EFFECTS OF UNSTEADY AERODYNAMICS ON VERTICAL-AXIS WIND TURBINE PERFORMANCE BY PETER KOZAK Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical and Aerospace Engineering in the Graduate College of the Illinois Institute of Technology Approved Advisor Chicago, Illinois May 2014 ACKNOWLEDGMENT I would like to thank my advisor, Professor Dietmar Rempfer, for his guidance and support. Many of the ideas and concepts contained in this thesis originate from our discussions, for which I am tremendously grateful. I would also like to express my gratitude to Professors David Williams and Kevin Meade for taking the time and effort to serve on my thesis committee. My colleagues in the Fluid Dynamics Research Center and IIT in general are owed a debt of gratitude for their willingness to serve as sounding boards for my ideas. Throughout this research, I’ve relied on a great deal of encouragement from my family and friends. Over the past year, they have shown incredible patience and understanding, while having to share my time and attention with this work. For that, I am truly thankful. iii TABLE OF CONTENTS Page ACKNOWLEDGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . iii LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . x LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . xi ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Background . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Previous Research . . . . . . . . . . . . . . . . . . . . 16 1.3. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2. METHODOLOGY AND VALIDATION . . . . . . . . . . . . 28 2.1. Finite Volume Simulation . . . . . . . . . . . . . . . . . 28 2.2. Estimating the Effective Angle of Attack . . . . . . . . . 41 3. OBSERVATIONS OF UNSTEADY EFFECTS . . . . . . . . . 48 3.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2. Performance Limiting Phenomena . . . . . . . . . . . . . 58 4. TURBINE PERFORMANCE IMPROVEMENTS . . . . . . . 67 4.1. Procedure for Turbine Optimization . . . . . . . . . . . . 67 4.2. Fixed Non-Zero Blade Pitch . . . . . . . . . . . . . . . . 69 4.3. Variable Pitch . . . . . . . . . . . . . . . . . . . . . . 73 5. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . 85 5.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.2. Future Research Topics . . . . . . . . . . . . . . . . . . 90 APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 A. SUGGESTED CRITERIA FOR VAWT SIMULATIONS . . . . 92 A.1. Overset Stability Criteria . . . . . . . . . . . . . . . . . 93 A.2. Accurate Wall Treatment Criteria . . . . . . . . . . . . . 93 iv B. EFFECTIVE ANGLE OF ATTACK CORRELATION CURVES FOR SEVERAL AIRFOILS . . . . . . . . . . . . . . . . . . 94 B.1. NACA 0012 . . . . . . . . . . . . . . . . . . . . . . . 95 B.2. NACA 0015 . . . . . . . . . . . . . . . . . . . . . . . 97 B.3. NACA 0021 . . . . . . . . . . . . . . . . . . . . . . . 99 C. EQUATIONS FOR BLADE PITCH . . . . . . . . . . . . . . 101 C.1. Iteration 1 . . . . . . . . . . . . . . . . . . . . . . . . 102 C.2. Iteration 2 . . . . . . . . . . . . . . . . . . . . . . . . 103 C.3. Iteration 3 . . . . . . . . . . . . . . . . . . . . . . . . 103 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 v LIST OF TABLES Table Page 1.1 Advantages / Disadvantages of VAWT Analysis Methods . . . . . 18 2.1 VAWT Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2 VAWT Simulation Parameters . . . . . . . . . . . . . . . . . . 37 2.3 Oscillating Airfoil Simulation Parameters . . . . . . . . . . . . . 45 4.1 Pitch Offset Performance . . . . . . . . . . . . . . . . . . . . . 69 4.2 Harmonic Pitch Cases . . . . . . . . . . . . . . . . . . . . . . 76 4.3 Harmonic Pitch Performance . . . . . . . . . . . . . . . . . . . 77 4.4 Variable Pitch Performance . . . . . . . . . . . . . . . . . . . . 80 5.1 VAWT Performance Evaluation . . . . . . . . . . . . . . . . . . 88 B.1 NACA 0012 C Data . . . . . . . . . . . . . . . . . . . . . . . 95 P B.2 NACA 0015 C Data . . . . . . . . . . . . . . . . . . . . . . . 97 P B.3 NACA 0021 C Data . . . . . . . . . . . . . . . . . . . . . . . 99 P C.1 Variable Pitch 1 (N=8) . . . . . . . . . . . . . . . . . . . . . . 102 C.2 Variable Pitch 2 (N=5) . . . . . . . . . . . . . . . . . . . . . . 103 C.3 Variable Pitch 3 (N=6) . . . . . . . . . . . . . . . . . . . . . . 