Efficiency Loss in Resource Allocation Games by Yunjian Xu Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2012 ⃝c Massachusetts Institute of Technology 2012. All rights reserved. Author .............................................................. Department of Aeronautics and Astronautics July 20, 2012 Certified by.......................................................... Munther A. Dahleh Professor of EECS Thesis Committee Member Certified by.......................................................... John N. Tsitsiklis Clarence J. Lebel Professor of Electrical Engineering Thesis Supervisor Accepted by......................................................... Eytan H. Modiano Chairman, Department Committee on Graduate Students Chair, Thesis Committee 2 Efficiency Loss in Resource Allocation Games by Yunjian Xu Submitted to the Department of Aeronautics and Astronautics on July 20, 2012, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract The overarching goals of this thesis are to quantify the efficiency loss due to market participant strategic behavior, and to design proper pricing mechanisms that reduce the efficiency loss. The concept of efficiency loss is intimately related to the concept of “price of anarchy,” which was advanced by Koutsoupias and Papadimitriou, and comparesthemaximumsocialwelfarewiththatachievedataworstNashequilibrium. This thesis focuses on the following two topics: (i) For a market with an arbitrary number of participants, how much is the Nash equilibrium close, in the sense of price of anarchy, to a social optimum? (ii) For a resource allocation/pricing mechanism, is the social welfare achieved at an economic equilibrium asymptotically optimal, as the number of market participants goes to infinity? Regarding the first topic, we quantify the efficiency loss in classical Cournot oligopoly games, where multiple oligopolists compete by choosing quantities. We also compare the total profit earned at a Cournot equilibrium to the maximum possible total profit that would be obtained if the suppliers were to collude. For the second topic, related to the efficiency in large economics, we analyze the efficiency of Kelly’s proportional allocation mechanism in large-scale wireless commu- nication systems. We study a corresponding Bayesian game in which each user has incomplete information on the state or type of the other users, and show that the social welfare achieved at a Bayes-Nash equilibrium is asymptotically optimal, as the number of users increases to infinity. Finally, for electricity delivery systems, we propose a new dynamic pricing mecha- nism that explicitly encourages consumers to adapt their consumption so as to offset the variability of demand on conventional units. Through a dynamic game-theoretic formulation, we show that the proposed pricing mechanism achieves social optimality asymptotically, as the number of consumers increases to infinity. Thesis Supervisor: John N. Tsitsiklis Title: Clarence J. Lebel Professor of Electrical Engineering Thesis Supervisor 3 4 Acknowledgments Foremost, I would like to express my profoundest gratitude to my advisor, John Tsitsiklis. I am sincerely grateful for his encouragement, motivation, and especially for his constantly insightful suggestions that have been immensely valuable during my entire Ph.D study. My sincere thanks goes to the members of my thesis committee, Munther Dahleh and Eytan Modiano, for their significant effort devoted to my dissertation research. Also thank you to Asu Ozdaglar, Mardavij Roozbehani and Minghui Zhu for being part of my general committee. Their valuable feedback considerably improved the quality of this thesis. I would also like to express my deep appreciation to Dimitri Bertsekas, Michael Caramanis,RameshJohari,MihalisMarkakis,JagdishRamakrishnan,DevavratShah, Mengdi Wang, Moe Win, Kuang Xu, Yuan Zhong, and Spyros Zoumpoulis, with whom I have had conversations that helped me in my Ph.D study and research. I am extremely grateful to my family, for the support they have given me over the years. This research was sponsored by National Science Foundation under grants ECCS- 0701623 and CMMI-0856063, and by a Graduate Fellowship from Shell. 5 6 Contents 1 Introduction 15 1.1 Bayesian Proportional Resource Allocation Games . . . . . . . . . . . 16 1.2 Efficiency and Profit Loss in Cournot Oligopolies . . . . . . . . . . . 17 1.3 Pricing of Fluctuations in Electricity Markets . . . . . . . . . . . . . 18 2 Bayesian Proportional Resource Allocation Games 19 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.1 Background and related research . . . . . . . . . . . . . . . . 21 2.1.2 Summary and contributions of this chapter . . . . . . . . . . . 25 2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.1 Formal description of the model . . . . . . . . . . . . . . . . . 26 2.2.2 Resource allocation mechanisms . . . . . . . . . . . . . . . . . 27 2.3 The Value of Information - Non-strategic Formulations . . . . . . . . 32 2.4 Ex Ante and Ex Post Games with Kelly Mechanism . . . . . . . . . . 36 2.4.1 Ex Ante Game . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4.2 Ex post Game . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5 Bayesian Game: Existence of Equilibria . . . . . . . . . . . . . . . . . 38 2.6 Bayesian Game Examples . . . . . . . . . . . . . . . . . . . . . . . . 40 2.7 Bayesian Games with a Large Number of Users . . . . . . . . . . . . 45 2.7.1 Assumptions, preliminaries, and approximate symmetry of BNEs 46 2.7.2 Asymptotic efficiency . . . . . . . . . . . . . . . . . . . . . . . 48 2.8 Efficiency Loss in Bayesian Games . . . . . . . . . . . . . . . . . . . . 51 7 3 Efficiency Loss in a Cournot Oligopoly with Convex Market Demand 55 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.1.2 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1.3 Outline of the chapter . . . . . . . . . . . . . . . . . . . . . . 58 3.2 Formulation and Background . . . . . . . . . . . . . . . . . . . . . . 59 3.2.1 Existence results . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3 Preliminaries on Cournot Equilibria . . . . . . . . . . . . . . . . . . . 61 3.3.1 Optimality and equilibrium conditions . . . . . . . . . . . . . 62 3.3.2 Efficiency of Cournot equilibria . . . . . . . . . . . . . . . . . 64 3.3.3 Restricting to linear cost functions . . . . . . . . . . . . . . . 66 3.3.4 Other properties of Cournot candidates . . . . . . . . . . . . . 70 3.3.5 Concave inverse demand functions . . . . . . . . . . . . . . . . 72 3.4 Affine Inverse Demand Functions . . . . . . . . . . . . . . . . . . . . 73 3.5 Convex Inverse Demand Functions . . . . . . . . . . . . . . . . . . . 75 3.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.7 Monopoly and Social Welfare . . . . . . . . . . . . . . . . . . . . . . 86 3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4 Profit Loss in Cournot Oligopolies 91 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.1.2 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.1.3 Outline of the chapter . . . . . . . . . . . . . . . . . . . . . . 93 4.2 Formulation and Background . . . . . . . . . . . . . . . . . . . . . . 94 4.3 Preliminaries on Cournot Equilibria . . . . . . . . . . . . . . . . . . . 94 4.3.1 Optimality and equilibrium conditions . . . . . . . . . . . . . 95 4.3.2 Profit ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.3.3 Restricting to linear cost functions . . . . . . . . . . . . . . . 98 4.3.4 Other properties of Cournot candidates . . . . . . . . . . . . . 101 8 4.4 Profit ratio lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.5 Corollaries and Applications . . . . . . . . . . . . . . . . . . . . . . . 108 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5 Efficiency Loss in a Class of Two-Sided Market Mechanisms 115 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.3 Efficiency Loss of Nash Equilibria . . . . . . . . . . . . . . . . . . . . 119 5.4 Corollaries and Applications . . . . . . . . . . . . . . . . . . . . . . . 124 6 Pricing of Fluctuations in Electricity Markets 127 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.1.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . 131 6.1.2 Related literature . . . . . . . . . . . . . . . . . . . . . . . . . 132 6.1.3 Outline of the chapter . . . . . . . . . . . . . . . . . . . . . . 134 6.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.3 The Pricing Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 138 6.4 Dynamic Oblivious Equilibrium . . . . . . . . . . . . . . . . . . . . . 142 6.4.1 The sequence of prices induced by a dynamic oblivious strategy 143 6.4.2 Equilibrium strategies . . . . . . . . . . . . . . . . . . . . . . 144 6.4.3 Relation between a continuum model and a corresponding n- consumer model . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.5 Approximation in Large Games . . . . . . . . . . . . . . . . . . . . . 147 6.6 Asymptotic Social Optimality . . . . . . . . . . . . . . . . . . . . . . 150 6.6.1 Social welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.6.2 Asymptotic social optimality of a DOE . . . . . . . . . . . . . 151 6.7 Implementation of the proposed pricing mechanism . . . . . . . . . . 154 6.8 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 6.8.1 Equilibrium under Marginal Cost Pricing . . . . . . . . . . . . 156 6.8.2 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 157 6.9 Conclusions and Future Directions . . . . . . . . . . . . . . . . . . . 165 9 A Proof of results in Chapter 2 177 A.1 Proof of Theorem 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 A.2 Proof of Lemma 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 A.3 Proof of Theorem 2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 A.4 Proof of Theorem 2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 A.5 Proof of Proposition 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . 198 B Proof of results in Chapter 3 203 B.1 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 B.2 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 B.3 Proof of Theorem 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 C Proof of results in Chapter 4 215 C.1 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 C.2 Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 D Proof of Theorem 5.1 225 E Proof of results in Chapter 6 231 E.1 Approximation of the supplier cost . . . . . . . . . . . . . . . . . . . 231 E.2 Proof of Theorem 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 E.3 Proof of Theorem 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 E.3.1 Proof of Part (a) . . . . . . . . . . . . . . . . . . . . . . . . . 239 E.3.2 Proof of Part (b) . . . . . . . . . . . . . . . . . . . . . . . . . 241 10
Description: