ebook img

Efficient Beamspace Eigen-Based Direction of Arrival Estimation schemes PDF

157 Pages·2013·3.84 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Efficient Beamspace Eigen-Based Direction of Arrival Estimation schemes

Purdue University Purdue e-Pubs ECE Technical Reports Electrical and Computer Engineering 5-1-1994 Efficient Beamspace Eigen-Based Direction of Arrival Estimation schemes Gregory M. Kautz Purdue University School of Electrical Engineering Michael D. Zoltowski Purdue University School of Electrical Engineering Follow this and additional works at:http://docs.lib.purdue.edu/ecetr Kautz, Gregory M. and Zoltowski, Michael D., "Efficient Beamspace Eigen-Based Direction of Arrival Estimation schemes" (1994). ECE Technical Reports.Paper 184. http://docs.lib.purdue.edu/ecetr/184 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. TR-EE 94-15 MAY 1994 Efficient Beamspace Eigen-Based Direction of Arrival Estimation schemes1 Gregory M. Kautz and Michael D. Zoltowski School of Electrical Engineering 1285 Electrical Engineering Building Purdue University West Lafayette, IN 47907-1285 'This work was supported by the National Science Foundation under grant no. MIP- 9320890 and by AFOSR under contract no. F49620-92-J-0198 in conjunction with Wright Laboratories. TABLE OF CONTENTS Page LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix . 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 2 DEVELOPMENT OF BEAMSPACE ROOT-MUSIC . . . . . . . . 5 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 The Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 DFT Based Beamspace Root-MUSIC With Reduced Degree Polynomia.1 8 Previous Bea.mforming Methods t.o Achieve Reduced Degree Polynomial 19 Real Covariance Matrix Processing in Beamspace . . . . . . . . . . . 22 VirtualTapering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.6.1 The Cosine Window . . . . . . . . . . . . . . . . . . . . . . . 28 2.6.2 The Hanning and Haillining Windows . . . . . . . . . . . . . . 31 Constructioil of Interference Cancellation Matrix Beamformer . . . . 34 Computer Experiments/Simulations . . . . . . . . . . . . . . . . . . . 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Summary 51 . 3 PERFORMANCE ANALYSIS OF BEAMSPACE ROOT-MUSIC EMPLOYING CONJUGATE SYMMETRIC BEAMFORMERS . 53 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2 Performance Analysis of Real Co~rarianceB eamspace hlUSIC . . . . . 54 3.2.1 Stat.i stics of the Signal Sl~bspaceE igenvalues and Eigenvectors 55 3.2.2 hilean and Variance of the Spect.r al h4USIC Angle Estimate . . 57 3.3 Observations of the Theosetical Variance Equations . . . . . . . . . . 61 3.4 Validation of the Theoretical Expressions . . . . . . . . . . . . . . . . 64 3.5 Merit of Employing Tapered Bealnformers . . . . . . . . . . . . . . . 72 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 . 4 BEAMSPACE DOA ESTIMATION FEATURING MU'LTIRATE EIGENVECTOR PROCESSING . . . . . . . . . . . . . . . . . . . . 79 Page 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Development of DOA Estimators Featuring Multirate Eigenvector Pro- cessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.1 Multirate Noise Eigenvector Processing . . . . . . . . . . . . . 4.2.2 Incorporation of Filter Deconvolution . . . . . . . . . . . . . . 4.2.3 Root-MUSIC Incorporating Multirate Eigenvector Processing 4.2.4 TLS-ESPRIT Incorporating Mult irate Eigenvector Processing 4.3 Theoretical Performance Analysis . . . . . . . . . . . . . . . . . . . . 4.3.1 Performance Analysis of Root-MUSIC Formulation . . . . . . 4.3.2 Performance Analysis of ESPRIT Formulation . . . . . . . . . 4.4 Computer Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . 123 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 APPENDICES Appendix A: Simple Expression for Q ~ .' . . . . . . . . . . . . . . . . . 129 Appendix B: Simple Expression for DSFT of Coefficient Vector for Com- mon Roots Polynomial . . . . . . . . . . . . . . . . . . . . . 133 Appendix C: On the Distribution of the Real Part of the Beamspace Sam- ple Covariance Matrix in the Case of Uncorrelated Gaussian Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Appendix D: Derivation of the Asymptotic Distribution of the Signal Sub- space Eigenvalues/Eigenvectors . . . . . . . . . . . . . . . . 137 Appendix E: Asymptotic Variance of ESPRIT Formulation . . . . . . . . 143 LIST OF FIGURES Figure Page 2.1 (a) Nb= 8 unweighted spatial DFT beams for N=32 element ULA; beams encompass the null-to-null subband -10/N < u < SIN. (~b)R oots of beamspace Root-hlUSIC polynomia.1 in no source case. . . . . . . . . . . 18 2.2 (a) Six equi-spaced beams forined via virtual Hamming tapering. (b) Orthogonalized set of beams derived from t,hose in (a). . . . . . . . . . . 33 2.3 (a) "Adapted" beams derived from those in Figure 2.1 (a) via interference cancellation matrix beamformiilg method. Ea.ch beam exhibits a null in each of the two interference locations. (11) Seven beams derived from those in (a); each beam is the sum of a.n a.dja.cent pair of beams. . . . . . . . . 39 2.4 Beamspace Root-MUSIC vs. Element-space Root-MUSIC for beam set of Figure 1. (a) Bea.mspace Root-R'IUSIC. (11) Element-spa.ce Root-MUSIC 46 2.5 Empirical probability of resolution versus SNR curves: Beamspace Root- MUSIC versus beamspace spectral AllTSIC with two equi-powered and uncorrelated in-band sources locatcrl at - 1 /(2N) and 1/(2N). Nb = 4 out of the eight beains displayed in Figure 2.l(a). . . . . . . . . . . . . . 47 2.6 Beamspa.ce Root-MUSIC versus 11ea.mspace spectral MUSIC. Same sce- nario as that in Figure 2.5 except SNR = OdB. (a) Root scatter plot obtained from five independent rllns. (13) Corresponding beamspace spec- tra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.7 Performance of beamspace Root-hlUSIC as a functioll of position of two uncorrelated half-Rayleigh sources (SNR = 6dB) within the subband -10/N < IL < 8/N. ATb = S beams generated with weigl~l~inagp plied to the set shown in Figure 2.l(a). Statistics for the "left" source com- puted from 250 runs. (a) Sample bias. (11) Sample standard deviation. . 49 Figure Page 2.8 Beamspace Root-MUSIC scatter plots associated with the use of the rect- angular and Hamming-weighted beam sets of Figures 2.1 (a) and (b). 'Two 6dB uncorrelated sources were located a.t 0 a.nd 1/N while an 18dB out- of-band source was positioned a.t -17/AT. The roots in 250 trial runs .were computed assuming only 2 signals present. (a,) no (rectangular) tapering, (b) Hamming taper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.1 Real vs. complex processing: standard devia.tion a,s f~~nctioonf phase difference between two correlated sig11a.l~. . . . . . . . . . . . . . . . . . 68 3.2 Real vs. complex processing: bias a.s function of phase difference between two correlated signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3 Real vs. complex processing: standarc1 clcviat,ion as function of sna.pshots for two uncorrelated signals. . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4 Real vs. complex processing: bia.s a.s function of sna,pshots for two uncor- related signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.5 Real vs. complex processing: standa,rd deviation as function of SNIt for two uncorrelatecl signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.6 Real vs. complex processing: bias a.s fuuct.ion of SNR for t,wo uncorrela.ted signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.7 Real vs. complex processing: probability of resolution a.s function of SNR for two uncorrelatecl signals. . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.8 Candida.te beamforming a.rchitectures for sector-based processing. . . . . 76 3.9 Theoretical bias of left signal estiina,te for various bea.mforming prepro- cessors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.10 Theoretical std. clev. of left signal (.stinrat(> fot \.arious bearnforming preprocessors.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.1 Condition number versus number of spa.tia.1 DFT beams, ATb, for an N = 128 sensor army. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Figure Page 4.2 Spectrum of a transformed noise eigenvector derived from the decomposi- tion of the ideal heamspace covariance associated with an N =: 128 sensor ULA operated on by a Nb = S cli~r~ensiosnp atial DFT beamformer cen- tered in space at 25/N. Two in-band signals were located at 10.6' and 11.5' and one out-of-band source was located at sin O = 69/N. . . . . . . 85 4.3 Angular responses of Nb = 8 successive DFT beanforming vectors. Beam- forming sector centered at at sin0 = 25/N. . . . . . . . . . . . . . . . . 86 4.4 hlUSIC null spectrum after modulation to baseband and filter response associated with the L = 12s lengtll Hamming-weighted LPF. . . . . . . . 91 4.5 MUSIC null spectrum a.fter Halnining-winclo~vI msed ba.ndpass filtering. . 92 4.6 MUSIC null spectrum after cleci~r~a.tio1n1 f~a~ct or of 12S/S = 16. . . . . . 93 4.7 Roots using tra.nsformed-modulated-filterecl-decimatedn oise eigenvectors for both the Z and (deconvol\:c:cl) Z1 transformations. Quiescent root locations coinputed with the use of t11e ideal heamspace covariance. True signal locations: 10.6" and 11.5". . . . . . . . . . . . . . . . . . . . . . . 101 4.8 Spatial responses of an L = 270 lcngth eq~~i-rippflielt er and interpolated Nb = 6 beam set derived from an N = 90 sensor array. The spatial foldover frequency for the suh-lna~mi a1 cl(.(-imat ior1 architecture is located at sin 0 = (1/4)(8/N). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.9 Decimated filter/bea.mformer spectra a.ssocia.tetl with the filter/beam set of Figure 4.S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.10 MUSIC spectra associated with ideal white-noise heamspact: covariance with the use of the Z and Z1 tra.nsformations derived froin the: bea.mform- ing/filter architecture of Figure 4.8. . . . . . . . . . . . . . . . . . . . . . 1 04 4.11 Experiment 1: Empirical and tlleorctical left signal sta~ldadi deviation versus spatial position of a 10~113h, alf-Rayleigh spaced signal set. Central position of signal set varied from mid-l,a11c1 to 6/N. The Nb = 8 spatial DFT beams were formed on an !I=r 128 sensor UT,A. . . . . . . . . . . . 117 4.12 Experiment 2: Left signa.1 stanclal-tl cleviation versus source SNR for the two in-ba.nd signal, :I:=, S, beam esample scenario depicted in Figure 4.3. 118 Figure Page 4.13 Experiment 3: Location bias versus source SNR, for an Arb = 6 beam pre- processor (un-weighted DFT or Ta.ylor-weighted beamformers) operating on an N = 36 sensor ULA. The mea,n angle estimate for a signal located at lo was computed over 600 trials. . . . . . . . . . . . . . . . . . . . . . 119 4.14 Experiment 4: TLS-ESPRIT left signal standarc1 deviation versus source SNR for the two signal example of Figure 4.12. . . . . . . . . . . . . . . 120 4.15 Experiment 4: Quiescent locations of the TLS-ESPRIT eigenvalues asso- ciated with the decomposition of the ideal beamspace covariance input. . 121

Description:
in (a); each beam is the sum of a.n a.dja.cent pair of beams. minimum angular sepa.ra,tion of one-twent.iet11 of a 11ca.inwiclt11 between the two
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.