Purdue University Purdue e-Pubs ECE Technical Reports Electrical and Computer Engineering 5-1-1994 Efficient Beamspace Eigen-Based Direction of Arrival Estimation schemes Gregory M. Kautz Purdue University School of Electrical Engineering Michael D. Zoltowski Purdue University School of Electrical Engineering Follow this and additional works at:http://docs.lib.purdue.edu/ecetr Kautz, Gregory M. and Zoltowski, Michael D., "Efficient Beamspace Eigen-Based Direction of Arrival Estimation schemes" (1994). ECE Technical Reports.Paper 184. http://docs.lib.purdue.edu/ecetr/184 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. TR-EE 94-15 MAY 1994 Efficient Beamspace Eigen-Based Direction of Arrival Estimation schemes1 Gregory M. Kautz and Michael D. Zoltowski School of Electrical Engineering 1285 Electrical Engineering Building Purdue University West Lafayette, IN 47907-1285 'This work was supported by the National Science Foundation under grant no. MIP- 9320890 and by AFOSR under contract no. F49620-92-J-0198 in conjunction with Wright Laboratories. TABLE OF CONTENTS Page LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix . 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 2 DEVELOPMENT OF BEAMSPACE ROOT-MUSIC . . . . . . . . 5 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 The Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 DFT Based Beamspace Root-MUSIC With Reduced Degree Polynomia.1 8 Previous Bea.mforming Methods t.o Achieve Reduced Degree Polynomial 19 Real Covariance Matrix Processing in Beamspace . . . . . . . . . . . 22 VirtualTapering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.6.1 The Cosine Window . . . . . . . . . . . . . . . . . . . . . . . 28 2.6.2 The Hanning and Haillining Windows . . . . . . . . . . . . . . 31 Constructioil of Interference Cancellation Matrix Beamformer . . . . 34 Computer Experiments/Simulations . . . . . . . . . . . . . . . . . . . 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Summary 51 . 3 PERFORMANCE ANALYSIS OF BEAMSPACE ROOT-MUSIC EMPLOYING CONJUGATE SYMMETRIC BEAMFORMERS . 53 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2 Performance Analysis of Real Co~rarianceB eamspace hlUSIC . . . . . 54 3.2.1 Stat.i stics of the Signal Sl~bspaceE igenvalues and Eigenvectors 55 3.2.2 hilean and Variance of the Spect.r al h4USIC Angle Estimate . . 57 3.3 Observations of the Theosetical Variance Equations . . . . . . . . . . 61 3.4 Validation of the Theoretical Expressions . . . . . . . . . . . . . . . . 64 3.5 Merit of Employing Tapered Bealnformers . . . . . . . . . . . . . . . 72 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 . 4 BEAMSPACE DOA ESTIMATION FEATURING MU'LTIRATE EIGENVECTOR PROCESSING . . . . . . . . . . . . . . . . . . . . 79 Page 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Development of DOA Estimators Featuring Multirate Eigenvector Pro- cessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.1 Multirate Noise Eigenvector Processing . . . . . . . . . . . . . 4.2.2 Incorporation of Filter Deconvolution . . . . . . . . . . . . . . 4.2.3 Root-MUSIC Incorporating Multirate Eigenvector Processing 4.2.4 TLS-ESPRIT Incorporating Mult irate Eigenvector Processing 4.3 Theoretical Performance Analysis . . . . . . . . . . . . . . . . . . . . 4.3.1 Performance Analysis of Root-MUSIC Formulation . . . . . . 4.3.2 Performance Analysis of ESPRIT Formulation . . . . . . . . . 4.4 Computer Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . 123 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 APPENDICES Appendix A: Simple Expression for Q ~ .' . . . . . . . . . . . . . . . . . 129 Appendix B: Simple Expression for DSFT of Coefficient Vector for Com- mon Roots Polynomial . . . . . . . . . . . . . . . . . . . . . 133 Appendix C: On the Distribution of the Real Part of the Beamspace Sam- ple Covariance Matrix in the Case of Uncorrelated Gaussian Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Appendix D: Derivation of the Asymptotic Distribution of the Signal Sub- space Eigenvalues/Eigenvectors . . . . . . . . . . . . . . . . 137 Appendix E: Asymptotic Variance of ESPRIT Formulation . . . . . . . . 143 LIST OF FIGURES Figure Page 2.1 (a) Nb= 8 unweighted spatial DFT beams for N=32 element ULA; beams encompass the null-to-null subband -10/N < u < SIN. (~b)R oots of beamspace Root-hlUSIC polynomia.1 in no source case. . . . . . . . . . . 18 2.2 (a) Six equi-spaced beams forined via virtual Hamming tapering. (b) Orthogonalized set of beams derived from t,hose in (a). . . . . . . . . . . 33 2.3 (a) "Adapted" beams derived from those in Figure 2.1 (a) via interference cancellation matrix beamformiilg method. Ea.ch beam exhibits a null in each of the two interference locations. (11) Seven beams derived from those in (a); each beam is the sum of a.n a.dja.cent pair of beams. . . . . . . . . 39 2.4 Beamspace Root-MUSIC vs. Element-space Root-MUSIC for beam set of Figure 1. (a) Bea.mspace Root-R'IUSIC. (11) Element-spa.ce Root-MUSIC 46 2.5 Empirical probability of resolution versus SNR curves: Beamspace Root- MUSIC versus beamspace spectral AllTSIC with two equi-powered and uncorrelated in-band sources locatcrl at - 1 /(2N) and 1/(2N). Nb = 4 out of the eight beains displayed in Figure 2.l(a). . . . . . . . . . . . . . 