review of my papers and different chapters of the thesis and for the provision of very constructive and useful comments that helped me a lot to understand the purpose of the research. I would like to thank to Dr. Zhu Tingju, Prof. Ximing Cai, and Dr. Daniel Tsegai for their comments and important recommendations. I owe special thanks to Dr. John Lamers for his invaluable support to pursue my PhD studies and delightful discussions throughout the study. He was always supportive with wonderful solutions and recommendations to any kind of research problem. Sincere thanks also goes to Dr. Christopher Martius who was very welcome to discuss my research and provided constructive comments. I am grateful to Dr. Marc Müller for sparing his time to share his knowledge and experiences on modeling. I am thankful also ZEF doctoral program administration, particularly Dr. Gunther Manske, Jishoy Vithayathil, and Maike Retat-Amin, for their help during my stay in Germany. Special thanks to Mrs. Rosemarie Zabel who supported a lot and did not allow our batch to feel homesick in Bonn. I am also grateful to Mr. Volker Merx for his help to find the important books and papers. This study would not be possible without financial support by the scholarship program of International Postgraduate Studies in Water Technologies (IPSWAT) of the German Ministry for Education and Research (BMBF) and financial aid by Global Water Systems Project (GWSP). I am also very thankful to fiat panis foundation for supporting several conference participations. I would like to thank to Dr. Iskandar Abdullaev, Dr. Michael Khorst, Dr. Akmal Karimov, Dr. Murat Yakubov, Prof. Khusnia Muradova for their invaluable advice and recommendations on water use and economic conditions in the study area. I am thankful to Prof. Sanatbek Salaev, Jasur Ataev, Murad Satimov, and Maksud Gulmanov of the Urgench State University for their support and encouragement. I am very grateful to Zahid Rahimov for his strong encouragement to continue 6 my modeling studies and pursue a PhD program. Special thanks goes to Kudrat Nurmetov for his close friendship and invaluable help in important moments. I am also thankful to the researchers and members of the ZEF/UNESCO Project in Urgench and Bonn for their support and friendship. Dr. Ihtiyor Bobojonov, Dr. Inna Rudenko, Dr. Tina Shieder, Dr. Mehmood-ul Hassan, Dr. Anna Katherine-Hornidge, Dr. Nodir Djanibekov, Dr. Christopher Conrad, Dr. Ahmad Manschadi, Dr. Ruzimboy Eshchanov, Prof. Dr. Nazar Ibragimov, Lilliana Sin, Natalia Shermetova, Guzal Matniyazova, Eva Oeliger, Sandra Staudenrausch, Dr. Irina Forkutsa, Dr. Akmal Akramkhanov, Oksana Forkutsa, Elena Kan, Dr. Dela Jumaeva, Prof. Dr. Asia Khamzina, Dr. Kirsten Kinzler, Dr. Yulduz Jumaniyozova, Dr. Aziz Karimov, Dr. Bahtiyor Eshchanov, Hilola Masharipova, Vivi Moll, Utkur Djanibekov, Anisiya Kudryavtseva, Bashorat Ismoilova, Farida Abdullaeva, Murod Sultonov, Bekjon Matchonov, Oybek Qalandarov, Mansur Sultonov, and Ilkhom Yuldoshev were among these people who contributed with valuable advice and support during my study. I wish thanks to my friends Yessengali Oskenbaev, Beatrice Muriithi, Susanna Lin, Saltanat Sabitova, Olena Dubovik, Tania Osejo, Holm Voigt, Nadezhda Kim, Sarah Shülte, Sarah Dusend, Zulfiya Karimova, Grace Villamor, Ying Huang, Maruf Abdumalik, Begzod Jalilov, Bongsong Kim, Ruslan Nazarov, Ikrom Aralov, Mansur Ruzmetov, Shihnazar Ruzmetov, and Muzaffar Yuldashev for their close friendship and support. Sincere thanks also goes to my coursemates and officemates at ZEF for their good companionship. I am very thankful also to my parents, the sister, and the brother for their continuous support and encouragement in all stages of this study. 7 TABLE OF CONTENTS 1 INTRODUCTION ..................................................................................................................... 20 1.1 The importance, availability, and management challenges of water resources .................. 20 1.2 Water in the Aral Sea basin: issues, research needs and purposes ..................................... 21 1.2.1 Causes and consequences of the “Aral Sea syndrome”: a revisit ................................ 21 1.2.2 Options for sustainable economic restructuring .......................................................... 22 1.2.3 Market-based water allocation for efficient water use ................................................ 23 1.2.4 The effect of infrastructural improvements in irrigation and hydroelectricity generation ................................................................................................................................... 24 1.3 Contributions ...................................................................................................................... 24 1.4 Hypotheses .......................................................................................................................... 25 1.5 Methodical approaches ....................................................................................................... 25 1.6 The structure of the thesis ................................................................................................... 26 2 GEOGRAPHIC BACKGROUND, SOCIO-ECONOMIC CONDITIONS AND WATER MANAGEMENT PROBLEMS IN THE ARAL SEA BASIN ......................................................... 28 2.1 Introduction ......................................................................................................................... 28 2.2 Geographic outline .............................................................................................................. 28 2.2.1 Location ....................................................................................................................... 28 2.2.2 Climate ........................................................................................................................ 31 2.2.3 Water resources availability and distribution .............................................................. 31 2.3 Socio-economic situation .................................................................................................... 35 2.3.1 Key socio-economic indicators ................................................................................... 35 2.3.2 Population growth and employment ............................................................................ 36 2.3.3 Economic structure and performance .......................................................................... 38 2.4 Irrigation expansion and agricultural policies .................................................................... 44 2.4.1 Irrigated lands expansion and cotton production policies ........................................... 44 2.4.2 Cropland pattern changes and crop specialization across administrative provinces ... 47 2.5 Water use by sectors ........................................................................................................... 51 2.5.1 Irrigation ...................................................................................................................... 51 2.5.2 Hydro-electricity production ....................................................................................... 53 2.5.3 Environmental flows ................................................................................................... 56 2.6 Water management institutions in the Aral Sea basin: historical outline ........................... 58 2.6.1 Water management during the Mid-Centuries ............................................................ 58 8 2.6.2 Water management under Tsarist Russia .................................................................... 59 2.6.3 Water management under Soviet rule ......................................................................... 59 2.6.4 Water management institutions following independence ........................................... 61 2.7 Socio-economic and technical reasons of water allocation problems in the Aral Sea basin and potential solutions ................................................................................................................... 64 2.7.1 Causes and consequences of the “Aral Sea syndrome” .............................................. 64 2.7.2 Perspectives of water availability and use in the Aral Sea basin ................................ 68 2.7.3 Potential solutions to reduce water demand and save the Aral Sea ............................ 70 2.7.4 Investment costs of restoring the Aral Sea .................................................................. 73 2.7.5 Implications for dealing with scarcity of water for irrigation and environment needs 74 3 SECTORAL TRANSFORMATION OPTIONS FOR SUSTAINABLE DEVELOPEMENT IN THE ARAL SEA BASIN: THE CASE OF UZBEKISTAN ............................................................ 77 3.1 Introduction ......................................................................................................................... 77 3.2 Modeling the role of structural transformations for sustainable development: literature review 77 3.2.1 Sectoral transformations as an engine for growth: international perspective ............. 77 3.2.2 Sectoral transformation options in the context of the Aral Sea basin ......................... 80 3.2.3 Input-output modeling framework as a tool for analyzing sectoral interlinkages ....... 82 3.3 Data sources and methods for the analysis of alternative economic activities ................... 83 3.3.1 Estimation of the input-output table of the Uzbekistan economy ............................... 83 3.3.2 Estimation of direct water use by sectors .................................................................... 84 3.3.3 Leontief model ............................................................................................................ 84 3.3.4 Ghosh model ................................................................................................................ 85 3.3.5 The backward and forward linkage indices ................................................................. 85 3.3.6 Total (direct and indirect) water use ............................................................................ 86 3.3.7 Multi-criteria ranking .................................................................................................. 86 3.4 Analysis of the intersectoral linkages and determination of activities with higher economic importance and lower water requirement ...................................................................................... 87 3.4.1 Sectoral and intersectoral structure of the Uzbek economy ........................................ 87 3.4.2 Identifying key sectors of the economy ...................................................................... 90 3.4.3 Multi-criteria ranking of economy sectors .................................................................. 92 3.5 Discussion of the options for sustainable economic restructuring and conclusions ........... 94 4 THE POTENTIAL OF WATER MARKETS FOR IMPROVED WATER MANAGEMENT IN THE ARAL SEA BASIN ............................................................................................................. 97 9

Description:
under restricted water rights trading by permitting a trade only among the regions flow into the Aral Sea while compensating reduced water withdrawals of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.