ebook img

Efficiency Loss in Market Mechanisms for Resource Allocation PDF

249 Pages·2004·1.98 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Efficiency Loss in Market Mechanisms for Resource Allocation

Efficiency Loss in Market Mechanisms for Resource Allocation by Ramesh Johari A.B.,Mathematics,HarvardUniversity(1998) CertificateofAdvancedStudyinMathematics,UniversityofCambridge(1999) Submittedtothe DepartmentofElectricalEngineeringandComputerScience inPartialFulfillmentoftheRequirementsfortheDegreeof DoctorofPhilosophy inElectricalEngineeringandComputerScience atthe MassachusettsInstituteofTechnology June2004 c 2004MassachusettsInstituteofTechnology. Allrightsreserved. (cid:13) Signature of Author................................................................... DepartmentofElectricalEngineeringandComputerScience May18,2004 Certified by........................................................................... JohnN.Tsitsiklis ProfessorofElectricalEngineeringandComputerScience ThesisSupervisor Accepted by.......................................................................... ArthurC.Smith Chairman,CommitteeonGraduateStudents DepartmentofElectricalEngineeringandComputerScience Efficiency Loss in Market Mechanisms for Resource Allocation by Ramesh Johari SubmittedtotheDepartmentofElectricalEngineering andComputerScienceonMay18,2004, inpartialfulfillmentoftherequirementsforthedegreeof DoctorofPhilosophyinElectricalEngineeringandComputerScience Abstract This thesis addresses a problem at the nexus of engineering, computer science, and economics: inlargescale,decentralizedsystems,howcanweefficientlyallocatescarce resources among competing interests? On one hand, constraints are imposed on the system designer by the inherent architecture of any large scale system. These con- straints are counterbalanced by the need to design mechanisms that efficiently allo- cate resources, even when the system is being used by participants who have only theirownbestinterestsatstake. We consider the design of resource allocation mechanisms in such environments. The analytic approach we pursue is characterized by four salient features. First, the monetary value of resource allocation is measured by the aggregate surplus (aggre- gateutilitylessaggregatecost)achievedatagivenallocation. Anefficientallocationis onewhichmaximizesaggregatesurplus. Second, wefocusonmarket-clearingmech- anisms,whichsetasinglepricetoensuredemandequalssupply. Third,allthemech- anisms we consider ensure a fully efficient allocation if market participants do not anticipate the effects of their actions on market-clearing prices. Finally, when market participants are price anticipating, full efficiency is generally not achieved, and we quantifytheefficiencyloss. Wemaketwomaincontributions. First,forthreeeconomicenvironments,wecon- siderspecificmarketmechanismsandexactlyquantifytheefficiencylossintheseenvi- ronmentswhenmarketparticipantsarepriceanticipating. Thefirsttwoenvironments address settings where multiple consumers compete to acquire a share of a resource in either fixed or elastic supply; these models are motivated by resource allocation in communication networks. The third environment addresses competition between 4 multipleproducerstosatisfyaninelasticdemand; thismodelismotivatedbymarket designinpowersystems. Oursecondcontributionistoestablishthat,underreasonableconditions,themech- anisms we consider minimize efficiency loss when market participants anticipate the effects of their actions on market-clearing prices. Formally, we show that in a class of market-clearingmechanismssatisfyingcertainsimplemathematicalassumptionsand forwhichthereexistfullyefficientcompetitiveequilibria,themechanismsweconsider uniquelyminimizeefficiencylosswhenmarketparticipantsarepriceanticipating. Thesis Supervisor: JohnN.Tsitsiklis Title: ProfessorofElectricalEngineering Acknowledgments Firstandforemost, Iamdeeplyindebtedtomyadvisor, ProfessorJohnTsitsiklis. His encouragement,support,andadvicehavebeenimmenselyvaluable,bothinpersonal and professional terms. I am particularly grateful for his emphasis on simplicity and elegance in research, and for the genuine concern he has shown for my development asanacademic. I am also grateful to Professor Frank Kelly for his enthusiasm and counsel, a con- stant throughout my graduate career. I first became familiar with network pricing problems in conversations with him, and this thesis bears the hallmark of lessons learnedduringmystayinCambridgeunderhistutelage. Specialthanksgotomythesiscommitteemembers,ProfessorAbhijitBanerjeeand Professor Robert Gallager. Each devoted significant time and effort to my thesis, and theirsuggestionsandcommentsledtosubstantialimprovementinthefinalproduct. The Laboratory for Information and Decision Systems (LIDS) provided an ideal workenvironmentfortheinterdisciplinaryworkofthisthesis. Iamparticularlygrate- ful to Professor Dimitri Bertsekas, for helping me navigate the subtleties of convex analysis; to Professor Vincent Chan, for his steady hand in directing the lab; and to ProfessorSanjoyMitter,forhisintellectualstewardshipofmytimeatMIT.Iaminthe debtofthesefacultyandmanyothersatMITfortheirsupportoverthelastfouryears. I have also benefited from time spent with colleagues at MIT. I would especially like to thank Shie Mannor, whose dedication to research helped keep me disciplined; and Emin Martinian, a frequent counterpart for lunch conversations, both academic andotherwise. Finally,IwasparticularlyfortunatetohavehadConstantineCarama- nis as an officemate, with whom I’ve shared many interesting discussions since my daysasanundergraduate. Last, I owe a great debt to Hsin Chau, for her support, encouragement, and sense ofhumor;hercompanionshiphasbeeninvaluableinallfacetsoflife. ThisresearchwassupportedbyaNationalScienceFoundationGraduateResearchFellow- ship, bytheDefenseAdvancedResearchProjectsAgencyundertheNextGenerationInternet Initiative,andbytheArmyResearchOfficeundergrantDAAD10-00-1-0466. 5 Preliminaries Notation We use R to denote the real numbers, and R+ to denote [0, ). Italics will be used to ∞ denote scalars, e.g., x. Boldface will be used to denote vectors, e.g., x = (x ,...,x ). 1 n When x is a scalar, the notation (x)+ will be used to denote the positive part of x; i.e., (x)+ = x if x 0, and (x)+ = 0 if x 0. If x ,...,x Rm, and x = 1 n ≥ ≤ ∈ (x ,...,x ), we will use x to denote the components of x other than x ; that is, 1 n −i i x = (x ,...,x ,x ,...,x ). Throughout the thesis, if f : (Rm)n R is a real- −i 1 i−1 i+1 n → valued function of n vectors x ,...,x Rm, we let f(x ;x ) denote the function f 1 n i −i ∈ asafunctionofx whilekeepingthecomponentsx fixed. i −i Convex analytic methods play a key role in this thesis, and we collect some re- quired notions here [14, 103]. An extended real-valued function is a function f : Rn → [ , ]; such a function is called proper if f(x) > for all x, and f(x) < for at −∞ ∞ −∞ ∞ least one x. We say that a vector γ Rn is a subgradient of an extended real-valued ∈ functionf atxifforallx Rn,wehave: ∈ f(x) f(x)+γ>(x x). ≥ − The subdifferential of f at x, denoted ∂f(x), is the set of all subgradients of f at x. We say that f is subdifferentiable at x if ∂f(x) = . We will typically be interested in 6 ∅ subgradients of a convex function f, and supergradients of a concave function f. A vector γ is a supergradient of f if γ is a subgradient of f; thus we denote the − − superdifferentialoff atxby ∂[ f(x)]. − − For extended real-valued functions f : R [ , ], we will require some addi- → −∞ ∞ tionalconcepts. Wedenotetherightdirectionalderivativeoff atxby∂+f(x)/∂xand left directional derivative of f at x by ∂−f(x)/∂x (if these exist). If f is convex, then ∂f(x) = [∂−f(x)/∂x,∂+f(x)/∂x],providedthedirectionalderivativesexist. 7 8 Prerequisites The main prerequisites for this thesis are a background in real analysis at the level of Rudin[110],aswellassomefacilitywithconvexoptimizationandelementaryconvex analysis. SourcesforbackgroundonconvexoptimizationincludethebooksbyWhittle [145], Bertsekas [13], and Boyd and Vandenberghe [17], while background on convex analysismaybefoundinthetextsbyBertsekasetal. [14]andRockafellar[103]. Microeconomics(particularlymarkettheory)andgametheoryalsoplayakeyrole inthisthesis,andsomebasicknowledgeofthetwofieldsishelpful. ThetextbyVarian providesaconciseintroductiontomicroeconomictheory[137],whilethetextbookby Mas-Colell et al. provides deeper coverage [82]. As to game theory, in this thesis we will only use elementary concepts from game theory, particularly Nash equilibrium; however,someunderstandingofthemodelingissuesishelpful. Forthispurpose,see the books by Fudenberg and Tirole [43], Myerson [89], and Osborne and Rubinstein [96](wherethelastreferenceisaconciseintroductionfortheuninitiatedreader). Bibliographic Note Portions of the content of Chapter 2 appear in the paper by Johari and Tsitsiklis [60]; exceptions are Sections 2.1.3, 2.3, 2.4.3, and 2.5.1. Sections 3.1, 3.2, 3.3, and 3.4 will appearinthepaperbyJoharietal. [58]. Contents Abstract 3 Acknowledgments 5 Preliminaries 7 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 BibliographicNote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 ListofFigures 13 1 Introduction 15 1.1 Consumers,Producers,andAggregateSurplus . . . . . . . . . . . . . . . 16 1.2 Market-ClearingMechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3 PriceTakingBehaviorandCompetitiveEquilibrium . . . . . . . . . . . . 22 1.4 PriceAnticipatingBehaviorandNashEquilibrium . . . . . . . . . . . . . 23 1.5 AnExample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.5.1 AMarket-ClearingMechanism . . . . . . . . . . . . . . . . . . . . 26 1.5.2 PriceTakingConsumers . . . . . . . . . . . . . . . . . . . . . . . . 27 1.5.3 PriceAnticipatingConsumers . . . . . . . . . . . . . . . . . . . . 28 1.5.4 EfficiencyLoss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.6 ContributionsofThisThesis . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2 MultipleConsumers,InelasticSupply 33 2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.1.1 PriceTakingUsersandCompetitiveEquilibrium . . . . . . . . . 40 2.1.2 PriceAnticipatingUsersandNashEquilibrium . . . . . . . . . . 42 2.1.3 Corollaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.2 EfficiencyLoss: TheSingleLinkCase. . . . . . . . . . . . . . . . . . . . . 50 2.3 ProfitMaximizingLinkManagers . . . . . . . . . . . . . . . . . . . . . . 57 9 10 CONTENTS 2.4 GeneralNetworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.4.1 AnExtendedGame . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.4.2 EfficiencyLoss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2.4.3 AComparisontoProportionallyFairPricing . . . . . . . . . . . . 81 2.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 2.5.1 StochasticCapacity . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 2.5.2 AGeneralResourceAllocationGame . . . . . . . . . . . . . . . . 87 2.6 ChapterSummary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3 MultipleConsumers,ElasticSupply 91 3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.1.1 PriceTakingUsersandCompetitiveEquilibrium . . . . . . . . . 97 3.1.2 PriceAnticipatingUsersandNashEquilibrium . . . . . . . . . . 99 3.1.3 NondecreasingElasticityPriceFunctions . . . . . . . . . . . . . . 106 3.2 EfficiencyLoss: TheSingleLinkCase. . . . . . . . . . . . . . . . . . . . . 108 3.3 InelasticSupplyvs. ElasticSupply . . . . . . . . . . . . . . . . . . . . . . 119 3.4 GeneralNetworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 3.5 CournotCompetition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 3.5.1 ModelswithBoundedEfficiencyLoss . . . . . . . . . . . . . . . . 142 3.5.2 GeneralNetworks . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 3.6 CournotCompetitionwithLatency . . . . . . . . . . . . . . . . . . . . . . 155 3.7 ChapterSummary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 4 MultipleProducers,InelasticDemand 163 4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 4.1.1 PriceTakingFirmsandCompetitiveEquilibrium . . . . . . . . . 170 4.1.2 PriceAnticipatingFirmsandNashEquilibrium . . . . . . . . . . 173 4.2 EfficiencyLoss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 4.3 NegativeSupply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 4.4 StochasticDemand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 4.5 ChapterSummary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 5 CharacterizationTheorems 189 5.1 MultipleConsumers,InelasticSupply . . . . . . . . . . . . . . . . . . . . 191 5.1.1 AFirstCharacterizationTheorem . . . . . . . . . . . . . . . . . . 192 5.1.2 ASecondCharacterizationTheorem . . . . . . . . . . . . . . . . . 208 5.1.3 ATwoUserMechanismwithArbitrarilyLowEfficiencyLoss . . 211 5.2 MultipleProducers,InelasticDemand . . . . . . . . . . . . . . . . . . . . 214 5.3 ChapterSummary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Description:
Doctor of Philosophy in Electrical Engineering and Computer Science .. power networks do not protect against the exercise of market power in the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.