ebook img

Effects of experimental fire regimes on the abundance and diversity of cursorial arachnids of Brazilian savannah (cerrado biome) PDF

2011·6.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Effects of experimental fire regimes on the abundance and diversity of cursorial arachnids of Brazilian savannah (cerrado biome)

— 2011.TheJournalofArachnology39:263-272 Effects ofexperimental fire regimes on the abundance and diversity ofcursorial arachnids ofBrazilian savannah (cerrado biome) GeraldodeBritoFreire-Jr. and PauloCesarMotta; DepartamentodeZoologia, Universidadede Brasilia-70910-900, Brasilia/DF, Brazil. E-mail: [email protected] Abstract. Weinvestigated theinfluenceofburningfrequencyandtimingon theabundanceanddiversityofcursorial arachnidsinthecerrado(savannahofcentralBrazil).Fiveareasweresubjectedtodifferentburningregimes.Ineacharea, 40pitfalltrapswereinstalled.ThearachnidsweresampledforthreedayseachmonthfromApril2007toOctober2008. Abundancewashigherinthecontrolareathaninareassubjectedtoanyfireregime. Speciesrichnesswassimilarinall areas.Theevennesswaslowerinthecontrolarea. Theareassubjecttofireshadsignificantlyhigherdiversitythanthe controlarea.Althoughitwasnotpossibletorankareasaccordingtotheirdiversity,areasburnedinthemiddleofthedry seasontendedtohavehigherdiversitythanareasburnedatthebeginningorendofthisseason,indicatingthatthetimeat whichfireoccursmaybemoreimportantthanthefrequencyofburningforthediversityofcursorialarachnidsin the Braziliancerrado. Keywords: Fireeffects,spiders,Arachnida,Araneae Cerrado is savannah typical of central Brazil. It covers METHODS around two million km^ and includes various types of Studysiteandsamplingdesign.—Thisstudywascarriedout vegetation,amixofwoodyandherbaceousplants. Following in the Roncador Ecological Reserve (RECOR) (15°56'21"S, theAmazonForest,itisthelargestBrazilianbiomeandhasa 47°53'07"W), Brasilia, Brazil, which covers ca 1,350 ha. We well-definedclimatewithastrongdryseasonduringthewinter used pitfall traps installed in five experimental areas (each (approximatelyMaytoSeptember). 200m X 500m)ofcerradosensustricto(excludingveryopen Fireisthemostprevalentformofdisturbanceinthecerrado areas and gallery forests) subjected to different burning bLiaobmoeu,riwahuic&h daFteersrazb-aVcikcetnotiantile1a9s9t4)3.2,0B0u0rnyienagrss(tSiamluglaadtoe-s prreegsiemrevsed(tfirmionmgfairnedfofrreaqtuleenacsyt)3:61y)r;th2e)ctohneteraorllyarbeiaenn(iCaTl)(wEaBs) regrowth, seed germination, flowering and fruiting ofmany wasburnedevery2yrinearlydryseason(lateJune),similarto species (Miranda et al. 2002). The rapid occupation ofthe theoccurrenceofnaturalfires(Ramos-Neto&Pivello2000); cveerrsriatdyoinhamsaniyncrleoacsaetdionfsire(Kflrienqkue&ncyM,acthharedaote2n0i0n5g).the biodi- d3)rythseeamsoodnal(eabrileynnAiuaglu(stM)B,)awapesriboudrniendwihnicthheamnitdhdrloepoogfentihce In the cerrado, as well as in other savannahs, burns are burningismorecommon(Coutinho 1982;Coutinho 1990);4) superficial, and their effects are related to water content, thelatebiennial(LB)wasburnedattheendofSeptember, a according to the shade ofthe herbaceous layer. Small areas periodthatfavorstherenewalofleavesandfloweringofmost can be preserved from the fire, changing the landscape into woody plants (Oliveira & Gibbs 2000); 5) the modal mosaics of different post-burn ages and different floristic quadrennial (QD) was burned every 4 yr in the middle of structures,andthiskindofabioticdisturbancemayaffectthe the dry season (early August), a period that favors the diversitypatterns(Coutinho1990;Pianka1992;Mirandaetal. recruitment ofwoody biomass and the replenishment oflost 1993; Kauffman et al. 1994; Castro & Kauffman 1998; nutrients (Pivello & Coutinho 1992; Kauffman et al. 1994). Mirandaetal. 2002). The last time a quadrennial plot was burned was in August The basic premise of the Intermediate Disturbance Hy- 2007,whilethebiennialplotswerelastburnedinJuly,August pothesis is that the highest diversity is maintained at orSeptember2008. intermediate levels of disturbance on various scales of In each plot, ten sets of traps were installed, each set frequencyandintensitybypreventingcompetitivelydominant consisting offour containers (35 cm diam X 45 cm depth) speciesfromexcludingothers(Connell 1978).Althoughthere buried with their rim at ground level. Each container isvariation in the response ofinvertebrate fauna to fire, the connectedwithothersbydriftfences(6mlong X 0.4mhigh) trend for most groups is high resilience to disturbance, the in a “Y” shape. The arachnids were sampled for three days frequencybeingmoreimportantthantheintensityofthefire each month from April 2007 to October 2008. This (Andersen«feMuller2000). experimental design followed a standardized protocol origi- In 1989, a long-term experiment (the “Fire Project”) was nallydesignedforherpetologicalresearch. initiated in a cerrado area ofcentral Brazil, with the overall All individuals were collected alive and then conserved in objective of determining the effects of different regimes of 80% ethanol. The arachnids were identified to species level prescribedburningonthestructureandfunctionofthisbiome when possible. Voucher specimens ofeach spider species are (Nardoto et al. 2006). Using these experimental areas, this deposited at the arachnid collection ofthe Zoology Depart- study aimed to investigate the influence of frequency and mentoftheUniversidadede Brasilia. timingofburningonabundanceandthediversityofcursorial Data analysis. Only adults were used in the statistical arachnidsofthecerrado. analysis. We used repeated ANOVA measures to investigate 263 1 264 THEJOURNALOFARACHNOLOGY — Table 1. Specieslistandnumberofindividualsofcursorialarachnids(Araneae,OpilionesandScorpiones)collectedinthefiveexperimental treatmentsofcerradosensustrictoincentralBrazil. Treatment Species CT EB MB LB QD Total Anyphaenidae Ayshasp. 0 0 0 1 0 1 Barychelidae Neodipbthelesp. 1 0 1 7 1 5 14 Neodiplothelesp.2 2 4 10 10 9 35 Sasoninaesp. 1 0 0 0 0 1 Caponiidae Caponinanotahilis(Mello-Leitao 1939) 0 0 0 1 0 1 Nopssp. 3 2 0 1 2 8 Corinnidae AhapebarioclaroBonaldo2000 2 10 12 2 12 38 Castkmeirasp. 8 3 0 0 0 11 Carinacapita(Lucas 1856) 1 12 10 1 10 34 Corinnidaesp. 1 5 6 5 1 2 19 Corinnidaesp.2 16 3 0 3 2 24 Falcaninagracilis(Keyserling 1891) 1 2 2 5 1 11 Mazaxsp. 2 0 0 0 0 2 Paradiestusgiganteus(Karsch 1880) 0 3 1 4 2 10 XerapigacamilaeDeSouza&Bonaldo2007 3 3 3 0 3 12 Xerapigatridentiger(O. Pickard-Cambridge 1869) 17 2 5 4 8 36 Ctenidae Calocteninaesp. 0 0 1 0 0 1 Isoctermscaxalis(F.O.Pickard-Cambridge 1902) 1 5 2 2 0 10 Isactenussp. 19 1 0 0 0 20 Parabatmgabrevipes(Keyserling 1891) 93 30 31 24 34 212 PhoneutriaeickstedtaeMartins&Bertani2007 0 1 1 1 1 4 Deinopidae Deinapissp. 1 0 0 0 0 1 Dipluridae Diplurasp. 1 2 4 6 11 6 29 Diplurasp.2 1 22 9 4 6 42 IsclinatheleammlataTullgren 1905 5 0 3 0 0 8 Gnaphosidae Apapylliissilvestrii(Simon 1905) 26 74 68 24 30 222 Apapyliltssp. 1 2 2 0 0 1 5 Camillinasp. 23 3 7 1 1 35 EilicamodestaKeyserling 189 10 7 11 9 13 50 Eilicarujithorax(Simon 1893) 0 0 1 2 3 6 Lycosidae Aglaoctenuslagotis(Holmberg 1876) 6 1 1 0 '0 8 Alopecosamoestci(Holmberg 1876) 1 5 9 2 17 34 Alapecasasp. 1 0 4 6 4 4 18 Alopecosasp.2 431 0 0 0 0 431 Alopecosasp.3 5 7 10 8 3 33 Arctosasp. 1 22 18 5 12 6 63 Arctosasp.2 71 6 12 5 11 105 Hognagumia(Petrunkevitch 1911) 66 63 50 19 48 246 Hognasternalis(Bertkau 1880) 6 11 7 2 10 36 Lycosaanroguttata(Keyserling 1891) 1 3 8 6 4 22 LycosaerytlirognathaLucas 1836 21 6 4 22 8 61 LycosainornataBlackwall 1862 1 1 2 6 9 19 Lycosathorelli(Keyserling 1877) 1 5 11 11 11 39 Lycosinaesp. 1 26 16 25 12 12 91 Lycosinaesp.2 0 19 10 33 30 92 Pavocosasp. 0 6 1 2 4 13 FREIRE-JR.&MOTTA—EFFECTSOFFIREONCURSORIALARACHNIDS 265 — Table 1. Continued. Treatment Species CT EB MB LB QD Total Trochosasp. 58 47 28 13 37 183 Nemesiidae Pvcnothelesp. 1 2 9 6 5 13 35 Pvcnothelesp.2 2 8 4 11 6 31 Pvcnothelesp.3 1 9 7 5 7 29 Oxyopidae Peiicetiasp. 1 11 0 0 0 0 11 Pencetiasp.2 0 1 1 0 0 2 Oxyopessp. 0 1 0 0 0 1 Hamataliwasp. 1 0 0 0 0 1 Palpimanidae Palpimanidaesp. 1 1 3 6 0 0 10 Palpimanidaesp.2 0 1 2 0 1 4 Palpimanidaesp.3 0 1 1 0 0 2 Philodromidae Philodromidaesp. 1 10 1 0 2 0 13 Philodromidaesp.2 5 0 0 1 0 6 Philodromidaesp.3 0 0 2 0 0 2 Philodromidaesp.4 0 0 2 0 0 2 Scytodidae ScytodesitapeviBrescovit&Rheims2000 0 0 1 0 0 1 Sparassidae Polybetessp. 0 0 2 0 1 3 QQuueemmeeddiicceepeinriagcmuartuiccausRhMeelilmos-,LeLiatbaaorq1u9e42&Ramirez 5 0 0 1 2 8 2008 0 1 0 0 0 1 Sparassidaesp. 0 0 1 0 1 2 Nephilidae Nephilaclavipes(Linnaeus 1767) 1 0 0 0 0 1 Theraphosidae Acanthoscurriaaff.gomesiana 8 5 6 5 9 33 Hapalopussp. 3 5 12 9 8 37 SOilcikgiouxsysltornegibboullibiviSaomairmes(V&olC2a0m01a)rgo 1948 03 111 220 62 83 479 Theraphosinaesp. 1 0 4 1 5 3 13 Theraphosinaesp.2 1 0 2 0 2 5 Theridiidae Argyrodessp. 0 0 1 1 I 3 Euryopissp. 1 0 3 2 1 0 6 Euryopissp.2 0 2 0 0 0 2 LatrodectusgeometricusC.L.Koch 1841 1 2 1 0 1 5 Steatodaancorata(Holmberg 1876) 2 0 0 4 0 6 SteatodadiamantinaLevi 1962 25 3 2 4 2 36 Theridiidaesp. 1 0 1 0 0 0 1 Theridionsp. 1 0 7 0 0 0 7 Theridionsp.2 0 0 0 0 10 10 Thomisidae Strophiussp. 3 1 0 2 0 6 Tmarussp. 1 0 0 0 1 0 1 Tmarussp.2 1 0 0 0 0 1 Tmarussp.3 0 0 0 1 1 2 Tmarussp.4 1 0 0 0 0 1 Titanoecidae Goeldiasp. 0 0 0 1 0 1 266 THEJOURNALOFARACHNOLOGY — Table 1. Continued. Treatment Species CT EB MB LB QD Total Trechaleidae SyntreclialeabrasiliaCarico2008 0 0 1 0 1 2 Zodariidae CybaeockmmsmeridionalisLise,Ott&Rodrigues2010 3 2 7 0 1 13 Cybaeodamussp. 