ebook img

Efficient nonlinear generation of high power, higher order, ultrafast "perfect" vortices in green PDF

6.7 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Efficient nonlinear generation of high power, higher order, ultrafast "perfect" vortices in green

January12,2016 AbstractWereportonefficientnonlineargenerationofultrafast, higherorder“perfect”vorticesatthegreenwavelength.Based on Fourier transformation of the higher order Bessel-Gauss beamgeneratedthroughthecombinationofspiralphaseplate andaxiconwehavetransformedtheGaussianbeamoftheultra- fastYb-fiberlaserat1060nmintoperfectvorticesofpower4.4 Wandorderupto6.Usingsingle-passsecondharmonicgener- ation(SHG)ofsuchvorticesin5-mmlongchirpedMgO-doped, periodicallypoledcongruentLiNbO3crystalwehavegenerated perfectvorticesatgreenwavelengthwithoutputpowerof1.2W andvortexorderupto12atsingle-passconversionefficiency 6 of27%independentofitsorder.Thisisthehighestsingle-pass 1 SHGefficiencyofanyopticalbeamsotherthanGaussianbeams. 0 Unlikethedisintegrationofhigherordervorticesinbirefringent 2 crystals,here,theuseofquasi-phasematchingprocessenables n generationofhighqualityvorticesevenathigherorders.The a greenperfectvorticesofallordershavetemporalandspectral J width of 507 fs and 1.9 nm, respectively corresponding to a 1 time-bandwidthproductof1.02. 1 ] s c i Efficient nonlinear generation of high power, higher order, t p o ultrafast “perfect” vortices in green . s c i N. Apurv Chaitanya1,2,*, M. V. Jabir1, G. K. Samanta1 s y h p [ Opticalvortices,havingphasesingularities(phasedis- differentwavelengthsacrosstheelectromagneticspectrum locations)inthewavefront,carryvanishingintensityatthe inaccessibletolasers.Assuch,frequencyup-conversionof 1 singularpoint.Duetothescrew-like(helical)phasestruc- highpower,ultrafast,opticalvorticesat1.064µmhasgiven v 4 turearoundthepointofsingularity,suchbeamscarryorbital accesstohigherorderopticalvortices(l=12)inthegreenat 7 angularmomentum(OAM).Thephasedistributionofthe 0.532µm[6].Similarly,frequencydown-conversioninopti- 3 opticalvorticescanberepresentedas∼exp(ilθ),withθ as calparametricoscillatorshasproducedopticalvortexbeam 2 azimuthalangleandtheintegerl,astopologicalcharge(or- of order, l =1, with spectral tunability across 1 µm [7] 0 der).EachphotonofthebeamcarriesOAMofl(cid:125).Sincethe and 2 µm [8]. So far, the nonlinear generation of vortex . 1 discoveryofOAMassociatedwithopticalvortices[1],these beams with high power/energy has been restricted to the 0 beams have drawn a great deal of attention from various vorticesoflowerorders[6].Incaseofopticalvortices,the 6 fieldsofscienceandtechnologyincludinghighresolution beam area and divergence [9] increases linearly with the 1 microscopy[2],quantuminformation[3],materialprocess- orderofthevortices.Asaresult,thenonlinearparametric v: ing[4]andparticlemicro-manipulationandlithography[5]. gain,whichdependsontheintensityofthedrivingfields i However,themajorchallengethroughtheseapplicationsis andtheoverlappingintegraloftheinteractingbeams,and X theneedforsourcesofcoherentradiationinvortexspatial thus the conversion efficiency of the nonlinear processes r profilesatdifferenttopologicalchargesandwavelengths. decreaseswiththeorderofthevortices.Therefore,nonlin- a Theopticalvorticesaretypicallygeneratedbyspatial ear generation of higher order optical vortices especially phasemodulationofGaussianbeamsusingdifferenttypes withhighpower/energyrequiresopticalvorticeswithbeam of modulators including spatial light modulators (SLMs) areaandbeamdivergenceindependenttotheirorders.For- andspiralphaseplates(SPP).However,allofthosemodula- tunately,recentdevelopmentinthefieldofstructuredbeams torshaveitsownadvantagesanddisadvantagesintermsof providedanewclassofopticalvortexbeamsknownas“per- wavelengthcoverage,modeconversionefficiency,damage fect”vortex[10,11].Unlikevortices,theperfectvortices thresholdandpowerhandlingcapabilitiesandcost[6].On haveannularringradiusindependentofitsorders. theotherhand,nonlinearfrequencyconversiontechniques Typically,FouriertransformationoftheBessel-Gauss canbeusedtoaccesshighpower/energyopticalvorticesat (BG)beamofdifferentordersisusedtogenerateperfect 1Photonic Sciences Lab., Physical Research Laboratory, Navarangpura, Ahmedabad 380009, Gujarat, India 2Indian Institute of Technology- Gandhinagar,Ahmedabad382424,Gujarat,India *Correspondingauthor:e-mail:[email protected] Copyrightlinewillbeprovidedbythepublisher 2 N.ApurvChaitanyaetal:Nonlineargenerationof“perfect”vortices vortices [11]. However, the combination of SPP and axi- conconvertingtheGaussianbeamintoLaguerre-Gaussian (LG)beamsandBGbeamsofdifferentorders,aspresented inthecurrentreport,canbeconsideredasoneofthesim- plest schemes for generating high power perfect vortices ofdifferentorders.Thecomplexfieldamplitudeoftheex- perimentallyrealizableperfectvortexoforder,lattheback focalplane(z=0)oftheFouriertransforminglensmaybe representedinpolarcoordinatesas[11] w (cid:18) (ρ−ρ )2(cid:19) E(ρ,θ)=il−1 gexp − r exp(ilθ) (1) w w2 o o Here,w isthewaistradiusoftheGaussianbeamcon- g finingthevortexbeam.ρ = fsin(n−1)α istheradiusof r theperfectvortexring, f isthefocallengthoftheFourier transforminglens,andnandα arerespectivelytherefrac- Figure1 Schematicoftheexperimentalsetupfornonlineargen- tiveindexandbaseangleoftheaxicon.2w (w =2f/kw , erationofultrafastperfectvortices.λ/2;half-waveplate,PBS1,2; o o g theGaussianbeamwaistradiusatthefocus)istheannular polarizingbeamsplittercube,SPP1,2;spiralphaseplates,λ/4; widthoftheperfectvortex.k=2π/λ isthewavevectorof quater-waveplate,L1-3;lens,M;mirrors,C;MgO:CLNcrystalfor thebeamofwavelengthλ infreespace.UsingEqn.(1),we frequency-doubling,S;Dichroicmirror;PM,Powermeter.(a-d) canwritetheintensityoftheperfectvortexas, Spatialintensityprofileofthebeamsrecordedatdifferentposi- tionsalongthepropagationdirection. (cid:18)w (cid:19)2 (cid:18) (ρ−ρ )2(cid:19) g r I(ρ,θ)= exp −2 (2) w w2 (see Fig. 1(d)) at the centre of the nonlinear crystal to a o o measuredbeamradiusof∼166µm.A5-mm-longand2 As evident from the Eqn. (2), the intensity of the perfect x1mm2 inaperture,MgO-doped,periodicallypoledcon- vortexisindependentofitsorder.Therefore,onecanexpect gruentLiNbO (MgO:CLN)crystal(C)withlinearchirped 3 thenonlinearfrequencyconversionefficiencyofsuchper- gratingperiodof6.61-6.91µmisusedforsecondharmonic fectvorticestobeindependentoftheirorders[12].Using generation (SHG) of the pump vortex beam. The crystal such perfect vortices, here, we report, for the best of our hasspectralacceptancebandwidthof15nmtocoverentire knowledge,thefirstexperimentaldemonstrationofnonlin- pumpspectrumandphase-matchingtemperatureof130◦C eargenerationofperfectvorticesofpower>1.2Watgreen to avoid any detrimental photorefractive effect. Both the withconversionefficiencyashighas27%andtopological facesofthecrystalisARcoatedfor530and1060nm.The charge(order)ashighas12.Wehavealsoexperimentally crystalishousedinanovenwhosetemperaturecanbevar- verifiedthatathighpowerregime,theconversionefficiency iedupto200◦Cinstepsof0.1◦C.Aλ/2isplacedbefore ofperfectvorticesisindependenttoitsorder. theaxicontoadjustthepolarizationoftheinputbeamto Theschematicoftheexperimentalsetupisshownin thenonlinearcrystal.Thedichroicmirror,S,separatesthe Fig.1. An ultrafast Yb-fiber laser at 1060 nm similar to fundamentalfromthesecondharmonic. Ref.[6]producingoutputinGaussian(Fig.1(a))intensity We have recorded the spatial intensity distribution of distribution (M2 <1.1) is used as the pump source. The thepumpbeamandfrequency-doubledgreenbeamusinga laseroutputhastemporalandspectralwidthof260fsand CCD-basedbeamprofiler(SP-620U,Ophir)atdifferentpo- 15nmrespectivelyatarepetitionrateof78MHz.Thein- sitionalongthepropagationdirectionwiththeresultsshown putpowertothenonlinearcrystaliscontrolledusingahalf inFig.2.Firstcolumn,(a)-(c)ofFig.2showstheintensity waveplate(λ/2)andpolarizingbeamsplittercube(PBS1). profileofthepumpvorticesoforder,l =1,3and6respec- p Usingonlytwospiralphaseplates,SPP1andSPP2,ofwind- tivelymeasuredbeforetheaxicon.Asexpected,theannular ingnumbers1and2respectivelyandavortex doubler[6] ringradiusofthevorticesinthefirstcolumnincreaseswith comprisingofPBS2,quarterwaveplate(λ/4)andaplane theorder.Theaxiconconvertsthevortices(LGbeams)into mirror(M)withhighreflectancefor1060nm,wehavegen- BGbeamsofsameorder,however,theBGbeamsmaintain erated optical vortices of order l =1−6. The intensity itsstructureoveradistance,z =w /(n−1)α,where p max LG profileofthegeneratedvortexbeam(l =2)isgiveninFig. w isthebeamradiusoftheLGbeambeforetheaxicon p LG 1(b).Theantireflection(AR)coatedaxiconofapexangle andnandα aretherefractiveindexandbaseangleofthe ∼178◦, converts vortex beam (LG beam) into BG beam axicon respectively. In our experiment, the z for input max (seeFig.1(c))ofsameorder.Aplano-convexlens,L1,of vortexorderl =1ismeasuredtobe16cm.Thesizeofthe p focallength, f =25mmFouriertransformstheBGbeam BGbeamoforder1,3and6asshowninsecondcolumn 1 intoperfectvortices.Theimagingsystemcomprisingtwo ofFig.2(d)-(f)respectively,measuredatadistancez /2 max plano-convexlensesL2andL3withfocallengths f =200 fromtheaxicon,increaseswiththeorderofinputLGbeam. 2 mmand f =50mmrespectively,imagestheperfectvortex Dependingupontheorderoftheinputvortices,theFourier 3 Copyrightlinewillbeprovidedbythepublisher 3 Figure2 Spatialintensitydistributionofthebeamsrecordedat differentpositionsalongbeampropagation.(a-c)normalvortex pumpbeamsoforders1,3and6recordedbeforetheaxicon, corresponding(d-f)Bessel-Gaussbeamrecordedat13cmafter Figure3 Variationinringradiusoftheannularintensitydistri- theaxicon,and(g-i)perfectvorticesattheFourierplaneoflens butionofperfectvorticeswithitsorderat(a)pumpand(b)SH L1.(j-l)characteristiclobestructureofthepumpperfectvortices. wavelengths.Thesolidlinesarelinearfittotheexperimentaldata. (m-o)farfieldintensitydistributionoftheSHperfectvorticesof orders2,6and12and(p-r)correspondinglobestructures. icalconstraininaccessingtheseperfectvorticesandalso transforminglensL1isplacedatadistanceof∼15.5cm to tighly focus the perfect vortices for efficient nonlinear from the axicon produces perfect vortices at the Fourier interaction,wehaveimagedthepumpperfectvorticesusing plane.Thethirdcolumn,(g)-(i)ofFig.2,showstheannular lensesL2andL3in2f2−2f3configuration(magnification intensitydistributionoftheperfectvorticesofordersl =1, factorof0.25)atthecrystalplanesituatedatadistance500 p 3and6respectivelymeasuredatthecrystalplane.Fromthe mm away from the Fourier plane of lens L1. As evident intensityprofilesofthirdcolumn,itisevidentthattheannu- from the Fig. 3 (a), the pump perfect vortices have annu- larringradiusoftheperfectvorticesareindependenttotheir larringradiusofρrp=166±6 µmfororders,lp=1−6. order.Giventheintensitydistributionoftheperfectvortices, Theerrorintheringradiusiscomparabletothepixelsize itisdifficulttouseinterferometrictechniquetodetermine (4.46µm)oftheCCDcamerausedtorecordthevortices. itstopologicalcharge(order).Therefore,weusedtilted-lens Pumpingthenonlinearcrystalwiththeperfectvortices,the technique [13] where, the perfect vortex of order l while generatedSHbeamisimagedatthefarfield(>2maway passingthroughthetitledplano-convexlens(tiltedabout fromthecrystal)usingalensoffocallength f =750mm. y axis at an angle ∼6◦) splits into n=|l|+1 number of ThevariationofannularringradiusoftheSHvorticeswith brightlobesatthefocalplaneofthelens.Fromthenumber itsorderisshowninFig.3(b).AsevidentfromFig.3(b), ofbrightlobesasshowninfourthcolumn,(j)-(l)ofFig.2,it theSHvorticeshaveannularringradiusρsh=420±12µm r isevidentthatthepumpperfectvorticeshaveorderslp=1, fortheorders,lsh=2−12confirmingnonlineargeneration 3and6respectively.Fifthcolumn,(m)-(o)ofFig.2,rep- ofperfectvorticesatgreenwavelength.Thesmallvariation resentstheintensitydistributionofthefrequency-doubled intheradiusoftheSHvorticescanbeattributedmainlyto perfect vortices recorded at the far field (distance >2 m theexactpositioningoftheCCDcameraintheimageplane. awayfromthecrystal).Usingtilted-lenstechniquewehave FromEqn.(2)itisevidentthattheintensityoftheper- confirmedtheordersoftheSHvorticesasshowninthesixth fect vortexis independent of its order. Therefore, theSH column,(p)-(r)ofFig.2,tobe2,6and12respectively,twice efficiencywhichisproportionaltotheintensityoftheinput theorderofthepumpvortices.Suchobservationvalidates beamshouldbeconstantwiththeorderoftheinputvortcies. theangularmomentumconservationinfrequency-doubling ToverifytheorderindependentSHefficiencyoftheultra- process of perfect vortices. The independence of annular fast,highpowerperfectvortices,wepumpedthenonlinear ring radius of the second-harmonic (SH) vortices shown crystalwithperfectvorticesofpower∼2.8Wandmeasured infifthcolumn,ontheordersofthepumpvortices,proves the SH power for different vortex orders with the results nonlineargenerationofperfectvorticesatgreenwavelength. showninFig.4.Althoughthefiberlasercanproduceoutput Unlikedisintegrationofhigherordervorticesinbirefringent powerupto5W,duetolossesinthevortexdoublersetup, crystal[6],useofquasi-phase-matchingenablesgeneration thehigherordervortices(l >3)havemaximumpowerof p ofhighqualityperfectvortices(seefifthcolumnofFig.2) ∼2.8W.AsevidentfromFig.4,theperfectvorticeshave evenathigherorders. single-passSHefficiencyof∼25%forallordersl =1to p Wehavemeasuredtheannularringradiusofthepump 6.WehavealsomeasuredthevariationofSHpowerwith and SH vortices for all orders with the results shown in pumppoweroftheperfectvorticesoforders,l =1and3 p Fig.3.Theperfectvorticesatfundamentalwavelengthis withtheresultsshownintheinsetofFig.4.Forbothorders, producedattheFourierplaneofthelensL1withmeasured asevidentfromtheinsetofFig.4,theSHpowerincreases annualringradiusof∼650µm.However,toavoidmechan- linearlywiththepumppoweratsameslopeefficiencyof Copyrightlinewillbeprovidedbythepublisher 4 N.ApurvChaitanyaetal:Nonlineargenerationof“perfect”vortices Figure5 VariationofSHvortexpowerandefficiencyasfunction ofpumpvortexpower.(Inset)DependenceofSHpowerwiththe Figure4 DependenceofvortexSHefficiencywiththeorderof squareofthepumppower.Linesareguidetoeyes. thepumpvortex.(Inset)variationofSHvortexpowerwiththe pumpvortexpowerfortwodifferentorders,lp=1and3.Lines arelinearfittotheexperimentaldata. η ∼29.7%.TheSHperfectvorticeshavemaximumoutput powerof1.2Wforthepumppowerof4.4Wresultinga maximumsingle-passvortexfrequency-doublingefficiency of∼27%.Thiscanbeconsideredasthehighestsingle-pass SHGefficiencyofopticalbeamotherthanGaussianbeam. UnlikequadraticdependenceofSHpowertothepump powers, the linear increase of SH vortex power with the pump vortex power (see inset of Fig. 4), clearly indicate thesaturationeffectinthesingle-passSHefficiency.Toget furtherinsightofthesaturationeffect,wehaveinvestigated thepowerscalingcharacteristicsofthegreenperfectvortex source.Usingthepumpvortexoforderl =3withannular p ringradiusof∼166µm,wehavemeasuredtheSHpower asafunctionofpumppower.TheresultsareshowninFig. 5.AsevidentfromFig.5,atlowerpumppower(<2.8W), the SH power and efficiency show respectively quadratic Figure6 DependenceofSHpoweroncrystaltemperaturewhile andlinearlydependencetothepumppower.However,at pumpedwithperfectvortexoforderlp=1. pumppower>2.8W,theSHpowerincreaseslinearlywith thepumppowerandtheSHconversionefficiencyremains almostconstantintherangeof25-27%clearlyindicating crystalwithperfectvortex(l =3)ofpower1Wandmea- p thesaturationeffectinthevortexSHprocess.Thedeviation suredtheSHpowerwhileadjustingthecrystaltemperature ofSHpowerfromitslineardependencewiththesquareof withtheresultsshowninFig.6.AsevidentfromFig.6,the thepumppowerasshownintheinsetofFig.5,confirmsthe SHpowerincreaseswiththeincreaseofcrystaltemperature saturationeffectinthevortexSHGprocess.Suchsaturation from 50 to 200◦C with highest SH power at T =142◦C effectcanbeattributedtothehighnonlinearparametricgain and a measured temperature acceptance bandwidth (full- arisingfromhighnonlinearcoefficientandlonginteraction widthathalf-maxima,FWHM)of∆T =110◦C.Asaresult, of the MgO:CLN crystal, and also due to the high peak the power of the SH vortices is insensitive to the fluctua- poweroftheultrafastpumppulses.Whileonecanexpect tiontotheambienttemperatureandalsotheinstabilityof higher SH vortex power (>1.2 W) for pump vortices of thetemperatureovenusedtomaintainthecrystaltemper- smallerannularringradiusandorhigherpumppower>4.4 ature. Using a CCD based spectrometer and an intensity W, however, due to low damage threshold of the PPLN auto-correlatorwehavemeasuredthespectralandtemporal crystal[14]especiallyatthegreenwavelengths,wehave width (FWHM) of the SH vortex of all orders to be 1.9 observedcrystaldamageforpumppowerbeyond4.4Wand nm centered at 530 nm and 507 fs respectively resulting pumpvortexradiusbelow166µm. atime-bandwidthproductof1.02.SimilartotheRef.[6], To study the temperature dependent phase-matching here we did not observe any variation in the spectral and characteristics of the MgO:CLN crystal, we pumped the temporalwidthoftheSHvorticeswiththeorder. Copyrightlinewillbeprovidedbythepublisher 5 Inconclusion,wehaveexperimentallydemonstratedthe efficientnonlineargenerationofhighpower,higherorder, ultrafast perfect vortices at the green with output power >1.2 W and vortex order up to l =12 at single-pass sh conversionefficiencyof27%.Thisisthehighestefficiency in the single-pass SHG of any structured beam. Similar schemecanbeusedtogeneratehigherorderhighefficient vorticesatotherwavelengths. Keywords: Secondharmonicgeneration,Perfectvortex,Orbital angularmomentum,Ultrafastlaser,Visiblewavelength References [1] L.Allen,M.W.Beijersbergen,R.J.C.SpreeuwandJ.P. Woerdman,Phys.Rev.A,45,8185,(1992). [2] D.G.Grier,Nature,424,810,(2003). [3] A.Mair,A.Vaziri,G.WeihsandA.Zeilinger,Nature,412, 313,(2001). [4] C. Hnatovsky, V. G. Shvedov, W. Krolikowski and A. V. Rode,Opt.Lett.,35,3417,(2010). [5] T.F.Scott,B.A.Kowalski,A.C.Sullivan,C.N.Bowman andR.R.McLeod,Science,324,913,(2009). [6] N. Apurv Chaitanya, A. Aadhi, M. V. Jabir and G. K. Samanta,Opt.Lett.,40,2615,(2015). [7] T.Y.AizitiailiAbulikemu,R.Mamuti,K.MiyamotoandT. Omatsu,Opt.Express,23,18338,(2015). [8] T. Yusufu, Y. Tokizane, M. Yamada, K. Miyamoto and T. Omatsu,Opt.Express,20,2366,(2012). [9] S. G. Reddy, C. Permangatt, S. Prabhakar, A. Anwar, J. BanerjiandR.P.Singh,Appl.Opt.54,6690,(2015). [10] M.V.Jabir,N.ApurvChaitanya,A.Aadhi,G.K.Samanta. Submitted,Sci.Rep. [11] P.VaityandL.Rusch,Opt.Lett.,40,597,(2015). [12] T.Roger,J.J.F.Heitz,E.M.Wright,andD.Faccio,Sc.Rep., 3,3491,(2013). [13] P.Vaity,J.Banerji,andR.P.Singh,Phys.Lett.A,377,1154, (2013) [14] T. Volk, and M. Whlecke, Lithium niobate: defects, pho- torefractionandferroelectricswitching.Vol.115.Springer Science&BusinessMedia,(2008). Copyrightlinewillbeprovidedbythepublisher

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.