47 2.6 Beamspa.ce Root-MUSIC versus 11ea.mspace spectral MUSIC. Same sce- nario as that in Figure 2.5 except SNR = OdB. (a) Root scatter plot obtained from five independent rllns. (13) Corresponding beamspace spec- tra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.7 Performance of beamspace Root-hlUSIC as a functioll of position of two uncorrelated half-Rayleigh sources (SNR = 6dB) within the subband -10/N < IL < 8/N. ATb = S beams generated with weigl~l~inagp plied to the set shown in Figure 2.l(a). Statistics for the "left" source com- puted from 250 runs. (a) Sample bias. (11) Sample standard deviation. . 49 Figure Page 2.8 Beamspace Root-MUSIC scatter plots associated with the use of the rect- angular and Hamming-weighted beam sets of Figures 2.1 (a) and (b). 'Two 6dB uncorrelated sources were located a.t 0 a.nd 1/N while an 18dB out- of-band source was positioned a.t -17/AT. The roots in 250 trial runs .were computed assuming only 2 signals present. (a,) no (rectangular) tapering, (b) Hamming taper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.1 Real vs. complex processing: standard devia.tion a,s f~~nctioonf phase difference between two correlated sig11a.l~. . . . . . . . . . . . . . . . . . 68 3.2 Real vs. complex processing: bias a.s function of phase difference between two correlated signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3 Real vs. complex processing: standarc1 clcviat,ion as function of sna.pshots for two uncorrelated signals. . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4 Real vs. complex processing: bia.s a.s function of sna,pshots for two uncor- related signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.5 Real vs. complex processing: standa,rd deviation as function of SNIt for two uncorrelatecl signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.6 Real vs. complex processing: bias a.s fuuct.ion of SNR for t,wo uncorrela.ted signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.7 Real vs. complex processing: probability of resolution a.s function of SNR for two uncorrelatecl signals. . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.8 Candida.te beamforming a.rchitectures for sector-based processing. . . . . 76 3.9 Theoretical bias of left signal estiina,te for various bea.mforming prepro- cessors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.10 Theoretical std. clev. of left signal (.stinrat(> fot \.arious bearnforming preprocessors.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.1 Condition number versus number of spa.tia.1 DFT beams, ATb, for an N = 128 sensor army. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Figure Page 4.2 Spectrum of a transformed noise eigenvector derived from the decomposi- tion of the ideal heamspace covariance associated with an N =: 128 sensor ULA operated on by a Nb = S cli~r~ensiosnp atial DFT beamformer cen- tered in space at 25/N. Two in-band signals were located at 10.6' and 11.5' and one out-of-band source was located at sin O = 69/N. . . . . . . 85 4.3 Angular responses of Nb = 8 successive DFT beanforming vectors. Beam- forming sector centered at at sin0 = 25/N. . . . . . . . . . . . . . . . . 86 4.4 hlUSIC null spectrum after modulation to baseband and filter response associated with the L = 12s lengtll Hamming-weighted LPF. . . . . . . . 91 4.5 MUSIC null spectrum a.fter Halnining-winclo~vI msed ba.ndpass filtering. . 92 4.6 MUSIC null spectrum after cleci~r~a.tio1n1 f~a~ct or of 12S/S = 16. . . . . . 93 4.7 Roots using tra.nsformed-modulated-filterecl-decimatedn oise eigenvectors for both the Z and (deconvol\:c:cl) Z1 transformations. Quiescent root locations coinputed with the use of t11e ideal heamspace covariance. True signal locations: 10.6" and 11.5". . . . . . . . . . . . . . . . . . . . . . . 101 4.8 Spatial responses of an L = 270 lcngth eq~~i-rippflielt er and interpolated Nb = 6 beam set derived from an N = 90 sensor array. The spatial foldover frequency for the suh-lna~mi a1 cl(.(-imat ior1 architecture is located at sin 0 = (1/4)(8/N). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.9 Decimated filter/bea.mformer spectra a.ssocia.tetl with the filter/beam set of Figure 4.S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.10 MUSIC spectra associated with ideal white-noise heamspact: covariance with the use of the Z and Z1 tra.nsformations derived froin the: bea.mform- ing/filter architecture of Figure 4.8. . . . . . . . . . . . . . . . . . . . . . 1 04 4.11 Experiment 1: Empirical and tlleorctical left signal sta~ldadi deviation versus spatial position of a 10~113h, alf-Rayleigh spaced signal set. Central position of signal set varied from mid-l,a11c1 to 6/N. The Nb = 8 spatial DFT beams were formed on an !I=r 128 sensor UT,A. . . . . . . . . . . . 117 4.12 Experiment 2: Left signa.1 stanclal-tl cleviation versus source SNR for the two in-ba.nd signal, :I:=, S, beam esample scenario depicted in Figure 4.3. 118 Figure Page 4.13 Experiment 3: Location bias versus source SNR, for an Arb = 6 beam pre- processor (un-weighted DFT or Ta.ylor-weighted beamformers) operating on an N = 36 sensor ULA. The mea,n angle estimate for a signal located at lo was computed over 600 trials. . . . . . . . . . . . . . . . . . . . . . 119 4.14 Experiment 4: TLS-ESPRIT left signal standarc1 deviation versus source SNR for the two signal example of Figure 4.12. . . . . . . . . . . . . . . 120 4.15 Experiment 4: Quiescent locations of the TLS-ESPRIT eigenvalues asso- ciated with the decomposition of the ideal beamspace covariance input. . 121
Description: