ebook img

Efficient Strategies for Channel Management in Wireless LANs PDF

17 Pages·2006·0.29 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Efficient Strategies for Channel Management in Wireless LANs

Efficient Strategies for Channel Management in Wireless LANs AruneshMishra,VladimirBrik,SumanBanerjee,AravindSrinivasan,WilliamArbaugh (cid:0) arunesh,waa,srin @cs.umd.edu,(cid:0) vladimir,suman @cs.wisc.edu (cid:1) (cid:1) ComputerScienceTechnicalReportCS-TR-4729 UMIACSTechnicalReportUMIACS-TR-2005-36 ABSTRACT anemergingchallengeofefficientlysharingthescarcebandwidth We define efficient algorithms for channel management (channel resourceamongstthenumerousclients. Inthispaperwefocuson assignmentandloadbalancingamongAPs)in802.11-basedWLANs thisspecificresourcesharingproblemanddefineappropriatetech- thatleadtobetterusageofthewirelessspectrum.Thesealgorithms niques for efficient channel assignment in the context of 802.11- (called CFAssign) are based on a “conflict-free set coloring” for- basedWLANs. mulation that jointly perform load balancing along with channel assignment.Suchaformulationhasanumberofadvantages.First, Existingapproaches forchannelassignment itexplicitlycapturesinterferenceeffectsatclients.Next,itintrinsi- EachWLANstandarddefinesafixednumberofchannelsforuseby callyexposesopportunitiesforbetterchannelre-use.Finally,algo- AccessPoints(APs)andmobileclients. Forexample,the802.11b rithmsbasedonthisformulationdonotdependonspecificphysical standarddefinesatotalof14frequencychannelsofwhich1through RFmodelsandhencecanbeappliedefficientlytoawide-rangeof 11arepermittedintheUS,1through13arepermittedinEurope in-buildingaswellasoutdoorscenarios. andonlychannel14ispermittedinJapan. Eachchannelactually representsthecenterfrequency onwhichatransmissionismade, We have performed extensive packet-level simulations and mea- e.g.,thecenterfrequenciesforchannels1and2are2.412GHzand surements on a deployed wireless testbed of 70 APs to validate 2.417GHzrespectively. Thereisonly5MHzseparationbetween theperformanceofourproposedalgorithms. Weshowthatinad- thecenterfrequenciesofadjacentchannels. However,an802.11b dition to single network scenarios, CFAssign algorithms are well signaltransmittedonanychanneloccupiesapproximately30MHz suitedforchannelassignmentinscenarioswheremultiplewireless ofthefrequencyspectrum. Thesignalfallswithinabout15MHz networkssharethesamephysicalspaceandcontendforthesame ofeachsideofthecenterfrequency. Asaresult,an802.11bsignal frequency spectrum. Our results over a wide range of scenarios onanychanneloverlapswithseveraladjacentchannelfrequencies indicatethatCFAssignreducestheinterferenceatclientsbyabout causinginterference(alsoknownasadjacentchannelinterference). 50-70%incomparisontocurrentbest-knowntechniques. Thisimpliesthatonlythreechannels(1,6,and11)intheUScan beusedsimultaneouslywithoutcausinginterference. 1. INTRODUCTION Wirelesslocalareanetworks(WLANs)havegainedimportancein EachAPoperatesonasingleadministrator-specifiedchannel.The therecentyearsasanInternet-accesstechnology. Ascompetition mobileclientscansthewirelessmediumtoidentifyanAPwitha hasdrivendowncostsofWLANequipment,wirelessInternetac- strongsignal. TheclientassociateswithsuchanAPusing802.11 cessmechanismsareincreasinglyavailableinnumerouspublichot protocolmechanismsandbeginstousethisAPforallInternetac- spotslikecoffee-shops,airports,andhotels. cess. AllcommunicationbetweenanAPanditsassociatedclients occurinthechannelassignedtotheAP.Asabasicdesignrule,APs WLANsoperateinportionsofthefrequencyspectrumallottedby within range of each other are set to different “non-overlapping” aregulatorybody,e.g.,theFederalCommunicationsCommission channels.Networkadministratorstypicallyusemultipletechniques in the USA, for unlicensed use. For example, the 802.11b and to assign channels to APs to reduce interference between them. 802.11g based WLANs operate in the 2.4 GHz frequency band FirsttheyconductdetailedRadioFrequency(RF)sitesurveys,of- whilethe802.11abasedWLANsoperateinthe5GHzfrequency ten using spectrum analyzers, prior to setting up APs within the band.Suchunregulatedspectrumallocationhascontributedtosig- buildingandusethisinformationtomanuallyassignspecificchan- nificantpopularityandgrowthofWLANs.Withtheincreasingde- nelstothem[1].Beyondsuchinitialassignment,eachAPcontinu- ploymentofsuchWLANs,networkadministratorsarefacedwith ouslymonitorsitsassignedchannelfordatatransmissionsbyother APsandtheirclients.Ifthevolumeoftrafficinthatchannel(from Arunesh Mishra ([email protected]), Aravind Srinivasan ([email protected]) and William Arbaugh ([email protected]) are otherAPsorclientsofotherAPs)isgreaterthanathreshold,then with the University of Maryland, College Park. Vladimir Brik thefirstAPtriestomoveovertoalesscongestedchannel.Wecall ([email protected]) and Suman Banerjee ([email protected]) this technique for channel assignment, Least Congested Channel are with the University of Wisconsin, Madison. This document is Search(LCCS). publishedasaUniversityofMaryland,ComputerScienceTechnicalReport CS-TR-4729andUniversityofMarylandInstituteforAdvancedComputer InthispaperwecontendthatwiththecontinuedgrowthofWLANs, Studies(UMIACS)TechnicalReportUMIACS-TR-2005-36.Publishedon 16June2005. achannelassignmentschemebasedsolelyontheLCCSrulewill notbeefficient. GiventheunlicensednatureofWLANtechnolo- giesanddecreasingcostsofAPs,thenumberofAPslocatedina 3 physicalneighborhoodhasproliferated.Inmanycasesadministra- 2 torsincreasethenumberofAPswithinabuildingtoimprovethe Region Y wirelesscoverage. Additionallymultipleorganizationsco-resident 1 AP1 4 in thesame building deploy independentwirelessLANs, and the 10 Region X channel assignmentsmadefortherespective APs aremadeinde- 5 11 12 pendentofeachother. Anyuncoordinatedassignmentofchannels AP2 6 AP3 toAPscanleadtosevereinefficienciesandperformancedegrada- 9 tionofthewirelessclients. 7 8 The end goal ofthiswork is toimprove applicationperformance andefficienttechniquesforchannelassignmentsolveapartofthe Figure1: Channelassignmentshouldbebasedonuserperfor- problem. Load balancing of clients among APs along with effi- mance. The unshadedcirclesindicatethe interferenceradius cient channel assignment is vital for a complete solution. Prior ofeachAP. workbyBejeranoet. al[2]providesaprovably goodcentralized loadbalancingmethodwhichassumesthatthechannelassignment solutionwhichresultsinimprovedapplicationthroughput(Section isperformedindependently. Itisnaturaltoexpect thatbyjointly 7). Also, the CFAssign algorithms adapt the channel assignment consideringbothchannelassignmentandtheloadbalancingprob- toreflectchangesinclientdistributionsattributingtomobility. We lem, significantimprovements canbe achieved. Inthiswork, we explore the tradeoff between frequent re-assignment of channels providedistributedandcentralizedsolutionstothisjointproblem foroptimalityandperformanceandshowhowsuchadaptationsare ofchannelassignmentand loadbalancingtoimprove application performedinthroughsimulations(Section7). performance.Throughapplicationlevelmetricsweshowthatsuch a joint solution has significant advantages compared to address- IndependencefromRFpropagationmodels: Agoodalgorithm ingthetwoproblemsindependently. Inthispaper,werefertothe forchannelmanagementwillguaranteelowinterferenceatclients jointproblemofchannelassignmentandloadbalancing,aschannel withoutmakinganyassumptionsonthenatureofRFinterference management. orRFpropagation. This is particularlyuseful forin-buildingen- vironmentswhereisotropicRFmodelsdonotholdduetovarious Our Modeland Algorithms forEfficient Chan- effectsofmulti-path,channelfading,etc. CFAssignmeetsthisob- nel Management jectiveofpropagationmodelindependencebyusingempiricalsam- In this paper we propose a class of channel management algo- plesoftheclients’experienceofinterferencetomakedecisionson rithms,calledCFAssign(standsforConflict-FreechannelAssign- channelassignment.Suchclientparticipationexposesamoreaccu- ment),thatoptimizesuserperformanceinwirelessLANenviron- rateviewofclientinterferenceandenablesthealgorithmstomake mentswith multipleAPs. Thesealgorithmsemploy simplecoor- betterchannelassignmentdecisions. dination mechanisms between different APs in a shared wireless environmenttoachievetheseobjectivesandhenceareeasytode- Interaction between channel assignments and load balancing ploy. betweenAPs:Inordertoachievethemostefficientuseofwireless channels, theproblemofchannel assignmentshouldnot bestud- Wenowdescribesomeintuitiverequirementsinanysolutiontothe ied in isolation from the problem of client-AP association (load channelmanagementproblemthatwillhelpinensuringlowinter- balancing).IncurrentWLANsystems,thesetwoproblemsaread- ferenceatwirelessclients.Tothebestofourknowledge,CFAssign dressed independent of each other as follows. First, APs are as- algorithmsarethefirstalgorithmsthatexplicitlyaddressthesere- signedtodifferentchannelsbasedontechniqueslikeRFsitesur- quirementsofchannelmanagementinWLANs. veyandLCCS.Subsequently, eachclientindependentlyidentifies anAPinitsvicinitywithgoodsignalstrengthandassociateswith Client-driven approach: We call a channel management algo- it. Or,existingloadbalancingtechniquessuchas[2]canbeused rithmclient-drivenifitaimstominimizeinterferenceorconflictsat todistributeclientloadamongtheAPs.Weshowinthispaperthat wirelessclientsandnotatAPs.OurproposedCFAssignalgorithms more efficient use ofwirelesschannels is possiblewhen wecon- implicitly model the location and distribution of wireless clients siderthechannelassignmentproblemintandemwiththeproblem withrespecttotheAPswhilemakingchannelassignmentandload ofloadbalancingclient-APassociations,i.e. performingchannel balancingdecisionsinordertomeettheminimizationobjective.In management. Theconflict-freesetcoloringapproachoftheCFAs- particular,CFAssignmodelsthechannelassignmentproblemasa signalgorithmsimplicitlycouplesandsimultaneouslysolvesboth conflict-freesetcoloringproblem,whereeachclientisrepresented theseproblemsforreducedinterferenceatwirelessclients. byasingleset,andtheelementsofthesetcorrespondtodifferent APsthatarewithintheclient’srange,therebydirectlycapturingthe Dynamicchannelre-useanddiscoveryofhidden-APs:Efficient client-viewofinterferenceandconflicts. Inthispaperwedemon- channel re-use is an important requirement of all potential algo- strate that such a client-driven approach leads to more efficient rithms.ConsiderthescenariodepictedinFigure1.Therearethree channel managementatAPs that reduceinterferencefor wireless APs, namely , and . In this figure, mobile clients (cid:0)(cid:2)(cid:1)(cid:4)(cid:3)(cid:6)(cid:5)(cid:7)(cid:0)(cid:8)(cid:1)(cid:10)(cid:9) (cid:0)(cid:8)(cid:1)(cid:12)(cid:11) clients.WeelaboratemoreonthismodelinSection4.Existingap- (cid:13)(cid:15)(cid:14)(cid:17)(cid:16) are associated with , mobile clients (cid:14)(cid:21)(cid:20) are associ- (cid:0)(cid:8)(cid:1)(cid:18)(cid:3) (cid:19) proaches(LCCS)andotherpotentialalternativeapproaches(using atedwith ,andmobileclients (cid:14)(cid:23)(cid:13)(cid:6)(cid:24) areassociatedwith . (cid:0)(cid:2)(cid:1) (cid:9) (cid:22) (cid:0)(cid:8)(cid:1) (cid:11) vertex coloringmodel) capturethe interferenceatAPs instead of Transmissionsfrom and donotinterferewitheachother. (cid:0)(cid:2)(cid:1)(cid:4)(cid:3) (cid:0)(cid:2)(cid:1)(cid:12)(cid:9) theinterferenceatclientsandhenceperformpoorly(seeSection2 Hence we would ideally like to assign both of these APs to the and 3). Additionally, the CFAssign algorithms perform load bal- samechanneltomaximize channelreuse. NotethatasimpleRF ancingoftheclientsamongtheAPsandprovideacomprehensive sitesurvey(conductedbothat or )willalsoarriveatthe (cid:0)(cid:2)(cid:1) (cid:3) (cid:0)(cid:8)(cid:1) (cid:9) samedecision. (cid:4) Whiletheproposedalgorithmscanbeusedtoassignchan- nels to multiple APs from a single wireless network, they Transmissionsfrom and alsodonotinterferewitheach arequiteapplicableinchannelmanagementscenarioswhen (cid:0)(cid:8)(cid:1) (cid:9) (cid:0)(cid:8)(cid:1)(cid:12)(cid:11) other.However,theclientsof(cid:0)(cid:2)(cid:1) (cid:9) ((cid:19) (cid:14) (cid:20) )and(cid:0)(cid:2)(cid:1) (cid:11) ((cid:1)(cid:4)(cid:14) (cid:13) (cid:24) )arein multiplewirelessnetworksco-existinthesamephysicalen- closeproximityofeachother. Henceif and operateon vironment. Such scenarios occur frequently in large office (cid:0)(cid:2)(cid:1) (cid:9) (cid:0)(cid:2)(cid:1)(cid:12)(cid:11) thesamewirelesschannel,onlyoneoftheseAPscanbeactively buildingssharedbydifferentcompanies,inresidentialneigh- involvedincommunicationwithaclientinanygiveninstant. This borhoods with high density of wireless APs, and crowded istheclassichiddenterminalprobleminwirelessnetworks[3,4]. downtown areas. CFAssign algorithms allow APs of these The Distributed Coordinated Function (DCF) in 802.11b WLAN wirelessnetworkstoefficientlycontendforthespectrumboth technologywillhandlesuchhiddenterminals(hiddenAPs)byus- in“cooperative”and“independent”modes. Inacooperative ingthefour-wayhandshake(RTS-CTS-Data-Ack),therebyreduc- mode,theAPsfromdifferentwirelessnetworksareallowed ingthedatathroughputachievedbythemobileclients.Howeverin tocoordinatewitheachother byexchangingprotocolmes- thisscenario,anevenmoreefficientsolutionistoassignthesetwo sages for better channel management, whereas in an inde- APstotwodifferentnon-overlappingchannels,ifpossible. Unfor- pendentmode,suchprotocolinteractionsarenotpermitted. tunately,anRFsitesurveyateitheroftheAPlocationsortheLCCS Weexplorebothscenariosinourevaluations. heuristicdoesnotexposethisinformationtothesiteadministrator. (cid:4) Thealgorithmslendthemselvestoincrementaldeployment. Theaboveexampleillustratesthatthedecisiontoassigntwodif- This is because CFAssign-enhanced APs can co-exist with ferent APstothesame wirelesschannelsignificantlydependson legacy APs and still lead to performance improvement for the potentialinterferenceexperiencedby themobile clientsinan clients.Ourevaluationindicatesthatinmanyscenarios,even “overlap”region,i.e.,Regions and inFigure1. Ifboththese if10%oftheAPsusetheproposedtechniques,thenetwork (cid:2) (cid:3) regionsareempty,thenallthreeAPscanbeassignedtothesame as a whole achieves upto 40% reduction in client interfer- channel to maximize channel reuse. Our proposed solutions dy- ence. namicallyidentifyopportunitiesforchannelreusewhensuchover- lapregionsaredevoidofmobileclients,butquicklyrevertbackto are-assignmentofchannelsastheoverlapregionsbecomepopu- WealsopresentadetailedevaluationoftheCFAssignalgorithms, latedwithclients.(Weignoresmalltimescale,transientmigrations usingbothextensivepacket-levelsimulationsthatevaluatetheim- ofuserpopulations.) pactonapplicationlevelmetricsaswellasmeasurementsperformed onalargetestbedconsistingof70APsdistributedoverfourfloors ofanofficebuilding. KeyBenefits andContributions ofthisWork In this paper we present two versions of CFAssign that are ap- Our results indicate that the proposed techniques lead to signifi- plicable to a wide range of WLANs technologies, e.g., 802.11b, cantlylowerinterferenceatwirelessclients.Forexample,in802.11b 802.11a,802.11g.Thefirsttechnique,calledCFAssign-BiS(CFAs- networks (with only 3 non-overlapping channels), the techniques sign with “biased sampling”) does not require any collaboration achievebetween (cid:14) (cid:20) reductioninclientinterferenceinvari- amongtheAPsandcanbeappliedtoawirelessnetworkformedby oussimulatedand(cid:5)(cid:7)(cid:6)measu(cid:6)(cid:9)r(cid:8)edtopologies. APs belongingto differentWLANs. In thistechniqueAPs inde- pendentlyandgreedilytrytominimizetheinterferencewithintheir Roadmap: Therestofthepaperisstructuredasfollows: InSec- areaofcoveragewithoutbeingmalicious. Thesecondtechnique, tion 2 we discuss the limitations of current approaches based on calledCFAssign-RaC(CFAssignwith“randomizedcompaction”), LCCS. Section 3 discusses the limitations of vertex coloring ap- utilizes collaboration between APs in vicinity to minimize inter- proaches, popularincellularnetworks, whenappliedtoWLANs. ferencein thenetwork as awhole. CFAssign-RaCis particularly Wepresent our conflict-freecoloringformulationfor thechannel suitedforefficientchannelallocationforasinglewirelessnetwork, assignmentprobleminSection4,andpresentourCFAssignalgo- orformultiplewirelessnetworksiftheadministratorsarewilling rithmsinSection5. Section6presentsthemodificationstoCFAs- tocooperate. signalgorithmsforloadbalancing. Section7discussesthesimu- lationresults, and theexperimentsarediscussed inSection8. In The following characteristics of the CFAssign algorithms are the Section 9 we describe the related work. We conclude in Section keycontributionsofourwork: 10. (cid:4) Theyarethefirstclient-drivenalgorithmsforchannelman- 2. EXISTINGAPPROACHESANDLIMITA- agementinWLANsthataredesignedexplicitlytoreducein- TIONS terferenceatwirelessclients.UnliketheRFsitesurveybased Current best practice for channel assignment [1] is to perform a static techniques, our proposed solutions enable automated LeastCongestedChannelSearch(LCCS).IndependentofLCCS, channelassignmenttoAPs,loadbalancetheclientsamong there exist approaches for load balancing after a channel assign- APs based on continuously evolving channel conditions in ment has been computed [2]. We first perform a simple analytic the wireless environment and gracefully adapt to changing modeling of LCCS and discuss its limitations. Next we discuss distributionofclients(duetomobility). someoftheinherentshortcomingsofusinganyexistingloadbal- ancingtechniqueafterperformingachannelassignment. (cid:4) TheymakenoassumptionsaboutRFinterferenceorRFprop- agationmodels. In particularthese algorithms are efficient forin-buildingenvironments,wherearbitrarymulti-pathand LCCS andits GeometricAnalysis attenuationeffectsinvalidaterelativelysimplephysicalmod- Apart from manual channel assignment based on computation of elsthatarecommonlyusedinvariouswirelessproblems. radio-maps [1], some AP vendors provide for a more automated 2R 2R 2R 2R AP 1 AP 2 AP 1R AP 2 AP 1R AP 2 AP 1 AP 2 RBSS RC1 C2 RBSS C1 C2 RBSS C1 C2 RBSS RC1 C2 > DRBSS+ R [R B S S to RD B S S + R] [ 2R toD RB S S ] <D 2R (a)NoConflict (b)Type-1Conflict (c)Type-2Conflict (d)Type-3Conflict Figure2: FigureshowsfourdifferentconflictsituationswithAPs and sharingthesamechannel. Theinnermostcircle(of (cid:0)(cid:2)(cid:1) (cid:3) (cid:0)(cid:8)(cid:1)(cid:10)(cid:9) radiusR)aroundanAPindicatesitstransmissionradius.Thenextlargercircle(ofradius2R)indicatesthemaximumtransmission radius among all mobile users associated with this AP. The outermost circle indicates the maximum interference radius of users associatedwiththeAP. techniquecalledLCCS.Inthisscheme,anAP,ondetectinginter- terferewitheachother. Notethatonly (cid:14) (cid:3) or (cid:14) (cid:9) candetect ferencefromotherAPsorclientsassociatedtootherAPs,searches suchinterference. fora“less-congested”channelofoperationonaperiodicbasis.We Type-2conflict: Inthiscase (Figure2(c))the distancebe- nowshowthattherearemanypotentialscenariosinwhichanAP (cid:4) usingtheLCCSalgorithmisunabledetectconflictswithneighbor- tween the two APs is such that (cid:24) (cid:0)(cid:26)(cid:20) (cid:17)(cid:27)(cid:22) (cid:0) (cid:10)(cid:13)(cid:12)(cid:9)(cid:12) . In ingAPsandclients. this case the client (cid:14)(cid:2)(cid:3) will cause interference at (cid:0)(cid:2)(cid:1) (cid:9) and client (cid:14) (cid:9) willcauseinterferenceat(cid:0)(cid:2)(cid:1)(cid:4)(cid:3) . Theclientsthem- selveswillalsointerferewitheachother(infacttheclients In order to evaluate the efficacy of LCCS, we perform a simple can potentially demodulate the transmissions of each other geometricanalysisofthisscheme.Forthesakeofsimplicityinthis correctlyandhencerealizetheconflict).However, can- analysisweassumeanopen-spaceenvironmentinwhichthepath (cid:0)(cid:2)(cid:1)(cid:18)(cid:3) lossofasignalfollowsatwo-raygroundmodel[5].Forsimplicity notcorrectlydemodulatethetransmissionsof (cid:14) (cid:9) ,sincethe of illustration we assume that the clients and APs have the same (cid:0)(cid:2)(cid:1)(cid:4)(cid:3) iswithinthecarrier-senserangeof(cid:14) (cid:9) butnotwithinits transmission range1 (cid:0) . Based on our path loss model, it can be transmissionrange. HenceneitherAPcanaccuratelydetect shownthatatransmissionradiusof(cid:0) cancauseinterferenceuptoa thatthisinterferenceisduetoanotheranotherAPlocatedin radiusof(cid:1) (cid:0) ,where(cid:1)(cid:3)(cid:2) (cid:13)(cid:5)(cid:4)(cid:20) (cid:22) [5].Receiverswithinthearadiusof itsvicinityandisusingthesamechannel. (cid:1) (cid:0) mightnotbeabletodemodulatethepacketscorrectly,however, Type-3conflict: Inthiscase(Figure2(d))thedistancebe- (cid:4) thesignalisstrongenoughtocauseinterferenceatthereceiver. tweenthetwoAPsislessthan(cid:24) (cid:0) .Inthisscenario, will (cid:0)(cid:8)(cid:1)(cid:18)(cid:3) beabletocorrectlydemodulatetransmissionsby(cid:14) (cid:9) andwill InFigure2,theinnermostcirclearoundanAPindicatesittransmis- realizethatthereisanotherAPinitsvicinityusingthesame sionradius(cid:0) .Awirelessusermustbelocatedwithinthistransmis- channel,i.e.willbeabletodetecttheconflict. sionradiusinordertoassociatewiththeAP.Sinceclientscanbe situated upto a distance (cid:0) from an AP, transmissions from such clientscanbereceiveduptoadistanceof(cid:24) (cid:0) indicatedbythesec- Amongthesefourscenarios,thetwoAPsshouldbeallocatedthe ondconcentriccircle. Also,suchtransmissionswillinterfereupto samechannelonlyintheNo-conflictcase.Intheotherthreecases, adistanceof(cid:0)(cid:7)(cid:6) (cid:13)(cid:8)(cid:4)(cid:20) (cid:22) (cid:0) (cid:2) (cid:24)(cid:9)(cid:4)(cid:20) (cid:22) (cid:0) . SinceeachAPandallthemo- thetwoAPsshouldbeassignedtodifferentnon-overlappingchan- bileuserstogetherdefineaBasicServiceSet(BSS)inthe802.11 nels,ifpossible. terminology,wedenotethisrange((cid:24)(cid:9)(cid:4)(cid:20) (cid:0) )by(cid:0)(cid:11)(cid:10)(cid:13)(cid:12)(cid:9)(cid:12) . (cid:22) However,outofthethreeconflictcasesshowninFigure2,anAP ConsiderFigure2withtwoAPs,( and )andtheirclients usingtheLCCSalgorithmisonlyabletodetectType-3conflicts. (cid:0)(cid:2)(cid:1)(cid:4)(cid:3) (cid:0)(cid:8)(cid:1)(cid:10)(cid:9) ((cid:14)(cid:8)(cid:3) and (cid:14) (cid:9) ). Client (cid:14)(cid:8)(cid:3) is associatedwith (cid:0)(cid:8)(cid:1) (cid:3) and client (cid:14) (cid:9) is Theothertwoconflictscenarioswillgoundetected. However,the associatedwith . AssumebothAPshavebeenassignedtothe frequency of Type-1 and Type-2 conflicts is expected to be quite (cid:0)(cid:2)(cid:1)(cid:10)(cid:9) samechannel.Wedistinguishbetweenthefollowingscenarios: high. This can be shown both using simple geometric analysis (72% ofall conflictsassumingauniform distributionofAPsand homogeneoustransmissionradii)aswellasinreal-life(seemea- (cid:4) Noconflict: Inthisscenario(Figure2(a))thetwoAPsare surementstakenonouroperationalWLANtestbedinSection8). separatedbyadistancegreaterthan(cid:0) (cid:10)(cid:13)(cid:12)(cid:9)(cid:12) (cid:6)(cid:15)(cid:0) ,i.e.,(cid:16)(cid:16)(cid:4)(cid:20) (cid:0) . (cid:22) InthiscasethemobileclientsofthetwoAPsdonotinterfere LoadBalancing afterLCCS witheachother. Once a channel assignment is known, it is possible to improve user performance by carefully balancing load across APs. Given Type-1conflict: Inthiscase(Figure2(b))thetwoAPsare (cid:4) achannel assignment, one ofthe bestknown techniques forload separatedbyadistance,(cid:17) ,suchthat(cid:0)(cid:18)(cid:10)(cid:19)(cid:12)(cid:16)(cid:12)(cid:21)(cid:20) (cid:17)(cid:23)(cid:22) (cid:0)(cid:24)(cid:10)(cid:13)(cid:12)(cid:9)(cid:12)(cid:25)(cid:6) balancingisgivenbyBejeranoet.al[2],whichprovidesanLinear (cid:0) . Thisimpliesthattransmissionsofclients(cid:14) (cid:3) and (cid:14) (cid:9) in- Programming(LP)basedcentralizedschemeforfairnessandload 1Theanalysisextendstriviallytoheterogeneoustransmissionchar- balancing in a WLAN. The approachis well suited for scenarios acteristics. where thechannel assignment strategyis fixed and static. Inour anoptimalmin-maxloadbalancewouldresultinabandwidthal- M2 users location of (cid:13)(cid:9)(cid:0) (cid:2) to the (cid:2) users of , and a bandwidth of (cid:9) (cid:9) (cid:0)(cid:8)(cid:1) (cid:9) (cid:13)(cid:9)(cid:0)(cid:11)(cid:10) (cid:2) (cid:6) (cid:2) (cid:6) (cid:2)(cid:4)(cid:3)(cid:9)(cid:12) toeachofthe(cid:2) (cid:6) (cid:2) (cid:6) (cid:2)(cid:4)(cid:3) users(since (cid:3) (cid:11) (cid:3) (cid:11) AP2 theyalongwith theirAPsshare thesamechannel). Ontheother hand,ourCFAssignalgorithmsallocatechannelsbasedonloadand AP1 AP3 wouldassignAPs(cid:0)(cid:8)(cid:1)(cid:18)(cid:3) and(cid:0)(cid:2)(cid:1)(cid:10)(cid:9) tothesamechannel,and(cid:0)(cid:2)(cid:1)(cid:12)(cid:11) toa differentchanneltobalancetheload(Sections5and6). Although M1 users APs and interfere,theusersassociatedto and (cid:0)(cid:8)(cid:1)(cid:4)(cid:3) (cid:0)(cid:2)(cid:1)(cid:12)(cid:9) (cid:0)(cid:2)(cid:1)(cid:4)(cid:3) (cid:0)(cid:2)(cid:1)(cid:10)(cid:9) M3 users would geta bandwidthofatleast (cid:13)(cid:9)(cid:0)(cid:11)(cid:10) (cid:2) (cid:6) (cid:2) (cid:12) , whiletheusers (cid:3) (cid:9) M4 users associatedto wouldgetabandwidthof (cid:13)(cid:9)(cid:0)(cid:13)(cid:10) (cid:2) (cid:6) (cid:2)(cid:4)(cid:3)(cid:9)(cid:12) . For (cid:0)(cid:2)(cid:1)(cid:12)(cid:11) (cid:11) (in range of M1 and M3) example, let (cid:2) (cid:3) (cid:2) (cid:2) (cid:9) (cid:2) (cid:2) (cid:11)(cid:21)(cid:2) (cid:2) (cid:3) (cid:2) (cid:13) . Assumingperfect (cid:6) bandwidth sharing after applying LCCS, each user associated to Figure3:FigureshowsanexampletopologywhereLCCSwith gets a bandwidth of (cid:13)(cid:9)(cid:0) (cid:13) and any user associated to (cid:0)(cid:2)(cid:1)(cid:12)(cid:9) (cid:0)(cid:2)(cid:1)(cid:18)(cid:3) optimalloadbalancingproducesanunfairsolutioncompared or getsabandwidthof (cid:13)(cid:9)(cid:0)(cid:6) (cid:16) . However, ifour CFAssignal- (cid:0)(cid:2)(cid:1)(cid:12)(cid:11) toCFAssign. gorithms are used for channel as(cid:6)signment, all users get an equal bandwidthof(cid:13)(cid:9)(cid:0) (cid:24) ,ineffectachievingbetterloadbalancingdueto work,weaddressWLANscenarioswherethechannelassignment (cid:6) betteropportunitiesprovidedbyefficientchannelassignment. canbecontrolledeitherinacentralizedoradistributedmanner.We willnowshowusingsomesimplescenariosthatitsessentialtoper- 3. AVERTEXCOLORINGBASEDAPPROACH formloadbalancingduringchannelassignment. Specifically, we show thatLCCS basedchannelassignmentcan createhigh inter- ANDITS LIMITATIONS ferencetopologies. Usinganefficientloadbalancetechniquesuch Basedonthediscussionintheprevioussection,itmayappearnat- as[2]canstillyieldasuboptimalsolutionontheoverallapplica- uraltomodelthechannelassignmentprobleminWLANsasaver- tionperformance. Belowwediscusstwoimportantshortcomings texcoloringproblem. Suchvertexcoloringbasedapproacheshave of performing load balance using techniques suchas [2] after an beenapplied successfullyinthe context of frequency assignment LCCSbasedchannelassignment: incellularnetworks[6,7,8]. HiddenTerminals-Type1and2conflicts: Consideracaseoftwo Inthissectionweoutlineapotentialvertexcoloringapproachand APsandtwoclientswithoneclientassociatedtoeachAP.Saythe itsmodelinglimitations. Inthisapproach,agraphisusedtorep- APsarenotinrangeofoneanother, however, thetwoclientsare resentconflictsorinterferencebetweennodes.Theverticesofthis within transmission range of each other. Thus, since the clients graphcorrespondtoAPs,andedgescorrespondtoimpactofinter- interferewitheachother,atanygiventimeonlyoneoftheclients ferencebetweenpairsofAPs. Theobjectiveofthisproblemisto canbeactive. Thus,eachgetsanormalizedthroughputof (cid:13)(cid:1)(cid:0) (cid:24) if assignafixednumberofcolors(channels)tothevertices(APs)of theywereassignedtoAPsonthesamechannel.NotethatanLCCS thisgraphthatminimizesinterference.Eachedge (cid:10)(cid:15)(cid:14) (cid:12) isassoci- (cid:5)(cid:17)(cid:16) basedchannelassignmentcannotdetectsuchscenarios(bothType- atedwithapenaltyfunction (cid:10)(cid:15)(cid:23) (cid:12) ,suchthatifAP(cid:14) isassigned (cid:18)(cid:20)(cid:19)(cid:20)(cid:21)(cid:22) (cid:5)(cid:25)(cid:24) 1andType-2conflicts),and hencewilllikelyassignboth APsto achannel(cid:23) and isassignedachannel , apenaltyof (cid:10)(cid:15)(cid:23) (cid:12) (cid:16) (cid:24) (cid:18)(cid:26)(cid:19)(cid:20)(cid:21)(cid:22) (cid:5)(cid:27)(cid:24) the same channel. Performing load balancing after LCCS based isincurred.Thefollowingisanintuitivewaytochoosethepenalty channel assignment using schemes such as [2] will be unable to function. If(cid:23) and arenon-overlappingchannels,thenthepenalty (cid:24) improvethethroughputforsuchclientsandcanresultinunfairness functioniszero. If(cid:23) (cid:2) (cid:24) ,i.e.,bothAPsareassignedtothesame (discussedbelow).However,ourconflictbasedchannelassignment channel,thenthepenaltyfunctionincreasesmonotonicallywiththe solutionwouldcapturethisintoaclient’sinterferenceset(Section numberofclientsofthetwoAPsexperiencingconflictsofTypes 5)andallocatenon-overlappingchannelsaccordingly. 1, 2, or 3 as defined in Section 2. Examples include clients (cid:14) (cid:3) and (cid:14) (cid:9) inFigure2(b), (c), and(d). (Notethatsuchinterference Unfairness: Throughanexampleweshowthatbecauseofthein- is experiencedif and only if both the APs are assigned the same efficaciesinherentinLCCS,performingoptimalloadbalancecan channel.) result in max-min unfairness, while performing our conflict-free channel assignment (described later) with load balance yields a Inordertoachievelowinterferenceatclients,wemustchoosean better solution. Consider the scenario shown in Figure 3. Here assignmentofcolorstovertices(channelstoAPs)suchthattheag- (cid:2) ,(cid:2) and(cid:2) usersareexclusivelyinrangeofAPs , gregate value of the penaltyfunctions on all edges is minimized. (cid:3) (cid:9) (cid:11) (cid:0)(cid:8)(cid:1)(cid:18)(cid:3) (cid:0)(cid:2)(cid:1)(cid:12)(cid:9) and respectively. (cid:2)(cid:4)(cid:3) usersarewithinrangeofAPs and Inourworkwehaveexploredspecificdistributedimplementations (cid:0)(cid:2)(cid:1)(cid:12)(cid:11) (cid:0)(cid:8)(cid:1)(cid:18)(cid:3) . Also assume that the users (cid:2) , (cid:2) , (cid:2) are in range of ofthisvertexcoloringbasedchannelassignmentinWLANs. Due (cid:0)(cid:8)(cid:1) (cid:11) (cid:3) (cid:9) (cid:11) eachother.Theoverlapbetween and cannotbedetected tospaceconstraintswedonotreportonspecificdetailsofthisap- (cid:0)(cid:8)(cid:1)(cid:18)(cid:3) (cid:0)(cid:2)(cid:1) (cid:11) by LCCS (as the overlap region does not involve the APs them- proach. Insteadwefocusonspecificshortcomingsofsuchanap- selves). However,LCCScandetectoverlapbetween proach which form the intuition behind the CFAssign algorithms (cid:5) (cid:0)(cid:2)(cid:1)(cid:18)(cid:3) (cid:5)(cid:7)(cid:0)(cid:2)(cid:1)(cid:12)(cid:9)(cid:7)(cid:6) and .Thus, and wouldbeassignedthesame thatweproposeinthispaper. (cid:5) (cid:0)(cid:8)(cid:1) (cid:9) (cid:5)(cid:7)(cid:0)(cid:8)(cid:1) (cid:11) (cid:6) (cid:0)(cid:8)(cid:1) (cid:3) (cid:0)(cid:8)(cid:1) (cid:11) channelwhile wouldbeassignedadifferentchannel(forsake (cid:0)(cid:2)(cid:1)(cid:10)(cid:9) of simplicity assume only two channels are available). Then, in Consider Figure 4(a), in which there are four APs: , , (cid:0)(cid:8)(cid:1)(cid:18)(cid:3) (cid:0)(cid:8)(cid:1)(cid:10)(cid:9) any load balancing scheme, all (cid:2) can only will be assigned to , (cid:3) . Let us assume that none of these APs are in inter- (cid:9) (cid:0)(cid:2)(cid:1) (cid:11) (cid:0)(cid:2)(cid:1) (cid:0)(cid:8)(cid:1)(cid:10)(cid:9) ,andtheusers(cid:2) (cid:3) (cid:6) (cid:2) (cid:11) (cid:6) (cid:2)(cid:4)(cid:3) willbeequallysharedbythe ferencerange of eachother. Clients (cid:14) (cid:3)(cid:6)(cid:5) (cid:14) (cid:9) (cid:5) (cid:14) (cid:11) (cid:5) (cid:14) (cid:3) are indirect APs, and . Letusassume(onlyforthisdiscussion)that communicationrangeofAPs , , , (cid:3) respectively (cid:0)(cid:8)(cid:1) (cid:3) (cid:0)(cid:2)(cid:1) (cid:11) (cid:0)(cid:2)(cid:1) (cid:3) (cid:0)(cid:8)(cid:1) (cid:9) (cid:0)(cid:8)(cid:1) (cid:11) (cid:0)(cid:8)(cid:1) 802.11 achieved perfect bandwidth sharing between nodes in di- and no other APs. Therefore, (cid:14) (cid:3) associateswith (cid:0)(cid:2)(cid:1)(cid:4)(cid:3) , (cid:14) (cid:9) asso- rectinterferencerangeandcontendingforthechannel,i.e.,ifthere ciateswith(cid:0)(cid:2)(cid:1) (cid:9) ,andsoon. Client(cid:14)(cid:29)(cid:28) isindirectcommunication are node gets exactly (cid:13)(cid:9)(cid:0) of the channel bandwidth. Then rangeofallthefourAPs.Withoutlossofgenerality,letusassume (cid:8) (cid:8) using the channel assignment determined by LCCS, performing that(cid:14)(cid:30)(cid:28) associateswith(cid:0)(cid:2)(cid:1) (cid:3) .Figure4(b)showsthecorresponding conflictgraph,whichisa4-clique. Thereisanedgebetweeneach pairAPssinceclient (cid:14)(cid:29)(cid:28) isincommunicationrangeofbothAPs. Thereforebasedonthevertexcoloringapproach,eachAPwillbe assignedadistinctcolor(channel)andwewillneedfourdifferent non-overlappingchannelstoguaranteeconflictfreedom. C2 C1 C3 AP2 AP1 However, in reality only two channels are sufficient to guarantee C2" C1" conflictfreedominthisexample.Forexample,wecanassign(cid:0)(cid:8)(cid:1)(cid:18)(cid:3) C3" (anditsclients(cid:14)(cid:8)(cid:3) (cid:5) (cid:14)(cid:30)(cid:28) )toonechannelandallotherAPstothesame secondchannel.Notethat (cid:3) andtheirclientsdonot (cid:0)(cid:2)(cid:1)(cid:10)(cid:9) (cid:5)(cid:7)(cid:0)(cid:2)(cid:1) (cid:11) (cid:5)(cid:7)(cid:0)(cid:2)(cid:1) interferewitheachother. While such a solution is not realizable in the vertex coloring ap- Figure5: Exampletoillustraterangeandinterferencesetsfor proach, we next describe our CFAssign algorithms based on the clients. minimumconflict-freesetcoloringformulationwheresuchanas- Interferencesetofaclient:Therangesetofaclientcapturessome signmentcanbeachieved. oftheinterferenceexperiencedbytheclient,butdoesnotcapture thetotalinterferenceobservedbyit. Aclientcansufferadditional interference from clients of other APs, if the client is within the C4 transmissionrangeofsuchclients. Notethatiftheclientiswithin C3 AP4 AP3 AP4 the transmission rangeof suchan AP, then theAP will be inthe rangeset.Ontheotherhand,iftheclientisoutsidethetransmission AP3 rangeofsuchanAP,thelatterwillnotbepartoftherangeset.This C5 isillustratedinFigure5. Thesolidlinesshowthecommunication AP1 ranges. Here, client is not within the transmission range of AP2 AP2 AP1 (cid:0)(cid:9)(cid:1) C1 . However,itisincommunicationrangeofclient whichis C2 a(cid:10)(cid:2)s(cid:11)so(cid:1)ciatedwith . Insuchascenariowesaythatc(cid:0) li(cid:13)ent is (cid:10)(cid:2)(cid:11) (cid:1) (cid:0)(cid:28)(cid:27) withininterferencerangeof (duetoclient associatedwith (cid:10)(cid:9)(cid:11)(cid:29)(cid:1) (cid:0)(cid:14)(cid:13) );Aclient issaidtobeintheinterferencerangeofanAP (a) (b) i(cid:10)(cid:2)f(cid:11)(i)(cid:1) isnotwit(cid:30)hintransmissionrangeofAP and,(ii) iswithi(cid:31)n (cid:30) (cid:31) (cid:30) transmissionrangeofsomeclient and iswithintransmission (cid:30)! (cid:30)! Figure4: (a)AWLANexampleand(b)thegraphcreatedby rangeofAP . (Notethat neednotbeassociatedtoAP .) The (cid:31) (cid:30) (cid:31) thevertexcoloringformulation. set of all APs within interference range of a client constitute the interferencesetcorrespondingtotheclient. 4. CONFLICT-FREESETCOLORINGFOR- Each clientis, thus, associatedwith twosets: a rangeset and an MULATION interferenceset. ForthesetupofFigure5,therangeandinterfer- Weformulatetheproblemofchannelassignmentinwirelesslocal- encesetsforthethreeclientsareshowninTable1.ThesetofAPs area networks as a conflict-free set coloring problem and assign- togetherwiththerangeandinterferencesetsforeachclientcreates ing colorscorrespondtoassigningchannels. Considerawireless theconflict-freesetsystem. network comprising ofa setof APs and clients. As discussed in Section 3, avertex coloringapproachfor channelassignment for Informally, a client is said to be in conflict if there is more than thenetworkinFigure4yieldsasolutionthatrequiresfourcolors oneAPinitsrangeorinterferencesetthatisoperatingonthesame (channels),whileinrealitywecanachievethesameconflictfree- channel as the client. A clientin conflictcan suffer fromdrastic dom(andsameAPload)usingjusttwocolors. Wearrivedatthis reduction in throughput — the reduction factor can be exponen- channelassignmentinthefollowingmanner.Clients are tialinthetotalnumberofclientsoverallAPsinconflictwiththis (cid:0)(cid:2)(cid:1)(cid:4)(cid:3)(cid:5)(cid:3)(cid:5)(cid:3)(cid:6)(cid:0)(cid:8)(cid:7) eachinrangeofasingleAPandareassignedtotheirin-rangeAP, client[9]. Aclientissaidtobeconflict-freeifthereisexactlyone e.g., to , to andsoon. Client isinrangeofall APinitschannelfromitsrangeset(thisistheAPtheclientwillbe (cid:0)(cid:9)(cid:1) (cid:10)(cid:2)(cid:11)(cid:12)(cid:1) (cid:0)(cid:14)(cid:13) (cid:10)(cid:2)(cid:11)(cid:15)(cid:13) (cid:0)(cid:17)(cid:16) fourAPs: . Giventhisset,weneedacol- associatedto),andthereisnootherAPinitsrangeorinterference (cid:18)(cid:19)(cid:10)(cid:2)(cid:11) (cid:1)(cid:19)(cid:20) (cid:10)(cid:9)(cid:11) (cid:13)(cid:21)(cid:20) (cid:10)(cid:9)(cid:11)(cid:23)(cid:22) (cid:20) (cid:10)(cid:9)(cid:11) (cid:7)(cid:25)(cid:24) oringoftheAPssuchthatthissethasatleastoneAPwithaunique setusingthesamechannel. color,i.e.,thatcolorisnotusedbyanotherAPwithintheset.This canbetriviallyachievedifweselectexactlyoneAPandassignit Ourobjectiveistoassigncolorssuchthatthetotalnumberofconflict- aparticularcolor(associateclient toit),andthenassigndiffer- free sets (and hence the number of conflict-free clients) is maxi- (cid:0)(cid:14)(cid:7) entcolorstotherest. Forexample, couldbeassignedcolor1 mized. Thisassignmentofcolorsalsoyieldstheassociationmap- (cid:10)(cid:2)(cid:11) (cid:1) while couldbeassignedcolor2.Inordertomodel pingforeachclient,i.e.,theclientassociatestotheAPthatholds (cid:10)(cid:9)(cid:11)(cid:15)(cid:13) (cid:20) (cid:10)(cid:2)(cid:11) (cid:22) (cid:20) (cid:10)(cid:2)(cid:11)(cid:23)(cid:7) thisapproachofassigningchannelsusingtheconflict-freesetfor- theconflict-freecolorforitsrangeandinterferencesets. mulationweusethefollowingdefinitions: Range set of a client: Foreach client wedefine its range set as Someadvantagesofconflict-freesetcoloringformulation:There thesetofallAPssuchthattheclientlieswithinthetransmission aremultipleadvantagesofusingtheconflict-freesetcoloringfor- rangeofeachsuchAP,regardlessofthecurrentchannelofoper- mulationtoobtainanefficientchannelassignmentinWLANs.First, ation of the APs. In the above example, the range set for is this formulationdirectly captures the effectof interference atthe (cid:0)(cid:26)(cid:16) . Notethataclientcancomputeitsrange clientsusingtherangeandtheinterferencesets. Thus,algorithms (cid:18)(cid:19)(cid:10)(cid:2)(cid:11) (cid:1)(cid:19)(cid:20) (cid:10)(cid:2)(cid:11) (cid:13)(cid:21)(cid:20) (cid:10)(cid:2)(cid:11)(cid:23)(cid:22) (cid:20) (cid:10)(cid:9)(cid:11) (cid:7)(cid:21)(cid:24) setempiricallybymonitoringAPsinitsvicinity. thatprovidesolutionstothisproblemaimtodirectlyoptimizethe metricofinterest—conflictatthewirelessclients. Thereforewe is conflict-freeif the coloring satisfies the above property forthe callthisapproachaclient-drivenapproach.Thisisakeydifference client. The coloring also implicitly defines the association map- fromthevertexcoloringapproach(Section3)wheretheverticesto pingfortheclienttobeconflict-free,i.e.,theclientwillassociates becoloredrepresenttheAPsandtheedgesindirectlyaccountfor totheAPwhichholdstheconflict-freecolor, ,initsrangeset. (cid:24) theinterferenceonclientsduetotheassignmentofsamecolorto twoneighboringAPs. A trivial conflict-free coloring is achieved by assigning a unique color to each AP. This assignment would use colors (chan- (cid:24)(cid:2)5(cid:24) Next, the conflict-free coloring formulation intrinsically captures nels). TheminimumCFcoloringproblemistominimizethetotal opportunities for channel re-use. In Figure 5, we would need 2 numberofcolorstoachieveconflict-freecoloringforthesetsystem channelstoobtainaconflict-freecoloringoftheformulationshown onagiveninstanceoftheproblem. Inanotherform,givenafixed intable1.Letsassumethattheclients(cid:14)(cid:2)(cid:3) (cid:5) (cid:14) (cid:9) (cid:5) (cid:14) (cid:11) movetoanalter- numberofcolors/channels,theproblemistomaximizethenumber natelocation, (cid:14) (cid:3)(cid:1)(cid:0) (cid:5) (cid:14) (cid:9)(cid:2)(cid:0) (cid:5) (cid:14) (cid:11)(cid:3)(cid:0) , respectively. Now, theinterference ofclientsthatareconflict-free. setsofallclientsareempty,andtheirrangesetsare(cid:4) (cid:24)(cid:6)(cid:5) (cid:4) (cid:5) (cid:4) (cid:5) (cid:0)(cid:2)(cid:1) (cid:5) (cid:0)(cid:8)(cid:1)(cid:18)(cid:3) (cid:5) (cid:0)(cid:2)(cid:1)(cid:4)(cid:3) respectively. WecanassignthesamechanneltobothAPsandstill ThesolutiontotheCFproblemprovidesthefollowing: get a conflict-free assignment. Thus, the conflict-free set system capturessuchopportunitiesofchannelre-useinherently. Bykeep- ingthemodelupdatedonaperiodicyetcoarse-grainedbasis, we 1. (cid:28) givesthechannelassignmentfortheAPs. will be able to neglect fine-grained user migrations, and capture mediumandlarge-scalevariationsofclientdistributions. 2. For (cid:10)(cid:12)(cid:11)6(cid:8)7(cid:21) , define 8 (cid:10)(cid:7) (cid:12) (cid:2) ( (cid:29) color of ( is conflict free in . (( is the AP that leads to conflict-freedom for this (cid:10) (cid:11) Finally, the conflict-free coloring formulation captures effects of client.) 8 (cid:10)(cid:7) (cid:12) providestheassociationmapping, i.e.,theAP interference through sets (range and interference sets) instead of toassociatetoforeachclient(cid:7) . physicalRFmodels, e.g., circularcommunicationranges. There- forealgorithms thatcanefficientlysolve thisconflict-freeformu- Ithasbeenshownthat,ingeneral,theCFproblemisnoteasierthan lation will be efficient irrespective ofthe underlying physical RF vertexcoloring,andishardtoapproximate[10]. Ourobjectivein propertiesofthewirelessenvironment. thisworkistodefineefficientstrategiesthatmaximizethenumber ofconflict-freeclientsinthesetsystem. RangeSet InterferenceSet (cid:4) (cid:5) (cid:4) (cid:5) (cid:14)(cid:8)(cid:3) (cid:0)(cid:2)(cid:1) (cid:9) (cid:0)(cid:2)(cid:1) (cid:3) (cid:4) (cid:5) (cid:4) (cid:5) 5. CHANNELASSIGNMENTALGORITHMS (cid:14) (cid:9) (cid:0)(cid:2)(cid:1) (cid:3) (cid:0)(cid:2)(cid:1) (cid:9) (cid:14) (cid:11) (cid:4) (cid:0)(cid:8)(cid:1)(cid:4)(cid:3)(cid:6)(cid:5)(cid:7)(cid:0)(cid:8)(cid:1)(cid:10)(cid:9) (cid:5) (cid:4) (cid:5) We describe two randomized algorithms for the CF formulation discussedintheprevioussection. Inthissection,weignoretheis- Table 1: Table shows the range and interference sets for the sueofloadbalancingclientsamongAPsandinsteadconcentrateon exampleofFigure5. thetheparadigmofconflict-freechannelassignment.LaterinSec- tion 6, we discuss modifications to reduce intra-AP interference, FormalDefinition i.e.loadbalancingamongAPs. Let us denote a wireless network as (cid:10) (cid:5) (cid:14) (cid:12) , where is the set (cid:2) (cid:2) ofallAPsand (cid:14) isthesetofallclients. Foreachclient (cid:7)(cid:9)(cid:8) (cid:14) , The first algorithm, called CFAssign-RaC (CFAssign using “ran- weassociateatuple(cid:10)(cid:12)(cid:11) (cid:2) (cid:20)(cid:14)(cid:13) (cid:11) (cid:5) (cid:23) (cid:11)(cid:16)(cid:15) where(cid:13) (cid:11)(cid:17)(cid:8) (cid:24)(cid:19)(cid:18) istherange domizedcompaction”)isasophisticatedcentralizedapproach.Such setfor(cid:7) and(cid:20) (cid:11) (cid:8) (cid:24) (cid:18) istheinterferencesetfor(cid:7) ((cid:24) (cid:18) denotesthe analgorithmisparticularlysuitedforcentrallymanagedwireless (p(cid:10)o(cid:2)orw(cid:5)(cid:27)se(cid:21)imr(cid:12)specltoy,noasftr(cid:2)suect).tseyLdsetitenm(cid:21)th)e(cid:2)foar(cid:4)bt(cid:10)(cid:12)oh(cid:11)vee(cid:2)nme(cid:20)(cid:22)tawn(cid:13)on(cid:11)re(cid:5)kr(cid:23),(cid:11)(cid:23)(cid:10)a(cid:15)(cid:25)c(cid:5)o(cid:14)(cid:24)n(cid:26) fl(cid:12)c.iclite-nfrtese(cid:7) s(cid:5)e.tWsyestceamll naTsehetewdosserakcmosnpwdliintahglg”m)oruiistlhtiamplseicmaAlplPelesd,dCaissFtArisisbstuiygtpendi-cBaaillSgion(rCimtFhoAmsstsriogerqnguauinrsiiinznaggtizo“enbrsio-. (cid:2) coordination between APs. Therefore such an algorithm is par- Acolcoorns,flficotr-fareseet(sCyFs)tecmolo(cid:10)(cid:2)ra(cid:5)(cid:12)s(cid:21)si(cid:12)g,ndmefiennetd(cid:28)(cid:30)in(cid:29) (cid:2) the(cid:31)abo(cid:4)v(cid:13)e(cid:4)m(cid:4) (cid:4)"a!#n(cid:5)neursisnagtis!- aticruelsairdleyntsiuailteadreafowrhsceerenaeraiochs AwPithiosuitndanepyencednetnrtallyamutahnoargiteyd, bey.g.a, fiesthefollowingproperty: separate household. By using greater coordination, the central- izedCFAssign-RaCalgorithmperformsbetterthanthedistributed CFAssign-BiSalgorithm. Boththesealgorithmsareclient-driven, (cid:26)#- (cid:24)(cid:30)(cid:10)(cid:12)(cid:11) (cid:8)(cid:2) (cid:4)(cid:20)$(cid:13) (cid:13)(cid:4) (cid:11)(cid:4) (cid:5)(cid:4)"(cid:23)!.(cid:11)%(cid:5) ,(cid:15)(cid:23)s(cid:8)(cid:30)uc(cid:21)h,thdaetfi(nie) &(cid:2)(cid:24)&/’’0(cid:2)(cid:24) (cid:2) (cid:4))((cid:13) a(cid:8) nd(cid:13) (cid:11)+(i*i)(cid:23)l(cid:11)%et(cid:29),&(cid:2)(cid:28)’(cid:10)((cid:2) (cid:12) (cid:2)(cid:4))( (cid:24)’ (cid:5)(cid:5) ,,tthheenn pheavrfeornmodexepisetnindgenteccehonfiqpuheyssliickaelLRCFCmSo.dels,andsignificantlyout- ( (cid:13) .Inotherwords: ’1(cid:8) (cid:11) AssignmentofcolorstotheAPsisinsuchawaythatforeachclient ( )thereisatleastoneAP( )intherangesetof whichisassigned 5.1 CFAssign-RaC– RandomizedCompaction (cid:7) 2 (cid:7) acolor, ! , andnootherAPintherangesetorinterferencesetof Inthiscentralizedalgorithm,eachclientperiodicallymonitorsits has been assigned to this same color, ! . We shall refer to this rangesetandinterferencesetandsendsthisinformationtothecen- (cid:7) propertyastheconflict-freecoloringpropertyforthesetsystem. tralentity. Thecentralentityusesthisinformationtocomputean appropriate channel assignment using the algorithm described in thissectionandcommunicatesthisassignmenttoeachAP. Even if the conflict-free property does not hold for the entire set system,itmayholdindependentlyforafewindividualclients. In- TheCFAssign-RaCalgorithm(Algorithm1)progressivelychoses tuitivelythispropertyistrueforaclient, , ifacolor is’repre- the’best’color(channel)foranAPthatmaximizesthenumberof (cid:7) (cid:24) sented’onlyonceintheset (cid:13) (cid:23) byasingleelement( (cid:13) . clientsthat areconflict-free. Wefirst describeacompaction step (cid:11)3* (cid:11) ’4(cid:8) (cid:11) This is our formal definition for a conflict-free client. A client whichcanbeappliedtoanyexistingcolorassignmenttoincrease Algorithm1CFAssign-RaC (cid:10) ! (cid:12) setofallpossiblechannels. Nowconsideraclientwithrangeand (cid:2) (cid:5)(cid:12)(cid:21) (cid:5) (cid:5)(cid:1)(cid:0) X=setofaccesspoints, interference set of APs with size, (cid:6) . Then we can calculate the T=setof range,interference tuplesforeachclient, probabilityofthissetbeingconflict-freeusingasimpleapplication (cid:5) (cid:6) ! =numberofcolors oftheunionbound(andisgivenbyEquation4intheappendix). L=numberofrounds Itisintuitivethattheuniformsamplingapproachcanachievegood (cid:4) (cid:13) (cid:4) (cid:4) (cid:4)"!.(cid:5) isthereturnedchannelassignment conflict-freedompropertiesonlywhenthesizesoftherangeandin- (cid:28) (cid:29) (cid:2) (cid:31) terferencesetsaresmall.Forexampleinan802.11bnetwork(with 3non-overlappingchannels)ifthesizeofthesesetsis3APs,then 1: bearandompermutationof . 2: L(cid:2)(cid:3)e(cid:2)t (cid:2) (cid:2) (cid:4))( (cid:3) (cid:5) ( (cid:9) (cid:5) (cid:4) (cid:4) (cid:4) (cid:5) ((cid:5)(cid:4) (cid:5) . (cid:2) theprobabilityofconflict-freedomforeachclientis77%.Henceby 45736::::: fSoertfo(cid:24)(cid:26)(cid:2)r(cid:6)((cid:2)(cid:23)(cid:10)(cid:7)(cid:1)((cid:8)(cid:18)(cid:8)(cid:2)(cid:13)(cid:4) (cid:12)(cid:2)(cid:7)(cid:4)(cid:13)(cid:4)(cid:5)"(cid:4)(cid:4)N(cid:28)(cid:0)(cid:4) (cid:10)(cid:4)uC(d(cid:24)m(cid:2)5o(cid:12)om(cid:2)(cid:24)Cdpoao(cid:14)ncfl(cid:13)tiio/c*nt-FS1rteeinepd(cid:10)(cid:21)(cid:10)ic( (cid:5)(cid:1)a(cid:4)(cid:28)te(cid:12)sanu! n(cid:12)assignedAP*/ swtcehixooeeennncflcua(cid:6)itchtni(cid:4)ten(cid:10)-g(cid:24)(cid:26)fgpur(cid:0)erat(cid:16)oehr(cid:12)(cid:19)b.ai(cid:23)(cid:25)sna(cid:24)Hbtsei(cid:3)ioelmiw(twoypeblivoettheafrui,cnhnoeiiignndfhoflbtrihpmycertao-ssfsbarasaemimbgeipdnelloiiint8mnyg0g2t!ihs.a1al(cid:2)bt1gobo7(cid:16)ur7inn%itenhdtmewEodfqombutrhkyaue,tlittohicifpnleil(cid:6)(cid:22)ee4enxittp(cid:21)nismrateher(cid:19)sees-, 8: i(cid:28)fNum(cid:7) Conflict Free(cid:10)(cid:21) (cid:5)"(cid:28) (cid:12) (cid:2) (cid:6) (cid:5)"(cid:7)(cid:1)(cid:28)(cid:18)(cid:5)(cid:12)(cid:21)th(cid:5)en taoptpiceanldlyixgaonedsstoubzseerqouwenitthailngcerberaasiicnagpp.roximations)whichasymp- 9: stop (cid:6) 10: endif InparticularifthenumberofAPsintherangeandinterferenceset 11: endfor islargerthanthenumberofavailablechannels,andwechooseuni- 12: endfor formlyatrandom,thereisagoodchancethatforeachAPassigned conflict-freedom among clients, and later describe the algorithm toaspecificchannelthereisatleastanotherAPinthesetthatis whichleveragesthis. alsoassignedtothischannel. Hence, uniform samplingdoesnot scalewellwithincreasingset-sizes,i.e.,increasingdensityofAPs CompactionStep:Considerawirelessnetwork(cid:10) (cid:5) (cid:14) (cid:12) , (cid:2) setof inthenetwork. fAmoPursltah,te(cid:14)ioAn(cid:2)P.sLsweetth(cid:28)(cid:17)oicfh(cid:29)c(cid:2)uliseen(cid:31)sts!.(cid:4)cL(cid:13)oel(cid:4)to(cid:4)r(cid:10)(cid:4)(cid:1)s(cid:2)!..(cid:5)C(cid:5)(cid:27)(cid:21)obne(cid:12) stbihdeeetrehxaenisctAoinrPrge(cid:2)2(cid:10)sc(cid:9)(cid:9)pool(cid:8)onrd(cid:2)ia(cid:2)ns.gsKigCenFempfieonnrg-t OpruoracChF,Aessspiegcni-aBlliySwalhgeonritthhme riamnpgreovaensdtihneteurnfeifroenrmcessaemtpsliiznegs aapre- allothercolorassignmentsthesame,thecompactionstepassigns large,bybiasingthesamplingprocessasfollows.EachAPchooses acolorto2(cid:10)(cid:9) whichmaximizesthenumberofconflict-freeclients onespecificchannelwithhighprobability(i.e.biased)(cid:9) ,whilethe ontheoverallforthesetsystem (cid:10)(cid:2) (cid:5)(cid:27)(cid:21) (cid:12) . Suchacolorischosenas otherchannelsarechosenwithequalprobability, (cid:10) (cid:13)(cid:18)(cid:14) (cid:9) (cid:12) (cid:0)(cid:11)(cid:10) ! (cid:14) (cid:13) (cid:12) , thenewassignmentfor 2(cid:10)(cid:9) . Notethatthenumberofconflict-free where ! isthenumberofchannels. Asaconsequenceofthisap- clientscanbeeasilycomputedusingtheinterferencesetsavailable proach,ifthenumberofAPsintherangeandinterferencesetsof atthecentralentity. aclientis ,mostoftheAPs( (cid:4) ofthem)willselectthe“biased” (cid:6) (cid:9) (cid:6) channel. WecalltheseAPs,biased-APs. Onlytheremainingfew TheCFAssign-RaCalgorithmoperatesbyrepeatedlyinvokingthe APs from the conflict sets((cid:10) (cid:13) (cid:14) (cid:12) (cid:4) ofthem) will choose from (cid:9) (cid:6) compaction step for each AP in succession. We traverse the se- theremainingchannels. WecalltheseAPs,unbiasedAPs. Since quenceofAPsmultipletimes,boundedbyaparameter(cid:0) (empiri- thenumberofunbiasedAPsisfarsmallerthantheoriginalnumber callywefoundthat(cid:0) (cid:2) (cid:19) wasadequateforconvergence),starting ofAPsintherangeandinterferencesetofeachclient, auniform initiallywitharandompermutationoftheAPs. Notethattheso- samplingapproachtochannelassignmentfortheseAPscanpoten- lutionimprovesmonotonicallyineachrun.However,itispossible tiallybeeffectiveinmakingthissetofremainingAPs(andhence thatthealgorithmgetsstuckinalocaloptima. Therefore,inprac- the original set) conflict-free. This is why the unbiased APs use tice,weinvokethealgorithmmultipletimesandchoosethebestso- uniformsamplingtochoosefromtheunbiasedchannels. Itisim- lutionthatwasobtainedacrosstheseruns.Eachseparateinvocation portant to re-iterate that it is an unbiased AP from the range set ofthealgorithm,therefore,usesadifferentrandompermutation. whichistypicallyresponsibleformakingtheclientconflict-free. Algorithm2CFAssign-BiS (cid:10) ! (cid:12) Conceptually, ahighbiasprobabilityisexpectedtoperformwell. (cid:5) (cid:5)(cid:12)(cid:11) (cid:2) However, toachievethebestresults,acarefulchoiceof should =setofaccesspoints, (cid:9) (cid:2)! =numberofcolors, bemade. Thebestvalueofthebiasprobability,called(cid:9) (cid:14)(cid:26)(cid:16)(cid:15)(cid:18) ,de- =maximumsizeofarange/interferenceset. pends on the maximum size of the range and interference set in (cid:11) Biased-Sample(cid:10) ! (cid:12) returnscolor withprobability the network and the number of available channels. We calculate (cid:5)(cid:13)(cid:9) (cid:9) andcolor(cid:4)(cid:23) (cid:10)(cid:13)(cid:6) (cid:4) (cid:20)(cid:4) (cid:4)"!.(cid:23) (cid:5)(cid:22) is!t(cid:12)hewriethtuprnroebdacb(cid:6)hilaintyne(cid:10)l(cid:13) a(cid:14)ssi(cid:9)g(cid:12)n(cid:0)(cid:13)m(cid:10) !en(cid:14)t (cid:13) (cid:12) . (cid:9)(cid:27)ap(cid:14)(cid:26)p(cid:16)(cid:27)e(cid:18)ndaixn.alNytoitcealtlhyatussuincghtahecsoemtpwuotaptiaornamneeetedrsstoasodnelyscersibtiemdaitnetthhee (cid:28) (cid:29) (cid:2) (cid:31) maximumconflictsetsizeinthenetwork. EachAPcanperform 1: Choose Bias Probability: (cid:9) (cid:2) (cid:9)(cid:15)(cid:14)(cid:17)(cid:16)(cid:15)(cid:18) (cid:10) ! (cid:5)(cid:19)(cid:11) (cid:12) /*This is dis- aalo‘lnoec,aal’sedsetsicmriabteedoifnthSiesctviaolnue5.b4y.Ainltgeorraicthtimon2wpirtehseitnstsoCwFnAcslsieignnts- cussedindetailintheappendix.*/ 2: Color: ( set (cid:10)( (cid:12) Biased-Sample(cid:10) ! (cid:12) BiSinpseudo-code. (cid:26) (cid:8) (cid:2) (cid:29) (cid:28) (cid:7) (cid:5)(cid:20)(cid:9) TheperformanceofCFAssign-BiScanbeimprovedbyiteratingthis 5.2 CFAssign-BiS– BiasedSampling processovermultipleroundswithsomeextracoordinationbetween APs. In eachround we run an instanceof CFAssign-BiS and se- Wenowpresentasimplerdistributedalgorithmthatrequiresmini- lectthechannel(andthecorrespondingsetofAPsassignedtothat malcoordinationbetweenAPsforchannelassignment.Letusfirst channel) which was responsible for the most number of conflict- considerauniformsamplingapproachforchannelassignment,in freeclientsintheround. Wethenmakethechannelassignmentof which eachAP chooses a channel uniformly atrandom from the theseAPspermanent,andproceedtothenextroundbyexcluding theseAPs,thecorrespondingchannel,andtheconflict-freeclients 1 1 cfwnB(cid:13)ra,oioilSlt(cid:13)lmla-tt1ihinotirchsne(cid:13)re,qe,ituacrAeesiurrelqaregruttsoiehivnrrneeietotsnharumcslogomouomon2brrdieedtc.rhisanmounCafctlhwcbieooeaicnntrohclflbyoai(cid:13)erlcedltterwvi-odnfeeurareeCnytneidFoiscAAnt,elisPrCtesoasniFtgiitwAmosnsnh-ipsnBiillogieetSfhmn-Ce-t1ehBFn.niiAsetStCs-twash(cid:13)Flieog.gAronIdsknr-is.ifBittfgWhhieSnmires--- Probability of conflict-free 000000000......... 1234567890 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Percentage of Conflict-free Users 000000000......... 1234567890 3 4 5 6 7NNNmmmaaaxx x==8 = 11 802 9 10 (cid:15) Value of the Bias Probability Number of Colors entrounds. Hence,inthispaperwefocusonlyonCFAssign-BiS-1 asacompletelydistributedsolution. (a)Plotof(cid:0) (cid:10) ! (cid:12) for (b) Lower Bound on the (cid:6)(cid:10)(cid:5) (cid:5)(cid:13)(cid:9) 5.3 Analysis (cid:6) (cid:2) (cid:22) and! (cid:2) (cid:19) . expected conflict-free probabilityat(cid:9) (cid:2) (cid:9) (cid:14)(cid:26)(cid:16)(cid:27)(cid:18) WepresentasummaryofouranalyticalevaluationfortheCFAssign- for various values of ! BiS algorithm (more details in the appendix). For simplicity, we and (cid:6)!(cid:24)(cid:27)(cid:26) (cid:28) consideronlyrangesets,althoughtheresultshereextendtrivially toincorporateinterferencesetsaswell. Figure6:Figure(a)showshowtoget (b)plotsthelower (cid:9)(cid:15)(cid:14)(cid:26)(cid:16)(cid:27)(cid:18) Let(cid:0) (cid:10) ! (cid:12) denotetheprobabilitythatarangesetofAPswith boundontheexpectedpercentageofconflict-freeusersfor(cid:9) (cid:2) (cid:6)(cid:10)(cid:5) (cid:5)(cid:13)(cid:9) size(cid:6) iscoloredconflict-freewith! channelsusingCFAssign-BiS (cid:9)(cid:27)L(cid:14)(cid:26)o(cid:16)(cid:27)w(cid:18)e.rBoundforCFAssign-RaC algorithmwithabiasprobabilityof . Wecalculateanexactex- (cid:9) DetailedanalyticevaluationoftheCFAssign-RaCalgorithmismore pressionfor(cid:0) (cid:10) ! (cid:12) intheappendix,asshownbelow: (cid:6)(cid:10)(cid:5) (cid:5)(cid:20)(cid:9) involvedandhenceomittedduetospaceconstraints(willbemade availablethroughacompaniontechnicalreport). SinceCFAssign- RaCiscentralized,itcanbeinitializedwiththecoloringobtained (cid:23)(cid:25)(cid:24) (cid:9) (cid:9) fromexecutingCFAssign-BiS.Also, sinceineachiterationofthe (cid:0) (cid:10)(cid:6) (cid:5) ! (cid:5)(cid:13)(cid:9) (cid:12) (cid:2) (cid:6) (cid:9) (cid:1)(cid:23) (cid:24) (cid:3)(cid:3)(cid:2) (cid:10) (cid:13) (cid:14) (cid:9) (cid:12) (cid:6) (cid:4) (cid:6) (cid:9) ’ (cid:10) (cid:13) (cid:14) (cid:9) (cid:12) (cid:1)(cid:23) (cid:24) ’(cid:6)(cid:2)(cid:13)(cid:12) (cid:10)(cid:6) (cid:14) (cid:24) (cid:5) ! (cid:14) (cid:13) (cid:12) loop (steps (cid:19) (cid:4) (cid:4) (cid:4) (cid:13) ), the conflict freedom of clients is only im- ’(cid:6)(cid:5)(cid:8)(cid:7) (cid:24)(cid:11)(cid:10) proved, the perform(cid:6) ance results of CFAssign-BiS (discussed ear- (1) lier) act as a lower bound for CFAssign-RaC. This is confirmed where throughextensivesimulationsinSection7andmeasurementsona realtestbedinSection8. (cid:12) (cid:10)(cid:6) (cid:5) ! (cid:12) (cid:2) (cid:4) (cid:4) (cid:10) (cid:14) (cid:13) (cid:12) (cid:1)(cid:4)(cid:18)(cid:17) (cid:3)(cid:3)(cid:2) (cid:9) !(cid:23) (cid:10)(cid:20)(cid:19) (cid:23)(cid:4)(cid:15)(cid:21) (cid:10)(cid:15)(cid:23)(cid:15)(cid:22)(cid:12) (cid:10) !! (cid:23)(cid:14) (cid:23) (cid:12) (cid:1)(cid:23)(cid:25)(cid:24) (cid:4)(cid:2) (2) CAsondvisecrugsseendceearlier in section 5.1, the CFAssign-RaCalgorithm (cid:5)(cid:12)(cid:3)(cid:15)(cid:14)(cid:14)(cid:14)(cid:16) convergesrapidly(4rounds)inpractice. Itcanbeeasilyseenthat thealgorithmwillconvergeprovably: ineachiterationoftheloop Figure 6(a) plots (cid:0) (cid:10) ! (cid:12) forvarious values of the bias proba- (steps (cid:4) (cid:4) (cid:4) (cid:13) )eitherthealgorithmterminates(valueoftheobjec- (cid:6)(cid:10)(cid:5) (cid:5)(cid:13)(cid:9) (cid:19) bility(cid:9) keeping (cid:6) and ! fixed at (cid:6) (cid:2) (cid:22) (cid:5) ! (cid:2) (cid:19) . The point(cid:9) at tive function(cid:6) cannot be improved) or the algorithm improves the which(cid:0) (cid:10) ! (cid:12) ismaximizedgivesustheoptimalbiasprobabil- objective function i.e., the number of conflict-free clients. Since (cid:6)(cid:10)(cid:5) (cid:5)(cid:20)(cid:9) ity forthebiasedsamplingalgorithm. Figure6(b)plotsthe theobjectivefunctionisintegral,andthereisanupperboundonits (cid:9)(cid:27)(cid:14)(cid:17)(cid:16)(cid:15)(cid:18) percentageofconflict-freeusers(expectedvalue)forat for value(=totalnumberofclients),thealgorithmwillconverge. (cid:9) (cid:14)(cid:17)(cid:16)(cid:15)(cid:18) (cid:6) (cid:2) (cid:22) (cid:5) (cid:13) and (cid:13)(cid:6)(cid:24) . Theoptimalvaluesfor(cid:9) canbeprecomputed andstored(cid:6) inatableindexedby (cid:23)(cid:6)(cid:25)(cid:24)(cid:27)(cid:26)(cid:29)(cid:28) (cid:5) !(cid:31)(cid:30). Thetablewouldhave 5.4 ImplementationIssues (cid:22) (cid:13) entriesallforpracticalvaluesof(cid:6) and! . Wehavediscussedtwoalgorithms–CFAssign-RaCandCFAssign- (cid:6) (cid:6) BiS. Bothalgorithms operateon a conflict-freecoloringformula- BasedonEquation1weobservethefollowingimportantproperties tion (cid:10) (cid:12) . APs can find out the range and interference sets of ofCFAssign-BiS: (cid:2) (cid:5)(cid:27)(cid:21) theirclientsbyrequestingthelattertoconductasite-reportasspec- ifiedinIEEE802.11Kdrafts[11].Inasite-report,aclientscansall FairnessandResiliencetoMobility channels and reportsall theAPs withinits rangeon thedifferent Let bethemaximumsizeofanyrangesetforthewireless channels.Suchscanscanberequestedperiodicallyordynamically (cid:8) (cid:24)(cid:27)(cid:26) (cid:28) network (cid:10) (cid:5) (cid:14) (cid:12) . Each client has the same and equal minimum based on mobility. A scan for IEEE 802.11b can be completed (cid:2) probabilityofassociatingtoaconflict-freeAPasgivenbythequan- inaround150ms[12], whichisnegligibleoverthedurationofa tity(cid:0) (cid:10) ! (cid:12) .ThisfollowsfromthefactthatEquation1 channelre-assignment. (cid:8) (cid:24)(cid:27)(cid:26)(cid:29)(cid:28) (cid:5) (cid:5)(cid:13)(cid:9)(cid:27)(cid:14)(cid:26)(cid:16)(cid:27)(cid:18) isnotalteredbydifferencesintheexactrangesetsbetweenanytwo clients. Notethatthemaximumsizeofanyrangeset, ,isa TheCFAssign-BiSalgorithmoperatesobliviousoftheexactmem- (cid:8) (cid:24)(cid:27)(cid:26) (cid:28) functionoftheplacementofAPs,andhenceitdoesnotdistinguish bershipoftherangeandinterferencesets. Inthisalgorithm,each between clients. Also, since is a property of the wireless AP just requires an estimate of the largest range/interference set (cid:8) (cid:24)(cid:27)(cid:26) (cid:28) network,theperformanceoftheCFAssign-BiSalgorithmwithre- size. An AP can construct a good ‘local’ estimate of the largest specttoconflict-freedomandfairnessisunaffectedbyanymodel setsizebyaggregatingthisinformationfromitsownclientsalone. ofmobilityfollowedbytheclients.Morespecifically,regardlessof SinceanAP’schannelassignmenthasaneffectonclientswithin howmanyclientsaremobileandhowfasttheymove,eachclient its range only, i.e., a ’local’ effect, we expect a local estimateof hasthesameminimumprobabilityoffindingaconflict-freeAP. thelargestsetsizetoperformequallywell. Inourevaluationsde- scribed in the next section, each AP uses this local estimate ap- Theseresultscanbeextendedtriviallytoincorporateinterference proach (requiring no coordination between APs) when using the setsaswell,andwepresentthedetailedproofsinatechnicalreport. CFAssign-BiSalgorithm. However,asimpledistributedalgorithm Geometric:InthismodelweassumethatRFsignalsattenuateisotrop- Percentage of Conflict Free Users 000000000 .........01123456789 3 4 5 6 7CC F8FAAs ss9sigig n1n-0R-Ba 1iCS1 12 13 14 Percentage of Conflict Free Users 000000000 .........01123456789 3 4 5 6 7CC F8FAAs ss9sigig n1n-0R-Ba 1iCS1 12 13 14 irTtcltcrohaihaarwnenceldludrsiyoemnlimasftaotrier.scrrisfecfbriEeoooutrarnmtredicanoirhnncanasegdAmofi,iuPftaixossnets.hrdditaaWohondrnensaemaneaTggnwiwtesrednoasi.etin-ihoRrnsEanmtahtaeeyicrrigdasfhhGesntirgwciorenloennoitsuecenrsneroaeftdfdetrasriatPulehnosrnsegofocecptnehoshaoapbogdisoonsaelettasohintnohgicnniiuiosennnstmdmhi,tfereooooopdnradlemelerenelellwdday[ae5ibornta]yheftt. Number of Channels Number of Channels networkcoverage. Themeansizeoftherangesetsofclientswere 4and8forthelowandhighinterferencetopologiesrespectively. (a)Randomtopologywith (b)Randomtopologywith lowinterference highinterference Random: In this model APs and clients were allowed to induce interferencewith arbitraryother APs orclients. Each client(and AP)wasallowedtoselectasubsetofAPs(andclients),uniformly 1 1 Percentage of Conflict Free Users 000000000......... 1234567890 CCFFAAssssigignLn-CR-BCaiCSS Percentage of Conflict Free Users 000000000......... 1234567890 CCFFAAssssigignLn-CR-BCaiCSS amawlbotmueoctroaidaoctuenihnlnodo,tnobowomesofhtef,wienwttrehhteeieeetnrthfhnse2ewoirzdehaieennniscctodeheafr.1nftteAh5dhreeetAmyhniPeceinneasttte,nrerrawarfonfnefiesrgtmr4eheenswi.tcshTsaeaeirshoesmiunesdsterseiiaascdnnatuatsgontueealsgsdiek.eGdebnFayettouohrrtasehtcseeeigoaaeacnpnohthlrmodoycwilselsiitttecirrhnnaiiec--lt 3 4 5 6 7 8 9 10 11 12 13 14 3 4 5 6 7 8 9 10 11 12 13 14 terferencetopologies,andameanof8wasusedtogenerateahigh Number of Channels Number of Channels interferencetopologies. Therelativelynon-homogeneousrandom interferencemodelisanapproximationofcertainRFpropagation (c) Geometric topology (d) Geometric topology withlowinterference withhighinterference vagariesofindoorwirelessenvironments. Figure7showsthesimulationplots. Eachplotshowstheaverage Figure7:Figurecomparesperformanceofthethreealgorithms over 100 different CF formulations along with the 10th and 90th overvarioustopologies. percentiles.Wediscussthesalientpointsofourresultsbelow: 1. Both CFAssign-BiS and CFAssign-RaC outperform LCCS: tocomputethemaximumsetsizecanalsobeemployedtoimprove Asexpected,LCCSdoesnotcapturealltypesofinterference performance. thatcanexistinanetworkandalsodoesnottakeaclient’s perspectiveintoconsideration.Bothalgorithmsperformsig- Channelre-assignmentcanbedoneeitherperiodicallyordynami- nificantlybetterthanLCCSregardlessoftheamountofin- callybasedonfeedback. Thefeedbackbasedtechniquetriggersa terference and the model used for generating the datasets. re-assignmentifthequalityofthecurrentassignmentasmeasured Alsotheperformancegainincreasesasthenumberofchan- byanobjectivefunctiondegradesrelativelybelowathreshold.We nelsisincreasedthusexposingtheweaknessesofLCCSas discusssuchextensionsinourmobilitysimulationsinsection7. discussedearlierinsection2. ChangingthechannelforanAP/clientisarelativelylow-costop- 2. CFAssign-RaCperformsbetterthanCFAssign-BiS:CFAssign- eration ((cid:13) (cid:14)(cid:21)(cid:24) ms)whichcanbe implementedmostly asadriver RaC exploits the knowledge of range and interference sets update. Theactualoperationofchangingthechannelcanbesyn- of all clients to perform the compaction step in a central- chronizedwithanAP’sbeacon. TheIEEE802.11Kdraftspecifies izedmanner,andprovidesabetterchannelassignmentthan MAClevelprimitivestoachievethisgoal. CFAssign-BiS.However,theapplicationdomainsofbothal- gorithmsaredifferent.Thesimplicityanddecentralizedmode ofoperationofCFAssign-BiSmakesitparticularlyapplica- bletonetworkswithlimitedornocentralizedcontrolwhere 5.5 Topology-levelSimulations CFAssign-RaCmaybedifficulttodeploy. WestudytheperformanceoftheCFAssignalgorithmswithrespect to the number of clients that are conflict-free, through extensive topology-level simulations. Weevaluate them undervarious sce- MultipleCo-ExistingWirelessNetworks narios,includingtwodifferentRFmodels,differentAPandclient Wenowexaminehowthesealgorithmsperforminasituationwhere densities.Inparticular,weuseageometricmodelwheretheRFsig- multiplenetworksareforcedtocompeteforthesamespectrum.In naldecaysinanisotropicmanner,andarandommodelwherethe ourscenario,wehavethreecompetingnetworkswith20APseach, rangeandinterferencesetsofaclientareconstructedinarandom and equal client distribution (80 clients per network) sharing the manner. TherandommodeldoesnotconformtoanyspecificRF samephysicalspace.Weconsiderthesamesetofalgorithmsasbe- propagationmodel. Weusethistodemonstratetheindependence fore. TheLCCSandtheCFAssign-BiSalgorithmsoperateidenti- fromthevalidityofanyparticularRFmodel. Forthenetworksize callyregardlessoftheextentofcooperationbetweenthecompeting in both these models we used 50 APs and 200 clients that were networks.FortheCFAssign-RaCalgorithm,however,itispossible distributedinathreedimensionalphysicalregionuniformlyatran- todefinedifferentdegreesofcooperationfortheCFAssign-RaCal- dom. Each client is considered active, i.e., it will cause and ex- gorithm. perienceinterferencewithotherclientsastheycommunicatewith their respective APs. The degree of interference in these models 1) RaC-UpperBound: In this mode of cooperation the three net- wasvariedusingdifferenttechniquesasdescribednext. worksemployperfectcooperation. Thechannelassignmentofall

Description:
Efficient Strategies for Channel Management in Wireless LANs Arunesh Mishra, Vladimir Brik, Suman Banerjee, Aravind Srinivasan, William Arbaugh
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.