Effect of particles on spinodal decomposition: A phase field study 7 1 A Project Report 0 2 submitted in partial fulfilment of the n a requirements for the Degree of J 3 ] Master of Engineering t f o in s . t Materials Engineering a m - d n o by c [ Supriyo Ghosh 1 v 8 1 under the guidance of 0 1 0 Prof. T. A. Abinandanan . 1 0 7 1 : v i X r a Department of Materials Engineering Indian Institute of Science Bangalore – 560 012 (INDIA) JUNE 2012 Acknowledgements Iwouldliketothankmyadvisor,Prof. T.A.Abinandanan,forhisguidanceandencouragement throughoutmywork. Icherishhismotivatingwordsandadviceonmyfuturecareer. Icouldnot askforabetteradvisor. IthankDr. SuryasarathiBoseforhisinvaluablecomments,suggestions and advise on my project. The entire faculty, staff and students in the Materials Engineering Department made my learning enjoyable. I would also like to thank my family, friends, and labmates-Naveen, Bhaskar, Chaitanya andVinayfortheirsupportandunderstanding. Finally, special thanks to Rooparam, Nikhil, Santanu, Ratul, Rajdipda, Samratda, Arkoda for their useful suggestions. i Abstract The present work is directed towards the understanding of the interplay of phase separation and wetting which dominates the morphological evolution in multicomponent systems. For this purpose, we have studied the phase separation pattern of a binary mixture (AB) in presence of stationary spherical particles (C) which prefers one of the components of the binary (say, A).BinaryABiscomposedofcriticalcomposition(50:50)andoff-criticalcompositions(60:40, 40:60). Off-criticalcompositionsarechosentoincludetwocaseswhereeitherthemajororminor componentwets theparticle. Particlesare fixedin positionand sphericalinshape. Particle sizes of 8 units and 16 units are used in all simulations. Two types of particle loading are used, 5% and 10%. Particles arewell-distributedin the matrixat a certaininterparticle distancefollowing periodicboundaryconditions. We have employed a ternary form of Cahn-Hilliard equation to model such system. This model is a modification of Bhattacharya’s model to incorporate immobile fillers. Free energy of such an inhomogeneous system depends on both composition and composition gradients. Composition provides homogeneous contribution to the system free energy whereas compo- sition gradients contribute to the interfacial energies. Homogeneous form of free energy is given by regular solution expression which is very closely related to Flory-Huggins model for monodispersepolymermixtures. Toelucidatetheeffectofwettingonphaseseparationwehave designedthreesetsof χ andκ toincludetheeffectsofneutralpreference,weakpreference ij ij andstrongpreferenceoftheparticleforoneofthebinarycomponents. Wehavesimulatedtwo differentcases wherethe binarymatrix (A:B)is quenchedcritically oroff-criticallyin presence ofstationarysphericalparticles. ii Abstract iii Iftheparticlesarepreferentiallywettedbyoneofthecomponentsthenearlystagemicrostruc- turesshowtransientconcentricalternatelayersofpreferredandnon-preferredphasesaroundthe particles. Whenparticlesareneutraltobinarycomponentsthensucharingpatterndoesnotform. Atlatetimesneutralpreferencebetweenparticlesandbinarycomponentsyieldsacocontinuous morphology whereas preferential wetting produces isolated domains of non-preferred phases dispersed in a continuous matrix of preferred phase. In other words lack of preference forms anearly completephaseseparate morphology forabinary ofcriticalcomposition whereasan incompletephaseseparationisseenifpreferenceexistsbetweenparticleandmatrixcomponents. Inallthecases thebinaryinteractionparametersaresuchthat χ >|χ −χ |,whichrefers AB BC AC to a equilibrium wetting state where particles are in contact with both the components with a surplus of preferred component around it. Particles at the interface provide a resistance to interfacialmotionand thusimpededomaincoarsening. Inaddition,higher particle loadingand smaller particle size are also highly effective in reducing the kinetics of phase separation and domaingrowth. For off-critical compositions we have studied two different situations where either major or the minor component wets the network. When minor component wets the particle then a bicontinuousmorphologyresultswhereas whenmajorcomponentwetsthenetworkadroplet morphologyisseen. Insuchcasesearlystagemorphologysuggestsanenrichedlayerofpreferred component around the particle though it is fundamentally different than the "target" pattern formed in case of critical mixture. When majority component wets the particle, a possibility of double phaseseparation is reported. In suchalloys phase separation starts near the particle surface and propagates to the bulk at intermediate to late times forming spherical or nearly sphericaldropletsoftheminorcomponent. Contents Acknowledgements i Abstract ii 1 Introduction 1 2 LiteratureReview 4 2.1 ExperimentalStudies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 TheoreticalStudies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Formulation 10 3.1 RegularSolutionModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Flory–HugginsModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 TheCahn-HilliardModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4 ChemicalPotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.5 EvolutionEquations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.6 NumericalImplementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4 SimulationDetails 18 4.1 ParticleCharacteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1.1 ParticleLoading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1.2 ParticleSizeandshape . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1.3 InterparticleDistance(λ) . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1.4 Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 CompositionalDistribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3 MobilityMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.4 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.4.1 ChoiceofInteractionParameters . . . . . . . . . . . . . . . . . . . . . 22 4.4.2 ChoiceofGradientEnergyparameters . . . . . . . . . . . . . . . . . . 23 4.5 Synopsisofsimulationparameters . . . . . . . . . . . . . . . . . . . . . . . . 24 4.6 ComputationalAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5 ResultsandDiscussion 27 5.1 TernaryPhaseEquillibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2 InterphaseInterfacialEnergy . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 iv CONTENTS v 5.3 MicrostructuresinA B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 50 50 5.3.1 SystemS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 O 5.3.2 SystemS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 W 5.3.3 SystemS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 S 5.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.4 Off-symmetricalloysinsystemS . . . . . . . . . . . . . . . . . . . . . . . . 47 S 5.4.1 A B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 40 60 5.4.2 A B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 60 40 5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6 SummaryandConclusions 55 AppendixA ThermodynamicsofTernarySystem 57 AppendixB InterfacialEnergyDetermination 60 Bibliography 61 List of Figures 2.1 Simulated(a)andexperimental(b)coreshellmorphoology . . . . . . . . . . . 8 2.2 Simulated(a)andexperimental(b)dropletmorphology . . . . . . . . . . . . . 9 2.3 Simulated(a)andexperimental(b)core/shellmorphologywithcontinuousshell 9 2.4 Simulated(a)andexperimental(b)ringpattern . . . . . . . . . . . . . . . . . 9 4.1 Periodicboundaryconditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2 Radialcompositionprofilefromthecenteroftheparticles(schematic) . . . . . 21 4.3 GrayscalecolormapprojectedonGibbstriangle . . . . . . . . . . . . . . . . 26 5.1 Isothermal section of the phase diagram for system S (χ = 2.5, χ = 3.5, O AB BC χ =3.5)(schematic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 AC 5.2 Isothermal section of the phase diagram for system S (χ = 2.5, χ = 4.0, W AB BC χ =3.5)(schematic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 AC 5.3 Isothermal section of the phase diagram for system S (χ = 2.5, χ = 5.0, S AB BC χ =3.5)(schematic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 AC 5.4 Equilibrium composition profile across (a) α−β interface (b) β −γ interface (c)α−γ interfaceaccordingtosystemS variables . . . . . . . . . . . . . . . 31 O 5.5 Equilibrium composition profile across (a) α−β interface (b) β −γ interface (c)α−γ interfaceaccordingtosystemS variables . . . . . . . . . . . . . . . 32 W 5.6 Equilibrium composition profile across (a) α−β interface (b) β −γ interface (c)α−γ interfaceaccordingtosystemS variables . . . . . . . . . . . . . . . 33 S 5.7 Microstructures corresponding to left column is for particle radius of 8 units andrightcolumnisforparticleradiusof16unitsforthesamevolumefraction (5%) of particles.Thetop picture is from someearly stage (t = 1500 time steps), middleoneisofintermediatestage(t=3000timesteps)andbottomoneisfor late-stage(t=5000timesteps). Allcorrespondingmicrostructuresarecompared atsimilartimestepandfollowsystemS . . . . . . . . . . . . . . . . . . . . . 36 O 5.8 Microstructures corresponding to left column is for particle radius of 8 units andrightcolumnisforparticleradiusof16unitsforthesamevolumefraction (10%)ofparticles.Thetoppictureis ofsomeearlystage(t=1500timesteps), middleoneisofintermediatestage(t=3000timesteps)andbottomoneisof late-stage(t=5000timesteps). Allcorrespondingmicrostructuresarecompared atsimilartimestepandfollowsystemS . . . . . . . . . . . . . . . . . . . . . 37 O vi LISTOFFIGURES vii 5.9 Microstructurescorrespondingtoleftcolumnisforparticleradiusof8unitsand rightcolumnisforparticleradiusof16unitsforthesamevolumefraction(5%) ofparticles.Thetoppictureisfromsomeearlystage(t=200timesteps),middle oneis ofintermediatestage (t=500time steps)andbottom oneisfor late-stage (t = 3000 timesteps). All corresponding microstructures arecompared at similar timestepandfollowsystemS . . . . . . . . . . . . . . . . . . . . . . . . . . 39 W 5.10 Microstructures corresponding to left column is for particle radius of 8 units andrightcolumnisforparticleradiusof16unitsforthesamevolumefraction (10%) of particles.The top picture is of some early stage (t = 200 time steps), middle one is of intermediate stage (t = 500 time steps) and bottom one is of late-stage(t=3000timesteps). Allcorrespondingmicrostructuresarecompared atsimilartimestepandfollowsystemS . . . . . . . . . . . . . . . . . . . . . 40 W 5.11 Microstructurescorrespondingtoleftcolumnisforparticleradiusof8unitsand rightcolumnisforparticleradiusof16unitsforthesamevolumefraction(5%) ofparticles.Thetoppictureisfromsomeearlystage(t=50timesteps),middle oneis ofintermediatestage (t=500time steps)andbottom oneisfor late-stage (t = 3000 timesteps). All corresponding microstructures arecompared at similar timestepandfollowsystemS . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 S 5.12 Microstructures corresponding to left column is for particle radius of 8 units andrightcolumnisforparticleradiusof16unitsforthesamevolumefraction (10%) of particles.The top picture is of some early stage (t = 50 time steps), middle one is of intermediate stage (t = 500 time steps) and bottom one is of late-stage(t=3000timesteps). Allcorrespondingmicrostructuresarecompared atsimilartimestepandfollowsystemS . . . . . . . . . . . . . . . . . . . . . 43 S 5.13 Microstructures(A B ) corresponding to left column is for particle radius of 40 60 8 units and right column is for particle radius of 16 units for the same volume fraction(5%)ofparticles.Thetoppictureisfromsomeearlystage(t=100time steps),middleoneisofintermediatestage(t=500timesteps)andbottomone is for late-stage (t = 3000 timesteps). All corresponding microstructures are comparedatsimilartimestepandfollowsystemS . . . . . . . . . . . . . . . . 48 S 5.14 Microstructures(A B )corresponding toleftcolumn isforparticle radiusof 40 60 8 units and right column is for particle radius of 16 units for the same volume fraction (10%) ofparticles.The toppicture isof some earlystage (t= 100 time steps),middleoneisofintermediatestage(t=500timesteps)andbottomone is of late-stage (t = 3000 timesteps). All corresponding microstructures are comparedatsimilartimestepandfollowsystemS . . . . . . . . . . . . . . . . 49 S 5.15 Microstructures(A B ) corresponding to left column is for particle radius of 60 40 8 units and right column is for particle radius of 16 units for the same volume fraction(5%)ofparticles.Thetoppictureisfromsomeearlystage(t=100time steps),middleoneisofintermediatestage(t=500timesteps)andbottomone is for late-stage (t = 3000 timesteps). All corresponding microstructures are comparedatsimilartimestepandfollowsystemS . . . . . . . . . . . . . . . . 51 S LISTOFFIGURES viii 5.16 Microstructures(A B )corresponding toleftcolumn isforparticle radiusof 60 40 8 units and right column is for particle radius of 16 units for the same volume fraction (10%) ofparticles.The toppicture isof some earlystage (t= 100 time steps),middleoneisofintermediatestage(t=500timesteps)andbottomone is of late-stage (t = 3000 timesteps). All corresponding microstructures are comparedatsimilartimestepandfollowsystemS . . . . . . . . . . . . . . . . 52 S List of Tables 4.1 Particlesizeandnumberofparticles . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Theoreticallyconsideredvaluesofκ . . . . . . . . . . . . . . . . . . . . . . . 23 4.3 ValuesofallsimulationVariables . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.1 Gradientenergyparametersandcorrespondinginterfcialenergies . . . . . . . . 31 ix