0 12 1 0 0 13 LeprolochusbirabeniMello-Leitao 1942 54 62 35 29 46 226 Opiliones Eiisarcusadiinciis(Mello-Leitao 1942) 0 2 1 1 0 4 Grynecoccineloides(Mello-Leitao 1935) 5 8 1 6 3 23 Stygniismidtispinosus(Piza 1938) 2 12 7 5 1 27 Scorpiones AmiiUerisbcdzaniiThorell 1891 10 9 6 5 1 31 BothriurusaragiiayaeVellard 1934 12 47 32 2 12 105 TityiisfasciolatusPessoa 1935 0 9 3 1 3 16 Total 1135 671 574 387 524 3291 the effects oftreatments (main factor) and month (repeated weight to abundant species (extensively sampled) in the measures)ontheabundance, richness,diversityandevenness separationofgroups(Magurran2004).TheRenyiandPielou (all response variables). Later, we applied a Bonferroni indices, cluster analysis and the hypothesis tests were multiplecomparisontest(a<0.005)fortherequirednumber performed using the statistical program R-2.10.0 (R Devel- ofcomparisons(n = 10). Weidentifiedandremovedoutliers opmentCoreTeam 2009)andtheBiodiversityRpackage. fromtheanalysis,andappliedtransformations(logorsquare RESULTS arosostu)mpttoitohnedoifstrhiobmuotgioenneoiftdyatoafinvaorridaenrcetso cwohmepnlynewcietshsatrhye Samplingeffort.—Wecollected4,132individuals, including (Tabachnick & Fidel 2006; Crawley 2007). These analyses 2,699males(65%),592females(15%)and849juveniles(20%), were used because they take into account the temporal representing 98 species (Table 1). The rarefactions based on autocorrelations, since the experimental units were sampled MaoTau and Jacknife 1 values indicated that our sampling repeatedlyovertime(Quinn& Keough2002). effortwassuitabletocollectmostofarachnidspeciesineach We used rarefaction based on Mao Tauvaluesand bythe area(Fig. 1).ThemostabundantspecieswereAlopecosasp.2, nonparametric estimator Jacknife 1, using 1000 randomiza- Hogna gumia and Leprolochus birabeni. Twenty-nine species tionswithout replacementsby Estimates(Colwell2005). The (30%) were represented by fewer than five individuals Jacknife estimators, in general, have been found to perform (Table 1). quite well in extrapolation ofspecies richness with less bias, The fire regimes explained most (52%) ofthe variation in less dependence on sample size and greater precision than abundancevalues. Inthecontrolarea,thereweresignificantly otherestimators(Broseetal.2003).WeusedtheRenyiprofile morespiderscapturedthaninLBandQD(F4,i8-69= 6.2,P< to measure the diversity ofthe arachnid community. While 0.001,Fig. 2).Therewasnosignificantdifferenceinabundance traditional diversity indices supply point descriptions of between CTand EB {P = 0.71) or MB area(P = 0.35). The communitystructure, accordingto the Renyi Equation there areashadsimilarrichness(^418-69=2.0,P=0.08,Figs. la,3). is a continuum of possible diversity measures that equally The control area had the lowest equitability (Pielou), consider both rare and abundant species (Tothmeresz 1995; differingsignificantly from all otherareas underfire regimes SRiicmoptstoan20f0o3r)m.ulaAsd.ditTihoensaellyi,ndiwceesurseefldectShdainffneorne-ntWiaesnpeerctsanodf i('n^d4i,1v8i-d6u9al=s3w.e0r,ePmo=re0.e0v2,enFliyg.di4s)t.riTbhuetedaraemasonsgusbtjecthteedspteocifeisr.e diversity: Shannon’s is sensitive to rare species, whereas Based on the Renyi indexvalues, thecontrol areahad the Simpson’s is more sensitive to changes in abundance of lowestdiversityinrelationtoexperimentalfireareas(Fig. 5), common species (Magurran 2004). Furthermore, both these althoughthedifferencesareonlymarginallysignificantwhen indices are widely used in ecological studies and will enable alphavaluesareequalto4(i/4:9.34,P=0.053).Intersections comparisonswith othersimilarstudies. ofprofiles(Fig. 5)indicatethattheareascannotbeseparated We used MANOVA and Linear Discriminant Analysis based on the community as a whole (dominant and rare (LDA) to separate the groups based on speciescomposition, speciestakensimultaneously). consideringonlythespecieswithmorethan 10individuals.To AccordingtotheShannon-Wienerindex,theareascouldbe vuesreidfyhtiheerasricmhiilcaarlitycliunstsepreciaensalcyosmipsoswiittihonthbeetwseinegnlearelaisn,kawgee cseopmaproasteeddinotfotMhBreeagnrdoupQsD,(F4h,ia8d-69th=e1h8,igPhe<st0.d0i1v)e:rstihtye;firtshte, clustering method and Bray-Curtis distance. This method is second(EBand LB),hadintermediatediversity;andCThad commonly used in community studies, since it gives more the lowest diversity. The Simpson index (p4,i8-69 = 13, P < . FREIRE-JR.&MOTTA—EFFECTSOFFIREONCURSORIALARACHNIDS 267 a 1 11 21 31 41 51 Samples — Figure 1. Rarefactionvaluesgeneratedfrom1000randomizationswithoutrepositionandwitha95%confidenceinterval,performedinfive experimentaltreatmentsoftheFireProject,a. MaoTau;b.Jacknife 1. 0.01)indicatedthatQDhadthehighestdiversity,followedby found an increase in the abundance ofspiders because ofa MB and LB, while the treatments EB and CT presented the higherfrequencyofburningintheSwissAlps. Severalfactors lowestdiversityofarachnids(Table2). — may explain the variation in abundance patterns presented, Speciescompositionandsimilaritybetweentreatments. The among which are the types of vegetation, spider guild or treatmentsdifferedinspeciescomposition(Wilk’sLambda = groupsofspecies. Besidethedifferencesinburningregimethe 0.034, df = 4.9, P < 0.01, Fig. 6). The control area was differences in abundance were probably due to structural characterized by higher abundance of Alopecosa sp. 2 and changesintheenvironmentandnottothedirecteffectsoffire Philodromidae sp. 2.; the QD plot featured Theridion sp. 2, (mortality).AccordingtoMirandaetal.(1993),savannahfires and the treatments with biennial fire (EB, MB and LB) had are of short duration and do not promote a significant moreIsoctenuscoxalisandPalpimanidaesp. 1 increase in soil temperature at depths greater than five Thehierarchicalclusteranalysissplitthecompositionofthe centimeters. Thus, individuals that are sheltered at the time soil arachnids into two groups (Mantel r = 0.97, P < 0.01), ofburning are protected from lethal temperatures promoted onecontainingthecontrolarea(CT),andtheotherincluding byfire(Ghioneetal.2007). Itisnoteworthythattheonsetof all areas subjected to different burning regimes. Within the the rainy season marks the reproductive period of most secondgroup, LBareawasseparatedfromtheothers, which species, and fire at that time may eventually promote wereverysimilartoeachotherinspeciescomposition(Fig. 7). reductions in population, since individuals are more active DISCUSSION andthereforemore—exposedtotheadverseeffectsoffire. — Species richness. Given the similarity in the values of Abundance. Slightly lowerabundance in the late burning richness,thereisnosupportfortheIntermediateDisturbance regimes (LB and QD) is consistent with the studies by HypothesisofConnell, wherehigh richnesswould havebeen Andersenetal.(2005)ontheresponsesofcursorialAustralian expectedintheintermediatestageofdisturbanceinfrequency spiders to savannah burning and Ferrenberg et al. (2006) in (QD) or season (MB). These results agree with the pattern American coniferous forest. Moreover, Moretti et al. (2002) proposed by Mackey and Currie (2000), that richness shows 268 THEJOURNALOFARACHNOLOGY 60 - 40 - 20 0 - "T” “T“ CT EB LB MB QD Treatments — Figure 2. Boxplotofabundanceofcursorialarachnidscollectedinthefiveexperimentaltreatments. Differentlettersindicatesignificant difference(P<0.05)betweentheabundanceoftreatments. 20 15 ~ I a. 03 5 - 0 “ “T“ “T~ CT EB LB MB QD Treatments — Figure 3. Boxplotofrichnessofcursorialarachnidscollectedinthefiveexperimentaltreatments. FREIRE-JR.&MOTTA—EFFECTSOFFIREONCURSORIALARACHNIDS 269 Treatments — Figure 4. Boxplot ofevennessvalues(Pielou’s J) forthespeciescollected in thefiveexperimental treatments. Different letters indicate significantdifference(P<0.05)betweentheevennessoftreatments. Figure 5.—Renyidiversityprofiles(a=0, ...oo)forthefiveexperimentaltreatments. 270 THEJOURNALOFARACHNOLOGY — Table 2. Diversity valuescalculated from Shannon-Wienerand areassubjectedtofire.Furthermore,incontemplatingawider Simpsonindicesforthefiveexperimentaltreatments.Differentletters disturbancegradient, forexample, thelongtimelagbetween indicate significant difference {P < 0.001) between the treatments, the area burned every4yr (QD) and the areapreserved for usingapair-wisecomparison. 36yr,itisimpossibletopredictthediversityinareasburning Shannon-Wiener Simpson oftenwithinthattimeframe.TheseresultsagreewithMackey Treatment mean ± SD mean ± SD anontdrCeuarcrhieed(i2n00a1)m,owdheroatsuegsgteasgtetohfatdiwshteunrbtahneceditvheirssiist,yipnemaoksits CT 2.38 ± 0.12 a 6.12 ±0.2 a cases, due to the paucity of studies on broader levels of EB 3.08 ±0.16 b 14.8 ± 1.2 b disturbance. This lack ofmethodological amplitude causes a MB 3.22 ± 0.17 c 18.3 ± 2.1 c weak correlation between diversity and moderate perturba- QLBD 33..1215 ±± 00..2211 bc 2117..19±± 22..54 dc tisiotnhs.eAinnfoltuheenrceiomfpodritfafnertenatspseucctcetshsaitonhaalsnstoatgebseeonfcvoengseitdaetrieodn onthecommunityofcursorialarachnidsinthecerrado,being littlevariationinresponsetoenvironmentaldisturbancesand animportant—issuetobeinvestigatedinfurtherstudies. tothelackofawidegradientofdisturbance. — Similarity. The groups formed by the cluster analysis Species composition, diversity, and evenness. Little is suggesttwo areaswith different burningfrequencies, butthe knownaboutthespecifichabitatofarachnidsinthecerrado; sameperiod(MBandQD),areverysimilarincompositionof however,thefactthatAlopecosasp.2wasrestrictedtotheCT arachnids. area indicates that this species exhibits a preference for Thelackofrain,whilepromotingthelossoffuelmoisture environments preserved from fire and with high densities of available to burn during the dry season, influences the woodyplants.Inaddition,Theridionsp.2wasmoreabundant behavior of fire through the dry season (Miranda et al. iinnatrheeasQwDitahreaa,biaennndiaIlsobcutrenniunsgcorxeagliimsea(nEdB,PaMlBpimaanndiLdBa)e.sTp.he1 2t0h0e2)c.erTrhaudso,wiitllismeoxdpiefcytetdhethvaetgbetuartniionngainndthleitstearmiensaeassiominlairn results indicate that the fire did not affect the number of way, therefore promoting the coexistence of spider species species, but reduced the population size and increased the withsimilarenvironmentalrequirements. evenness, thereby promoting a greaterdiversity ofspecies of Concluding, theareassubjectedto firespresentedahigher cursorialarachnids. Mackey&Currie(2000)pointedoutthat diversitythanunburnedareas,andburnedareasinthemiddle evenness can be strongly influenced by fires, which was ofthe dry season tended to have higherdiversitythan areas confirmedbythisstudy. burnedatthebeginningorendofthisseason,indicatingthat However,itisnotpossibletocorroboratetheIntermediate thetimingoffiremaybemoreimportantthanthefrequency Disturbance Hypothesis based on the results presented here, ofburnsonthediversityofcursorialarachnidsintheBrazilian duetotheimpossibilityofclearlyorderingdiversityamongthe savannah(cerrado). LDA1 — Figure 6. Canonical variablesobtained from thediscriminantfunctiongenerated bythedistribution ofcursorial spiderspresentinfive experimentaltreatments. FREIRE-JR.&MOTTA—EFFECTSOFFIREONCURSORIALARACHNIDS 271 Bray-Curtis distance Castro, E.A. & J.B. Kauffman. 1998. Ecosystem structure in the BrazilianCerrado:avegetationgradientofabovegroundbiomass, 0,2 0.3 0,4 0,5 0.6 0,7 r1o4o:t26m3a-2s8s3.andconsumptionbyfire. JournalofTropical Ecology I ^ ^ ^ ^ 1 Colwell,R.K.2005. Estimates,Version7.5:Statisticalestimationof CT species richness and shared species from samples (Software and User’sGuide).Onlineathttp://viceroy.eeb.uconn.edu/estimates. Connell,J.H. 1978. Diversityintropicalrainforestsandcoralreefs. Science 199:1302-1310. Coutinho,L.M. 1982.EcologicaleffectsoffireinBrazilianCerrado. Pp. 273-292. In Ecology ofTropical Savannas. (B.J. Huntley & B.H.Walker,eds.).SpringerVerlag, Berlin. LB Coutinho, L.M. 1990. FireintheecologyoftheBrazilianCerrado, Pp.82-105.InFireintheTropicalBiota.(J.G.Goldammer,ed.). SpringerVerlag, Berlin. Crawley,M.J.2007.TheRBook.Wiley,Chichester,UK. Ferrenberg, S.M., D.W. Schwilk, E.E. Knapp, E. Groth & J.E. Keeley. 2006. Fire decreases arthropod abundance but increases EB diversity: early and late season prescribed fireeffects in a Sierra Nevadamixed-coniferforest. FireEcology2:79-102. Ghione,S.,A.Aisenberg,F.G.Costa,L.M.Oca,F.Peres-Miles,R. Postiglioni,V. Quirici&G. Useta. 2007. Efectodelosinceiidios sobre la aracnofauna criptozoica (Araneae, Scorpiones e Opi- liones) en una zona de serranias de Sierra de Las Animas, Maldonado,Uruguay.SociedadZoologicadelUruguay 16:26-31. MB Kauffman,J.B.,D.L.Cummings&D.E.Ward. 1994. Relationships offire,biomassandnutrientdynamicsalongavegetationgradient intheBrazilianCerrado.JournalofEcology82:519-531. Klink, C.A. & R.B. Machado. 2005. Conservation ofthe Brazilian Cerrado.Conservation Biology 19:707-713. Mackey,R.L.&D.J.Currie.2000.Are-examinationoftheexpected QD Macekffeeyc,tsRo.fL.di&stuDr.bJ.anCcuerroine.di2v0e0r1s.itTy.heOidkivoesrs8i8t:y4-d8i3sMt9u3rb.ancerelation- Figure 7.—Hierarchicalclusteranalysisbasedonthecomposition ship:isitgenerallystrongandpeaked?Ecology82:3479-3492. ofarachnidassemblage,andwithreferencetotheBray-Curtisvalues Magurran, A.E. 2004. Measuring Biological Diversity. Blackwell, forseparationofgroups. Oxford,UK. Miranda,A.C.,H.S.Miranda,I.F.O.Dias&B.F.S.Dias. 1993.Soil and air temperature during prescribed cerrado fires in central ACKNOWLEDGMENTS Brazil.JournalofTropicalEcology9:313-320. pitWfaell-atrreapgsraitnesftualllteodGinuatrhienfoieRld.aCnoldlitofotrhealsltoawfifnogftRheECusOeRo.f MirfHaaicnstdtoaor,r.yPHpo..Sf.a,51NM-e6.o8Mt..rIConp.iTcBhauelstCSeaarmvraaanndntoaes.&o(fPA..BSr.Ca.zOilMli:ivreEaicrnoadla&o.gy2R.0aJ0.n2d.MaTNrahqteuuirfisar,le Special thanks go to Dr. Heloisa Sinatora Miranda, coordi- eds.).ColumbiaUniversityPress,NewYork. natoroftheFireProjectforalmost20yr,whoisresponsible Moretti, M., M. Conedera, P. Duelli & P.J. Edwards. 2002. The formuchoftheknowledgeavailableaboutfireeffectsonthe effectsofwildfireonground-activespidersindeciduousforestson cerrado. This work was sponsored by the Universidade de theSwissSouthernslopeoftheAlps.JournalofAppliedEcology Brasilia and CAPES, which provided logistical and financial 39:321-336. support. Anderson Schimiti, Bernardo Miglio, Davi Pantoja, Nardoto,G.B.,M.M.C.Bustamante,A.S.Pinto&C.A.Klink.2006. Valter Luiz, Simone Salgado and Angelo Zerbini gave Nutrient useefficiencyatecosystemand specieslevel insavanna valuableassistanceinfieldwork. Wethank Dr. Stano Pekar aErceoalsogoyf2C2e:n1t9r1a-l20B1r.azil and impacts offire. Journal ofTropical and two anonymous reviewers for valuable comments and Oliveira, P.E. & P.E. Gibbs. 2000. Reproductive biology of two suggestions. speciesofKielmeyera(Guttiferae)inthecerradosofCentralBrazil. LITERATURECITED Flora 195:311-329. Pianka,E.R. 1992. Fireecology. Disturbance,spatial heterogeneity, Andersen, A.N. & W.J. Muller. 2000. Arthropod responses to andbioticdiversity:firesuccessioninaridAustralia.Researchand experimental fire regimes in an Australian tropical savannah: Exploration8:352-371. ordinal-levelanalysis.AustralianJournalofEcology25:199-209. Pivello,V.R.&L.M.Coutinho. 1992.Transferofmacro-nutrientsto Andersen, A.N., G.D. Cook, L.K. Corbett, M.M. Douglas, R.W. theatmosphereduringexperimentalburningsinanopencerrado Eager, J. Russel-Smith, S.A. Setterfield, R.J. Williams & J.C.Z. (Braziliansavanna).JournalofTropicalEcology8:487M97. Woinarski. 2005. Firefrequencyandbiodiversityconservationin Quinn,G.P.&M.G. Keough.2002. ExperimentalDesignandData Australian tropicalsavannas: implications from theKapalga fire Analysisfor Biologists. CambridgeUniversity Press, Cambridge, experiment.AustralEcology30:155-167. UK. Brose,U.,N.D.Martinez&R.J.Williams.2003.Estimatingspecies R DevelopmentCoreTeam. 2009. R: A languageandenvironment richness:sensitivitytosamplecoverageandinsensitivitytospecial forstatisticalcomputing.RFoundationforStatisticalComputing, patterns.Ecology84:2364-2377. Onlineatwww.R-project.org. 272 THEJOURNALOFARACHNOLOGY Ramos-Neto, M.B. & V.R. Pivello. 2000. Lightning fires in a Tabachnick, B.G. &L.S. Fidel. 2006. UsingMultivariateStatistics. Brazilian savanna national park; rethinking management strate- 3'^'*edition.PearsonEducation,UpperSaddleRiver,NewJersey. Ricgoitetsa.,EnCv.ir2o0n0m3e.ntOalnMpaanraagmeetmreincte2v6e:n6n7e5s-s68m4e.asures. Journal of Totohrmdeerriensgz.,JBo.ur1n9a9l5.ofCoVmepgeatraitsioonnoScfideinfcfeer6e:n2t8m3-e2t9h0o.dsfordiversity TheoreticalBiology222:189-197. Salgado-Labouriau, M.L. & K.R. Ferraz-Vicentini. 1994. Fire in the cerrado32,000yearsago.CurrentResearchinthePleistocene11:85-87. Manuscriptreceived1 October2010,revised29March2011.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.