January12,2016 AbstractWereportonefficientnonlineargenerationofultrafast, higherorder“perfect”vorticesatthegreenwavelength.Based on Fourier transformation of the higher order Bessel-Gauss beamgeneratedthroughthecombinationofspiralphaseplate andaxiconwehavetransformedtheGaussianbeamoftheultra- fastYb-fiberlaserat1060nmintoperfectvorticesofpower4.4 Wandorderupto6.Usingsingle-passsecondharmonicgener- ation(SHG)ofsuchvorticesin5-mmlongchirpedMgO-doped, periodicallypoledcongruentLiNbO3crystalwehavegenerated perfectvorticesatgreenwavelengthwithoutputpowerof1.2W andvortexorderupto12atsingle-passconversionefficiency 6 of27%independentofitsorder.Thisisthehighestsingle-pass 1 SHGefficiencyofanyopticalbeamsotherthanGaussianbeams. 0 Unlikethedisintegrationofhigherordervorticesinbirefringent 2 crystals,here,theuseofquasi-phasematchingprocessenables n generationofhighqualityvorticesevenathigherorders.The a greenperfectvorticesofallordershavetemporalandspectral J width of 507 fs and 1.9 nm, respectively corresponding to a 1 time-bandwidthproductof1.02. 1 ] s c i Efficient nonlinear generation of high power, higher order, t p o ultrafast “perfect” vortices in green . s c i N. Apurv Chaitanya1,2,*, M. V. Jabir1, G. K. Samanta1 s y h p [ Opticalvortices,havingphasesingularities(phasedis- differentwavelengthsacrosstheelectromagneticspectrum locations)inthewavefront,carryvanishingintensityatthe inaccessibletolasers.Assuch,frequencyup-conversionof 1 singularpoint.Duetothescrew-like(helical)phasestruc- highpower,ultrafast,opticalvorticesat1.064µmhasgiven v 4 turearoundthepointofsingularity,suchbeamscarryorbital accesstohigherorderopticalvortices(l=12)inthegreenat 7 angularmomentum(OAM).Thephasedistributionofthe 0.532µm[6].Similarly,frequencydown-conversioninopti- 3 opticalvorticescanberepresentedas∼exp(ilθ),withθ as calparametricoscillatorshasproducedopticalvortexbeam 2 azimuthalangleandtheintegerl,astopologicalcharge(or- of order, l =1, with spectral tunability across 1 µm [7] 0 der).EachphotonofthebeamcarriesOAMofl(cid:125).Sincethe and 2 µm [8]. So far, the nonlinear generation of vortex . 1 discoveryofOAMassociatedwithopticalvortices[1],these beams with high power/energy has been restricted to the 0 beams have drawn a great deal of attention from various vorticesoflowerorders[6].Incaseofopticalvortices,the 6 fieldsofscienceandtechnologyincludinghighresolution beam area and divergence [9] increases linearly with the 1 microscopy[2],quantuminformation[3],materialprocess- orderofthevortices.Asaresult,thenonlinearparametric v: ing[4]andparticlemicro-manipulationandlithography[5]. gain,whichdependsontheintensityofthedrivingfields i However,themajorchallengethroughtheseapplicationsis andtheoverlappingintegraloftheinteractingbeams,and X theneedforsourcesofcoherentradiationinvortexspatial thus the conversion efficiency of the nonlinear processes r profilesatdifferenttopologicalchargesandwavelengths. decreaseswiththeorderofthevortices.Therefore,nonlin- a Theopticalvorticesaretypicallygeneratedbyspatial ear generation of higher order optical vortices especially phasemodulationofGaussianbeamsusingdifferenttypes withhighpower/energyrequiresopticalvorticeswithbeam of modulators including spatial light modulators (SLMs) areaandbeamdivergenceindependenttotheirorders.For- andspiralphaseplates(SPP).However,allofthosemodula- tunately,recentdevelopmentinthefieldofstructuredbeams torshaveitsownadvantagesanddisadvantagesintermsof providedanewclassofopticalvortexbeamsknownas“per- wavelengthcoverage,modeconversionefficiency,damage fect”vortex[10,11].Unlikevortices,theperfectvortices thresholdandpowerhandlingcapabilitiesandcost[6].On haveannularringradiusindependentofitsorders. theotherhand,nonlinearfrequencyconversiontechniques Typically,FouriertransformationoftheBessel-Gauss canbeusedtoaccesshighpower/energyopticalvorticesat (BG)beamofdifferentordersisusedtogenerateperfect 1Photonic Sciences Lab., Physical Research Laboratory, Navarangpura, Ahmedabad 380009, Gujarat, India 2Indian Institute of Technology- Gandhinagar,Ahmedabad382424,Gujarat,India *Correspondingauthor:e-mail:[email protected] Copyrightlinewillbeprovidedbythepublisher 2 N.ApurvChaitanyaetal:Nonlineargenerationof“perfect”vortices vortices [11]. However, the combination of SPP and axi- conconvertingtheGaussianbeamintoLaguerre-Gaussian (LG)beamsandBGbeamsofdifferentorders,aspresented inthecurrentreport,canbeconsideredasoneofthesim- plest schemes for generating high power perfect vortices ofdifferentorders.Thecomplexfieldamplitudeoftheex- perimentallyrealizableperfectvortexoforder,lattheback focalplane(z=0)oftheFouriertransforminglensmaybe representedinpolarcoordinatesas[11] w (cid:18) (ρ−ρ )2(cid:19) E(ρ,θ)=il−1 gexp − r exp(ilθ) (1) w w2 o o Here,w isthewaistradiusoftheGaussianbeamcon- g finingthevortexbeam.ρ = fsin(n−1)α istheradiusof r theperfectvortexring, f isthefocallengthoftheFourier transforminglens,andnandα arerespectivelytherefrac- Figure1 Schematicoftheexperimentalsetupfornonlineargen- tiveindexandbaseangleoftheaxicon.2w (w =2f/kw , erationofultrafastperfectvortices.λ/2;half-waveplate,PBS1,2; o o g theGaussianbeamwaistradiusatthefocus)istheannular polarizingbeamsplittercube,SPP1,2;spiralphaseplates,λ/4; widthoftheperfectvortex.k=2π/λ isthewavevectorof quater-waveplate,L1-3;lens,M;mirrors,C;MgO:CLNcrystalfor thebeamofwavelengthλ infreespace.UsingEqn.(1),we frequency-doubling,S;Dichroicmirror;PM,Powermeter.(a-d) canwritetheintensityoftheperfectvortexas, Spatialintensityprofileofthebeamsrecordedatdifferentposi- tionsalongthepropagationdirection. (cid:18)w (cid:19)2 (cid:18) (ρ−ρ )2(cid:19) g r I(ρ,θ)= exp −2 (2) w w2 (see Fig. 1(d)) at the centre of the nonlinear crystal to a o o measuredbeamradiusof∼166µm.A5-mm-longand2 As evident from the Eqn. (2), the intensity of the perfect x1mm2 inaperture,MgO-doped,periodicallypoledcon- vortexisindependentofitsorder.Therefore,onecanexpect gruentLiNbO (MgO:CLN)crystal(C)withlinearchirped 3 thenonlinearfrequencyconversionefficiencyofsuchper- gratingperiodof6.61-6.91µmisusedforsecondharmonic fectvorticestobeindependentoftheirorders[12].Using generation (SHG) of the pump vortex beam. The crystal such perfect vortices, here, we report, for the best of our hasspectralacceptancebandwidthof15nmtocoverentire knowledge,thefirstexperimentaldemonstrationofnonlin- pumpspectrumandphase-matchingtemperatureof130◦C eargenerationofperfectvorticesofpower>1.2Watgreen to avoid any detrimental photorefractive effect. Both the withconversionefficiencyashighas27%andtopological facesofthecrystalisARcoatedfor530and1060nm.The charge(order)ashighas12.Wehavealsoexperimentally crystalishousedinanovenwhosetemperaturecanbevar- verifiedthatathighpowerregime,theconversionefficiency iedupto200◦Cinstepsof0.1◦C.Aλ/2isplacedbefore ofperfectvorticesisindependenttoitsorder. theaxicontoadjustthepolarizationoftheinputbeamto Theschematicoftheexperimentalsetupisshownin thenonlinearcrystal.Thedichroicmirror,S,separatesthe Fig.1. An ultrafast Yb-fiber laser at 1060 nm similar to fundamentalfromthesecondharmonic. Ref.[6]producingoutputinGaussian(Fig.1(a))intensity We have recorded the spatial intensity distribution of distribution (M2 <1.1) is used as the pump source. The thepumpbeamandfrequency-doubledgreenbeamusinga laseroutputhastemporalandspectralwidthof260fsand CCD-basedbeamprofiler(SP-620U,Ophir)atdifferentpo- 15nmrespectivelyatarepetitionrateof78MHz.Thein- sitionalongthepropagationdirectionwiththeresultsshown putpowertothenonlinearcrystaliscontrolledusingahalf inFig.2.Firstcolumn,(a)-(c)ofFig.2showstheintensity waveplate(λ/2)andpolarizingbeamsplittercube(PBS1). profileofthepumpvorticesoforder,l =1,3and6respec- p Usingonlytwospiralphaseplates,SPP1andSPP2,ofwind- tivelymeasuredbeforetheaxicon.Asexpected,theannular ingnumbers1and2respectivelyandavortex doubler[6] ringradiusofthevorticesinthefirstcolumnincreaseswith comprisingofPBS2,quarterwaveplate(λ/4)andaplane theorder.Theaxiconconvertsthevortices(LGbeams)into mirror(M)withhighreflectancefor1060nm,wehavegen- BGbeamsofsameorder,however,theBGbeamsmaintain erated optical vortices of order l =1−6. The intensity itsstructureoveradistance,z =w /(n−1)α,where p max LG profileofthegeneratedvortexbeam(l =2)isgiveninFig. w isthebeamradiusoftheLGbeambeforetheaxicon p LG 1(b).Theantireflection(AR)coatedaxiconofapexangle andnandα aretherefractiveindexandbaseangleofthe ∼178◦, converts vortex beam (LG beam) into BG beam axicon respectively. In our experiment, the z for input max (seeFig.1(c))ofsameorder.Aplano-convexlens,L1,of vortexorderl =1ismeasuredtobe16cm.Thesizeofthe p focallength, f =25mmFouriertransformstheBGbeam BGbeamoforder1,3and6asshowninsecondcolumn 1 intoperfectvortices.Theimagingsystemcomprisingtwo ofFig.2(d)-(f)respectively,measuredatadistancez /2 max plano-convexlensesL2andL3withfocallengths f =200 fromtheaxicon,increaseswiththeorderofinputLGbeam. 2 mmand f =50mmrespectively,imagestheperfectvortex Dependingupontheorderoftheinputvortices,theFourier 3 Copyrightlinewillbeprovidedbythepublisher 3 Figure2 Spatialintensitydistributionofthebeamsrecordedat differentpositionsalongbeampropagation.(a-c)normalvortex pumpbeamsoforders1,3and6recordedbeforetheaxicon, corresponding(d-f)Bessel-Gaussbeamrecordedat13cmafter Figure3 Variationinringradiusoftheannularintensitydistri- theaxicon,and(g-i)perfectvorticesattheFourierplaneoflens butionofperfectvorticeswithitsorderat(a)pumpand(b)SH L1.(j-l)characteristiclobestructureofthepumpperfectvortices. wavelengths.Thesolidlinesarelinearfittotheexperimentaldata. (m-o)farfieldintensitydistributionoftheSHperfectvorticesof orders2,6and12and(p-r)correspondinglobestructures. icalconstraininaccessingtheseperfectvorticesandalso transforminglensL1isplacedatadistanceof∼15.5cm to tighly focus the perfect vortices for efficient nonlinear from the axicon produces perfect vortices at the Fourier interaction,wehaveimagedthepumpperfectvorticesusing plane.Thethirdcolumn,(g)-(i)ofFig.2,showstheannular lensesL2andL3in2f2−2f3configuration(magnification intensitydistributionoftheperfectvorticesofordersl =1, factorof0.25)atthecrystalplanesituatedatadistance500 p 3and6respectivelymeasuredatthecrystalplane.Fromthe mm away from the Fourier plane of lens L1. As evident intensityprofilesofthirdcolumn,itisevidentthattheannu- from the Fig. 3 (a), the pump perfect vortices have annu- larringradiusoftheperfectvorticesareindependenttotheir larringradiusofρrp=166±6 µmfororders,lp=1−6. order.Giventheintensitydistributionoftheperfectvortices, Theerrorintheringradiusiscomparabletothepixelsize itisdifficulttouseinterferometrictechniquetodetermine (4.46µm)oftheCCDcamerausedtorecordthevortices. itstopologicalcharge(order).Therefore,weusedtilted-lens Pumpingthenonlinearcrystalwiththeperfectvortices,the technique [13] where, the perfect vortex of order l while generatedSHbeamisimagedatthefarfield(>2maway passingthroughthetitledplano-convexlens(tiltedabout fromthecrystal)usingalensoffocallength f =750mm. y axis at an angle ∼6◦) splits into n=|l|+1 number of ThevariationofannularringradiusoftheSHvorticeswith brightlobesatthefocalplaneofthelens.Fromthenumber itsorderisshowninFig.3(b).AsevidentfromFig.3(b), ofbrightlobesasshowninfourthcolumn,(j)-(l)ofFig.2,it theSHvorticeshaveannularringradiusρsh=420±12µm r isevidentthatthepumpperfectvorticeshaveorderslp=1, fortheorders,lsh=2−12confirmingnonlineargeneration 3and6respectively.Fifthcolumn,(m)-(o)ofFig.2,rep- ofperfectvorticesatgreenwavelength.Thesmallvariation resentstheintensitydistributionofthefrequency-doubled intheradiusoftheSHvorticescanbeattributedmainlyto perfect vortices recorded at the far field (distance >2 m theexactpositioningoftheCCDcameraintheimageplane. awayfromthecrystal).Usingtilted-lenstechniquewehave FromEqn.(2)itisevidentthattheintensityoftheper- confirmedtheordersoftheSHvorticesasshowninthesixth fect vortexis independent of its order. Therefore, theSH column,(p)-(r)ofFig.2,tobe2,6and12respectively,twice efficiencywhichisproportionaltotheintensityoftheinput theorderofthepumpvortices.Suchobservationvalidates beamshouldbeconstantwiththeorderoftheinputvortcies. theangularmomentumconservationinfrequency-doubling ToverifytheorderindependentSHefficiencyoftheultra- process of perfect vortices. The independence of annular fast,highpowerperfectvortices,wepumpedthenonlinear ring radius of the second-harmonic (SH) vortices shown crystalwithperfectvorticesofpower∼2.8Wandmeasured infifthcolumn,ontheordersofthepumpvortices,proves the SH power for different vortex orders with the results nonlineargenerationofperfectvorticesatgreenwavelength. showninFig.4.Althoughthefiberlasercanproduceoutput Unlikedisintegrationofhigherordervorticesinbirefringent powerupto5W,duetolossesinthevortexdoublersetup, crystal[6],useofquasi-phase-matchingenablesgeneration thehigherordervortices(l >3)havemaximumpowerof p ofhighqualityperfectvortices(seefifthcolumnofFig.2) ∼2.8W.AsevidentfromFig.4,theperfectvorticeshave evenathigherorders. single-passSHefficiencyof∼25%forallordersl =1to p Wehavemeasuredtheannularringradiusofthepump 6.WehavealsomeasuredthevariationofSHpowerwith and SH vortices for all orders with the results shown in pumppoweroftheperfectvorticesoforders,l =1and3 p Fig.3.Theperfectvorticesatfundamentalwavelengthis withtheresultsshownintheinsetofFig.4.Forbothorders, producedattheFourierplaneofthelensL1withmeasured asevidentfromtheinsetofFig.4,theSHpowerincreases annualringradiusof∼650µm.However,toavoidmechan- linearlywiththepumppoweratsameslopeefficiencyof Copyrightlinewillbeprovidedbythepublisher 4 N.ApurvChaitanyaetal:Nonlineargenerationof“perfect”vortices Figure5 VariationofSHvortexpowerandefficiencyasfunction ofpumpvortexpower.(Inset)DependenceofSHpowerwiththe Figure4 DependenceofvortexSHefficiencywiththeorderof squareofthepumppower.Linesareguidetoeyes. thepumpvortex.(Inset)variationofSHvortexpowerwiththe pumpvortexpowerfortwodifferentorders,lp=1and3.Lines arelinearfittotheexperimentaldata. η ∼29.7%.TheSHperfectvorticeshavemaximumoutput powerof1.2Wforthepumppowerof4.4Wresultinga maximumsingle-passvortexfrequency-doublingefficiency of∼27%.Thiscanbeconsideredasthehighestsingle-pass SHGefficiencyofopticalbeamotherthanGaussianbeam. UnlikequadraticdependenceofSHpowertothepump powers, the linear increase of SH vortex power with the pump vortex power (see inset of Fig. 4), clearly indicate thesaturationeffectinthesingle-passSHefficiency.Toget furtherinsightofthesaturationeffect,wehaveinvestigated thepowerscalingcharacteristicsofthegreenperfectvortex source.Usingthepumpvortexoforderl =3withannular p ringradiusof∼166µm,wehavemeasuredtheSHpower asafunctionofpumppower.TheresultsareshowninFig. 5.AsevidentfromFig.5,atlowerpumppower(<2.8W), the SH power and efficiency show respectively quadratic Figure6 DependenceofSHpoweroncrystaltemperaturewhile andlinearlydependencetothepumppower.However,at pumpedwithperfectvortexoforderlp=1. pumppower>2.8W,theSHpowerincreaseslinearlywith thepumppowerandtheSHconversionefficiencyremains almostconstantintherangeof25-27%clearlyindicating crystalwithperfectvortex(l =3)ofpower1Wandmea- p thesaturationeffectinthevortexSHprocess.Thedeviation suredtheSHpowerwhileadjustingthecrystaltemperature ofSHpowerfromitslineardependencewiththesquareof withtheresultsshowninFig.6.AsevidentfromFig.6,the thepumppowerasshownintheinsetofFig.5,confirmsthe SHpowerincreaseswiththeincreaseofcrystaltemperature saturationeffectinthevortexSHGprocess.Suchsaturation from 50 to 200◦C with highest SH power at T =142◦C effectcanbeattributedtothehighnonlinearparametricgain and a measured temperature acceptance bandwidth (full- arisingfromhighnonlinearcoefficientandlonginteraction widthathalf-maxima,FWHM)of∆T =110◦C.Asaresult, of the MgO:CLN crystal, and also due to the high peak the power of the SH vortices is insensitive to the fluctua- poweroftheultrafastpumppulses.Whileonecanexpect tiontotheambienttemperatureandalsotheinstabilityof higher SH vortex power (>1.2 W) for pump vortices of thetemperatureovenusedtomaintainthecrystaltemper- smallerannularringradiusandorhigherpumppower>4.4 ature. Using a CCD based spectrometer and an intensity W, however, due to low damage threshold of the PPLN auto-correlatorwehavemeasuredthespectralandtemporal crystal[14]especiallyatthegreenwavelengths,wehave width (FWHM) of the SH vortex of all orders to be 1.9 observedcrystaldamageforpumppowerbeyond4.4Wand nm centered at 530 nm and 507 fs respectively resulting pumpvortexradiusbelow166µm. atime-bandwidthproductof1.02.SimilartotheRef.[6], To study the temperature dependent phase-matching here we did not observe any variation in the spectral and characteristics of the MgO:CLN crystal, we pumped the temporalwidthoftheSHvorticeswiththeorder. Copyrightlinewillbeprovidedbythepublisher 5 Inconclusion,wehaveexperimentallydemonstratedthe efficientnonlineargenerationofhighpower,higherorder, ultrafast perfect vortices at the green with output power >1.2 W and vortex order up to l =12 at single-pass sh conversionefficiencyof27%.Thisisthehighestefficiency in the single-pass SHG of any structured beam. Similar schemecanbeusedtogeneratehigherorderhighefficient vorticesatotherwavelengths. Keywords: Secondharmonicgeneration,Perfectvortex,Orbital angularmomentum,Ultrafastlaser,Visiblewavelength References [1] L.Allen,M.W.Beijersbergen,R.J.C.SpreeuwandJ.P. Woerdman,Phys.Rev.A,45,8185,(1992). [2] D.G.Grier,Nature,424,810,(2003). [3] A.Mair,A.Vaziri,G.WeihsandA.Zeilinger,Nature,412, 313,(2001). [4] C. Hnatovsky, V. G. Shvedov, W. Krolikowski and A. V. Rode,Opt.Lett.,35,3417,(2010). [5] T.F.Scott,B.A.Kowalski,A.C.Sullivan,C.N.Bowman andR.R.McLeod,Science,324,913,(2009). [6] N. Apurv Chaitanya, A. Aadhi, M. V. Jabir and G. K. Samanta,Opt.Lett.,40,2615,(2015). [7] T.Y.AizitiailiAbulikemu,R.Mamuti,K.MiyamotoandT. Omatsu,Opt.Express,23,18338,(2015). [8] T. Yusufu, Y. Tokizane, M. Yamada, K. Miyamoto and T. Omatsu,Opt.Express,20,2366,(2012). [9] S. G. Reddy, C. Permangatt, S. Prabhakar, A. Anwar, J. BanerjiandR.P.Singh,Appl.Opt.54,6690,(2015). [10] M.V.Jabir,N.ApurvChaitanya,A.Aadhi,G.K.Samanta. Submitted,Sci.Rep. [11] P.VaityandL.Rusch,Opt.Lett.,40,597,(2015). [12] T.Roger,J.J.F.Heitz,E.M.Wright,andD.Faccio,Sc.Rep., 3,3491,(2013). [13] P.Vaity,J.Banerji,andR.P.Singh,Phys.Lett.A,377,1154, (2013) [14] T. Volk, and M. Whlecke, Lithium niobate: defects, pho- torefractionandferroelectricswitching.Vol.115.Springer Science&BusinessMedia,(2008). Copyrightlinewillbeprovidedbythepublisher