ebook img

Efficient Production Planning and Scheduling: An Integrated Approach with Genetic Algorithms and Simulation PDF

164 Pages·1996·3.837 MB·German
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Efficient Production Planning and Scheduling: An Integrated Approach with Genetic Algorithms and Simulation

Shiroma Efficient Production Planning and Scheduling GABLER EDITION WISSENSCHAFT Information Engineering und IV -Control Ii n g Herausgegeben von Professor Dr. Franz Lehner Die Schriftenreihe prasentiert aktuelle Forschungsergebnisse der Wirtschaftsinformatik sowie interdisziplinare Ansatze aus Informatik und Betriebswirtschaftslehre. Ein zentrales Anliegen ist dabei die Pfiege der Verbindung zwischen Theorie und Praxis durch eine an wendungsorientierte Darstellung sowie durch die Aktualitat der Bei trage. Mit der inhaltlichen Orientierung an Fragen des Information Engineerings und des IV-Controllings 5011 insbesondere ein Beitrag zur theoretischen Fundierung und Weiterentwicklung eines wichtigen Teilbereichs der Wirtsc~aftsinformatik geleistet werden. Patricia Jay Shiroma Efficient Production Planning and Scheduling An Integrated Approach with Genetic Algorithms and Simulation With a Foreword by Prof. Dr. Gerhard Niemeyer Springer Fachmedien Wiesbaden GmbH DieDeutsche Bibliothek -C1P-Einheitsaufnahme Shiroma, PatriciaJay: Efficient production planningandscheduling :on integroted approach withgeneticalgorithmsand simulation / PatriciaJay Shiroma.Witha foreword byGerhard Niemeyer. -Wiesbaden :Dt.Univ.-Verl.;Wiesbaden :Gabler, 1996 (Gabler EditionWissenschaft:Information Engineering und IV-Controlling) Zugl.:Regensburg, Univ.,Diss., 1996 GablerVerlag,Deutscher Universitäts-Verlag, Wiesbaden ©SpringerFachmedienWiesbaden1996 UrsprünglicherschienenbeiBetriebswirtschaftlicherVerlagDr.Th.GablerGmbH,Wiesbaden 1996. Lektorat:Cloudia Splittgerber DosWerk einschließlich oller seiner Teileisturheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsge setzes istohne Zustimmung des Verlages u.(lzulässig und strafbar. Dos gilt insbesondere für Vervielfältigungen, Ubersetzungen, Mikroverfil mungen und die Einspeicherung uno Verarbeitung in elektronischen Systemen. Höchsteinhaltlicheund technischeQualitätunsererProdukteistunserZiel.BeiderProduktionund Auslieferung unsererBücherwollenwirdie Umweltschonen:DiesesBuchistauf säurefreiemund chlorfrei gebleichtem Papiergedruckt. DieWiedergabe von Gebrauchsnomen, Handelsnomen, Warenbezeichnungen usw. in diesem Werk berechtigtauchohnebesondereKennzeichnungnichtzuderAnnahme,daßsolche Namen imSinne der Warenzeichen- und Markenschutz-Gesetzgebung als freizu betrachten wären und dahervon jedermann benutztwerden dürften. ISBN978-3-8244-6426-5 ISBN978-3-663-08438-9(eBook) DOI10.1007/978-3-663-08438-9 Foreword Production scheduling with resource allocation is a highly complex planning process. In addition to evaluating the large number of possible job sequences, a number of other variables must also be considered. Machine capacities, availability of personnel and material, delivery deadlines as well as penalty costs for missed deadlines must all be taken into account. Most of the competing theoretical methods used today make a number of unrealistic assumptions in order to simplify the problem. Although the resulting models can be solved mathematically, they are often so constrained that they no longer reflect reality and are therefore unusable in practice. This work presents an original solution to the problem of production scheduling with simultaneous resource allocation. The interactive integration of genetic algorithms with system simulation makes it possible to handle the complexity inherent to this planning problem without losing information. Furthermore, the combination of a genetic algorithm with tabu search represents a further innovation which improves efficiency of the search process. Finally, the introduction of an adaptive mutation controller prevents the algorithm from stagnating at local optima. The effectiveness of these methods is tested on an application to generate production schedules for an actual manufacturing firm with large numbers of job orders. Gerhard Niemeyer Regensburg, Germany v Preface This dissertation investigates the possibility of combining genetic algorithms and simulation studies to generate improved production plans for job-based manufacturing processes. A genetic algorithm is a type of search method based on principles of natu ral selection and evolution. Simulation has proven highly effective in modeling the complexity inherent to dynamic, non-linear systems. The integration of genetic algo rithms with simulation studies takes advantage of the synergistic effects between the two methods and results in a flexible, highly effective production scheduling system. First, the problem of job-oriented production planning and scheduling is formally de fined. Next, the advantages and disadvantages of existing methods to solve this prob lem are evaluated. The combination of genetic algorithms with simulation is proposed as a new solution. The nature and theoretical foundations of genetic algorithms are discussed in detail. New methods for the hybridization of genetic algorithms with simulation studies are introduced. The feasibility of embedding genetic algorithms within the AMTOS simulation system is investigated. The results of an actual case study applying a hybrid system of genetic algorithms with simulation in order to im prove production planning for a large pharmaceutical firm are presented. Finally, plans for future research are discussed. Acknowledgements I would like to thank my dissertation advisors at the University of Regensburg, Prof. Dr. Gerhard Niemeyer and Prof. Dr. Dieter Bartmann, for their valuable guidance and helpful suggestions during the both development phase and through the review process. I also thank the editor of this series, Prof. Dr. Franz Lehner of the University of Regensburg, for his assistance in the publication of this work. I would like to express my gratitude to Prof. Fred Glover, Prof. James Kelly and Prof. Manuel Laguna, of the University of Colorado at Boulder, for their expert advice and assistance in the area of tabu search. VII I am grateful for the editorial assistance provided by Ms. Claudia Splitgerber at Gabler-Verlag in the completion of this book. I thank Brett Tanaka, of the Hawaii Pacific University, for his help in reviewing and proofreading the manuscript. I thank my colleagues at the Institute for Business Informatics, Michael Bosch, Chris tine Handl, Werner Hopf, Claus Lindenau, Norbert Meck! and Veronika Wolf, for their continued encouragement and thought-provoking discussions. Special thanks go to my partner and best friend, Matthias Brockmann, for his under standing and tolerance on the long and often difficult road to completing this disserta tion. Finally, I would like to thank my entire family for their inexhaustible encouragement and moral support; This book is dedicated to my parents. Patricia Jay Shiroma Regensburg, Germany VIII Table of Contents Introduction ................................................................................................................. 1 1.1 Motivation .......................................................................................................... 1 1.2 Problem Definition and Extensions ................................................................... 5 1.2.1 Definition of the Standard Job-Based Production Planning Problem ..... 5 1.2.2 Deficiencies in the Standard Problem Definition .................................... 6 1.2.2.1 Time-Cost Tradeoffs .................................................................. 6 1.2.2.2 Time Aspect of Dynamic Resource Allocation .......................... 7 1.2.3 Expanded Problem Definition ................................................................. 8 1.3 Failure of Traditional Operations Research Methods to Solve Problems with Nonlinear Dependencies 9 1.3.1 Linear Programming 9 1.3.2 Hillclimbing Methods 9 1.4 Simulation ........................................................................................................ 11 1.5 Cybernetic System Theory ............................................................................... 12 1.5.1 Automata Theory ................................................................................... 13 1.5.2 Cybernetics ............................................................................................ 15 1.6 Generation of Input Parameters for Simulation Studies .................................. 16 1.6.1 Simple Heuristics .................................................................................. 16 1.6.2 Nearest Neighbor. .................................................................................. 16 1.6.3 Balancing Machine Load ...................................................................... 18 1.6.4 Expert Systems ...................................................................................... 19 1.6.5 Enumeration 21 1.6.6 Dynamic Programming ......................................................................... 22 1.6.7 Branch and Bound ................................................................................. 24 1.6.8 Simulated Annealing ............................................................................. 29 2 The Nature of Evolutionary Algorithms ................................................................... 33 2.1 Evolutionary Programming .............................................................................. 35 2.2 Evolutionary Strategies .................................................................................... 36 2.3 Genetic Algorithms .......................................................................................... 37 2.3.1 Selection ................................................................................................ 38 2.3.2 Crossover ............................................................................................... 39 2.3.3 Mutation ................................................................................................ 40 2.3.4 Convergence .......................................................................................... 41 2.3.5 Example of a Genetic Algorithm in Pseudo-Pascal .............................. 42 IX 3 Theoretical Foundations of Genetic Algorithms ....................................................... 43 3.1 Schema Theorem .............................................................................................. 43 3.1.1 Schemata 44 3.1.2 Upper and Lower Bounds on the Number of Schemata Evaluated ....... 45 3.1.3 Hyperplane Sampling ............................................................................ 45 3.1.4 Effects of Fitness Proportional Reproduction ....................................... 47 3.1.5 Effects of Crossover .............................................................................. 49 3.1.6 Effects of Mutation ............................................................................... 50 3.1.7 Schema Theorem Summarized .............................................................. 51 3.2 The Building Block Hypothesis ....................................................................... 52 3.3 Interacting Roles of Crossover and Mutation .................................................. 54 3.4 Self-Organizing Systems and Artificial Life .................................................... 55 3.4.1 Artificial Life ........................................................................................ 55 3.4.2 The Game of Life .................................................................................. 56 3.4.3 Manipulation of DNA to Solve Combinatorial Problems ..................... 57 3.4.4 Generation of Computer Programs with Natural Selection .................. 59 3.4.5 Sirriulation of a Market Economy with Autonomous Agents ............... 61 4 Methodology ............................................................................................................. 63 4.1 Classic vs. Hybrid Genetic Algorithms ............................................................ 65 4.2 Time Constraints when Combining Genetic Algorithms with Simulation ...... 66 4.2.1 Minimization of the Number of Simulation Runs ................................. 67 4.2.1.1 Delta Evaluation ....................................................................... 68 4.2.1.2 Messy Genetic Algorithms ....................................................... 68 4.2.1.3 Chromosome Representation ................................................... 69 4.2.1.3.1 Binary vs. Real Coding Schemes .............................. 69 4.2.1.3.2 Hierarchical, Dynamic Data Structure ...................... 71 4.2.1.4 Modification of Genetic Operators .......................................... 73 4.2.1.4.1 Selection .................................................................... 73 4.2.1.4.1.1 Generational vs. Steady State Algorithms ........................ 74 4.2.1.4.1.2 Fitness Proportional vs. Rank-Based Selection 75 4.2.1.4.2 Modifications to the Crossover Operator ................. 77 4.2.1.4.2.1 Multi-Point Crossover ........................... 77 4.2.1.4.2.2 Uniform Crossover. ............................... 78 4.2.1.4.2.3 Intelligent Crossover ............................. 79 4.2.1.4.2.4 Order Crossover 80 x

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.