103 vi LIST OF FIGURES Figure Page 1.1 The contributions of all electricity sources in the United States dur- ing the 2012 year [82]. Due to recent growth, wind energy is now responsible for 3.5% of US electricity production, more than any other non-hydroelectric renewable source. . . . . . . . . . . . . 2 1.2 Histogram showing exponential growth of wind energy’s contribu- tion to the US electricity production [81]. . . . . . . . . . . . . 3 1.3 Themajorwindturbinetypesincludingthepropeller-typehorizontal- axiswindturbine(HAWT),drag-basedSavoniusdesign,andthelift- based Darrieus and H-rotor vertical-axis wind turbines (VAWTs). VAWT diagrams originate from (Eriksson, 2008) [23]. . . . . . . . 4 1.4 The left subfigure shows the 2-D geometry and layout of a Darrieus turbine or H-rotor. The blades are typically mounted at the quarter or half-chord point equidistant from the others. The sub-figure on the right demonstrates the velocity components and aerodynamic forces on one of the blades located at an azimuthal angle of 90o. . 5 1.5 The maximum angle of attack present at an azimuthal angle of 90o for a typical range of tip-speed ratios for a vertical-axis machine. . 7 1.6 Example of net torque curves for a single blade (a) and the entire turbine (b) for a 3-blade VAWT at a tip-speed ratio of TSR = 2.5 9 1.7 2-D variation in the time averaged U-velocity for at turbine operat- ing at TSR = 3.0. The figure shows that kinetic energy is lost as the flow passes through the turbine, with the greatest drops occurring as the flow passes through the blade path. There is also a variation in the speed in the vertical direction. At the top of the turbine, the blade pushes against the flow and slowing it down. At the bottom of the figure, the blade pulls the flow faster. . . . . . . . . . . . 10 1.8 Actuator disk representation of a wind turbine. State 0 and State 3 are the far field conditions upstream and downstream and the States 1 and 2 are the flow in the vicinity (but outside) of the turbine. . . 11 1.9 Vertax Wind Ltd. proposed multi-megawatt turbines. These sea- basedturbineswouldrelyonfewermovingpartsthanhorizontal-axis machines, allowing a longer lifespan and less maintenance [39]. . . 15 1.10 A VAWT blade oriented with a positive (tow out) pitch β. . . . . 22 vii 2.1 Layout of (a) the physical domain of the FVM simulation with boundary conditions and (b) the overset grids surrounding the tur- bine blades. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2 Boundary between the overset and underset grids. . . . . . . . . 31 2.3 Fully elliptic overset grid containing a VAWT blade surface. . . . 32 2.4 Topology of the overset grid layout used to maximize orthogonality of the element edges. . . . . . . . . . . . . . . . . . . . . . . 33 2.5 Closeup view of the overset grid near the blade’s surface, including the boundary layer. . . . . . . . . . . . . . . . . . . . . . . . 34 2.6 View of the overset grid near the turbine blades trailing-edge. . . . 35 2.7 Plots comparing the average power coefficient with respect to tip- speed ratio for (a) all simulations and (b) only low Y+ wall treat- ment FVM simulations. . . . . . . . . . . . . . . . . . . . . . 39 2.8 Lift coefficient with respect to angle of attack (neglecting stall) for a NACA 0015 airfoil obtained using JavaFoil [34]. . . . . . . . . 42 2.9 Pressure coefficient with respect to location along the chord line at angles of attack between 0 and 12o for a NACA 0015 airfoil obtained using JavaFoil [34]. . . . . . . . . . . . . . . . . . . . . . . . 43 2.10 Correlation curves of the effective angle of attack with respect to the pressure coefficient ratio at 0.20 c. . . . . . . . . . . . . . 44 2.11 Physical domain of the rotating NACA 0015 simulation with bound- ary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.12 Validation of the oscillating airfoil simulation, comparing the (a) lift and (b) drag with Piziali’s experimental results. . . . . . . . . . 46 2.13 Effectiveangleofattackwithrespecttothegeometricangleofattack for Piziali (corrected for Re = 300,000) using the lift and that of the FVM simulation using the pressure ratio. . . . . . . . . . . . . 47 3.1 Average power coefficient with respect to tip-speed ratio for the FVM simulation. . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2 Blade torque coefficient with respect to azimuthal angle for various tip-speed ratios. . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3 Turbinetorquecoefficientwithrespecttoazimuthalangleforvarious tip-speed ratios. . . . . . . . . . . . . . . . . . . . . . . . . . 50 viii 3.4 Effective angle of attack with respect to the azimuthal angle for var- ious tip-speed ratios. Sudden drops in magnitude correspond to full leading-edge separation and the jumps correspond to reattachment. 52 3.5 The sequence shows the vorticity magnitude distribution as the tur- bine passes through one third of a cycle at a tip-speed ratio of TSR = 3.0. The turbine maintains fully attached flow throughout the entire cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.6 The sequence shows the vorticity magnitude distribution as the tur- bine passes through one third of a cycle at a tip-speed ratio of TSR = 2.0. Around the 180o point, the blades undergo separation and reattachment. . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.7 Average power coefficient curves for the BEM model and the FVM simulation, with respect to tip-speed ratio. . . . . . . . . . . . . 56 3.8 Comparisonoftheeffectiveangleofattackforthestreamtube(BEM) model and the FVM simulation. . . . . . . . . . . . . . . . . . 57 3.9 Close up view of the vorticity magnitude distribution around a tur- bine blade at an azimuthal angle of 180o. (TSR = 2.0) Near the end of the half-cycle, the blade stalls and the separation bubble is swept away as the angle of attack changes from negative to positive. . . 59 3.10 TwoviewsoftheflowdownstreamofaVAWTbladeatanazimuthal angle of 0o and for a tip-speed ratio of TSR = 2.0. . . . . . . . . 62 3.11 Close up view of the vorticity magnitude distribution for tip-speed ratios of TSR = 2.0 and 3.0, demonstrating the higher likelihood of blade / wake interaction at higher tip-speed ratios. . . . . . . . . 63 3.12 Close up view of the vorticity magnitude distribution around a tur- bine blade as it passes through wake structures. (TSR = 3.0) . . . 65 4.1 Effective angle of attack curve for the TSR = 2.0 case. . . . . . . 67 4.2 Torque curve for the TSR = 2.0 case. . . . . . . . . . . . . . . 67 4.3 Theprocedureusedtodevelopaneffectivevariablebladepitchregime. 68 4.4 Comparisonoftheeffectiveangleofattackforseveralconstantblade pitches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.5 Comparison of the blade torque coefficient for several constant blade pitches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.6 Target angle of attack with respect to the azimuthal angle. . . . . 73 ix 4.7 Blade pitch vs azimuthal angle for the three iterations. . . . . . . 74 4.8 Harmonic variable blade pitch curve with a maximum pitch angle of 5o. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.9 Blade torque coefficients with respect to azimuthal angle for the two harmonic variable blade pitch cases. . . . . . . . . . . . . . . . 78 4.10 Effective angle of attack with respect to azimuthal angle for the two harmonic variable blade pitch cases. . . . . . . . . . . . . . . . 79 4.11 Comparison of the effective angle of attack for the several variable blade pitch iterations. . . . . . . . . . . . . . . . . . . . . . . 81 4.12 Comparison of the blade torque coefficients for the several variable blade pitch iterations. . . . . . . . . . . . . . . . . . . . . . . 82 4.13 Comparison of the blade torque coefficients for the third iteration variable pitch curve and the zero pitch case. . . . . . . . . . . . 83 4.14 Comparison of the effective angle of attack curve for the third iter- ation variable pitch case and the desired angle of attack. . . . . . 84 5.1 Average power coefficients for several VAWT cases compared to a Mod-5B horizontal-axis machine [75]. . . . . . . . . . . . . . . 89 B.1 NACA 0012 airfoil shape. . . . . . . . . . . . . . . . . . . . . 95 B.2 Pressure coefficient ratio versus angle of attack for the NACA 0012 blade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 B.3 NACA 0015 airfoil shape. . . . . . . . . . . . . . . . . . . . . 97 B.4 Pressure coefficient ratio versus angle of attack for the NACA 0015 blade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 B.5 NACA 0021 airfoil shape. . . . . . . . . . . . . . . . . . . . . 99 B.6 Pressure coefficient ratio versus angle of attack for the NACA 0021 blade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 x
Description: