ebook img

Effects of Cryogenic Treatment after Annealing of Ti-6Al-4V Alloy Sheet on Its Formability at Room PDF

16 Pages·2017·6.2 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Effects of Cryogenic Treatment after Annealing of Ti-6Al-4V Alloy Sheet on Its Formability at Room

metals Article Effects of Cryogenic Treatment after Annealing of Ti-6Al-4V Alloy Sheet on Its Formability at Room Temperature ZhiqingHu1,2,*,HuihuiZheng3,GuojunLiu3andHongweiWu4 1 RollingForgingResearchInstitute,JilinUniversity,Changchun130025,China 2 KeyLaboratoryofAutomobileMaterials,MinistryofEducation,JilinUniversity,Changchun130025,China 3 CollegeofMaterialScienceandEngineering,JilinUniversity,Changchun130025,China; [email protected](H.Z.);[email protected](G.L.) 4 SchoolofEngineeringTechnology,UniversityofHertfordshire,HatfieldAL109AB,UK;[email protected] * Correspondence:[email protected];Tel.:+86-186-0442-1257 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:24February2018;Accepted:22April2018;Published:24April2018 Abstract: In this article, the effects of cryogenic treatment after annealing on the formability of Ti-6Al-4V alloy sheet were experimentally studied. The Ti-6Al-4V titanium alloy was treated by cryogenictreatmentafterannealing(ACT).Tensiletestswerecarriedoutusingauniversalmachineat roomtemperature. ThemicrostructureevolutionofTi-6Al-4VsubjectedtoACTwasalsoinvestigated usinganopticalmicroscope(OM).Boththeshearingperformanceanddrawingformabilitywere analyzedbypunchshearingtestsanddeepdrawingtests,respectively. Resultsshowedthatafter ACT,thetendencyoftheβphasecanbeapparentlychangingintostableβ’andα’phases. Theelastic modulus is lower than that of the untreated material. It was found that both the yield strength andtensilestrengtharedeclinedslightly,whereastheductilityisincreasedsignificantly. Theshear strengthinpunchshearingisdecreasedatroomtemperatureandcryogenictemperature. Theratioof smoothzoneonthesectionafterACT3ismuchlargerthantheothers. Therolloverdiametersarenot obviouslygreaterthanthoseoftheuntreated. Additionally,theheightoftheburrshowsadecreasing trendafterACT.Duringdeepdrawing,drawingdepthisdeeperthanthatoftheuntreatedmaterial, thedrawingloadafterACTisreduced,andthedecreasingtendencyofthedrawingloadslowsdown. Itisnotedthatthemicro-cracksoccuratthebottomofthesample. Keywords: Ti-6Al-4Vtitaniumalloys;cryogenictreatment;mechanicalproperties;punchshearing; deepdrawing 1. Introduction Ti-6Al-4Vtitaniumalloyisbeingincreasinglyusedinautomation,energy,aerospaceindustries, healthcareandautomobileduetotheirexcellentcharacteristicssuchaslowdensity, highspecific intensity, strongcorrosionresistance, excellentheatresistance, goodperformanceathighandlow temperature, no magnetism, and good damping performance, as well as it has a special shape memory [1] and outstanding biocompatibility. Ti-6Al-4V is a type of titanium alloy of α + β with excellentcomprehensiveproperties. NowadaysTi-6Al-4Valloyiswidelyappliedanditaccountsfor approximately50%ofthetotalworldproductionoftitaniumalloys[2]. The cryogenic treatment (CT) is a treatment method that can change material properties by thesamplesbeingimmersedinliquidnitrogen. CTisasupplementaryprocessoftraditionalheat treatmentwhichhasbeenacknowledgedfordecades[3]. CTonmaterialscouldbefirstlyreported by Gulyaev in 1937, and CT could improve the cutting properties of tool steels [4]. Afterwards, Kamranetal.[5,6]investigatedtheeffectsofCTonthemechanicalpropertiesofsomeselectedtool Metals2018,8,295;doi:10.3390/met8050295 www.mdpi.com/journal/metals Metals2018,8,295 2of16 steels,i.e.,D2and80CrMo125,anditwasfoundthatCTcaneliminatetheretainedaustenite,whichcan makeabettercarbidedistributionandahighercarbideamount. Anobviousimprovementinwear resistanceofcryogenically-treatedsampleswasindicated. Gaoetal.[7]studiedtheeffectsofCTonthe microstructureandpropertiesofWC-Fe-Nicementedcarbides.ItwasstatedthatCTcouldpromotelath martensiteformation,afterCT,thehardnessandtransverserupturestrengthofWC-Fe-Nicemented carbideswerehigherthanthatoftheuntreated,whilefracturetoughnesswasdecreased. Inaddition, thewearresistancewasimprovedobviously.Lateron,Baldisserietal.[8]reportedthatCTcanproduce amorehomogeneousstructurewhichdelayedthenucleationofcracksandincreasedthefatiguelifeof thetool. Duringrecentyears,manyeffortshavebeendevotedtotheeffectsofcryogenictreatment onmagnesiumalloy. Severalresearchers[9–11]investigatedtheeffectsofCTonthemicrostructure andmechanicalpropertiesofAZ31magnesiumalloy. Theirresultsshowedthatthetensilestressand hardnessofthesamplestreatedincryogenicenvironmentwerehigherthanthoseoftheuntreated samples. TheCTofothermagnesiumalloys,suchasMg-1.5Zn-0.15GdandAZ91,wereinvestigated, and it was found that CT could improve the microstructure and mechanical properties of the alloys [12,13]. Studies also revealed that CT improved the mechanical properties, dimensional stability,wearresistanceandthermalconductivityofaluminumalloys,magnesiumalloys,andcopper alloys[14].Zhouetal.[15]experimentallyinvestigatedthetensilepropertiesandmicrostructuresofthe 2024-T351aluminumalloysubjectedtoCT.Theyrevealedthattheresidualtensilestressin2024-T351 wasremoved,andslightcompressiveresidualstresswasgeneratedafterCT,thiscouldcontributeto theimprovementofthetensilepropertiesofthealloy.Intermsoftheresidualstress,similarconclusions have been obtained for 2024 aluminum alloy. Zhangetal.[16]investigated the tensile behavior of 3104aluminumalloywithCT.Theirresultsshowedthatthesampleexhibitedsuperiorcomprehensive mechanicalproperties,includingtensilestrength,yieldstrength,andelongation. Thestress-strain curveofthesampleexhibitedthePortevin-LeChateliereffect. InthiscasetheCTcouldaccelerateboth theprecipitationanddispersionofsecondaryphaseparticles,whichcouldenhancethedislocation pinningeffectofsolventatoms. Moreover,theyalsoconductedscanningelectronmicroscope(SEM) analysesofthefracturesurfacesandagoodplasticitywasachieved. Araghchietal.[17]carriedout microstructureobservation,mechanicalpropertiesmeasurement,andresidualstressesdetermination on 2024 aluminum alloy. It was found that CT not only resulted in reduction of residual stresses, butalsoimprovedthemechanicalproperties. Vidyarthietal.[18]experimentallystudiedtheeffectsof CTonthemicrostructureandwearperformanceofCr-Mn-Cuwhitecastirongrindingmediacopper alloys. Theirresultsshowedthatthehardnessandwearpropertieswereimprovedsignificantly. Most recently, Kim et al. [19] investigated the effects of CT on nickel-titanium endodontic instruments,andfoundthattherewasaslightincreaseinmicrohardnessafterCT.Gu[20]foundthat, afterCT,wearresistancewasincreasedduetothereductionofβphase. Yumark[21]alsofoundthat thecontentofβphasewasdecreasedafterCT,andtheenergyabsorptionincreasedanddamaged areasweredecreased. Moreover,Guetal.[14]alsoinvestigatedtheeffectofCTonthemechanical propertiesofTi-6Al-4Valloy. TheyfoundthatthemicrostructureofTi-6Al-4Valloyconsistedofα phaseandβphase,withβphasesdispersedintheboundariesofequiaxedαgrains. Theyreported that CT reduced the quantities of β phases by transforming the metastable β phases into stable β phasesandαphase. Thisreductionofβphaseparticleswasbeneficialtotheimprovementinplasticity ofTi-6Al-4Valloy. CTincreasedtheductilityandstrengthofTi-6Al-4Valloy. AlthoughCTisbeneficial toTi-6Al-4Valloy,theresearchabouttheeffectofCTonthemechanicalpropertiesofTi-6Al-4Valloy isscarce. Therearemuchliteratureontheformabilityofmaterialdescribedbytheforminglimitdiagram (FLD). Veenaas et al. [22] carried out scaled Nakajima tests to determine the FLD for describing the limit of formability under deep drawing stress state conditions. Zhang et al. [23] carried out uniaxialtensiletests,cuppingtestsandrigidbulgingexperimenttoobtaintheforminglimitdiagram (FLSD),takingthecold-rollingdeepdrawingsheetSPCEN-SDandDC04asresearchobject. TheFLSD can provide reference for practical production according to the values of hardening exponent (n), Metals2018,8,295 3of16 Metals 2018, 8, x FOR PEER REVIEW 3 of 16 sptrlaasinti crasttrioai n(rr) aatinod( rs)tarenndgstthr ecnogetfhficcoieenffit c(iKe)n. tH(Ko)w.Hevoewr,e vite rs,hiotushldo ubled nbeotneodt etdhatth aitt iits isnonto teennoouugghh ttoo eevvaalluuaattee tthhee ffoorrmmaabbiilliittyy oofft htheet ittiatnaniuiumma lalollyoysh seheeteotn olynlbyy bteyn tseilnestieles ttse.sPtsu.n Pcuhnschhe asrhinegartiensgts taenstds daenedp ddereapw dinrgawteisntgs aterestesm arpel oeymedpltooysetdu dtoy sthtuedfoyr tmhea bfiolirtmy.aIbnilaidtyd. iItnio nad,tdhietiopnu,n tchhein pgudnecphtihngin ddeepetph dinr adweienpg disraawlsionga mis aatlesroi aal mchaatrearciatel rcihstaircavcateluriestfioc rveavlualeu faotrio env.aTluhaetrieofno.r eT,hpeurenfcohres,h peuarnicnhg sthesetasr,indgee tpesdtsr,a dweienpg , darnadwtienngs, ialendte stetsnswileer eteesmts pwloeryee deminptlohyisedp aipne trhtios pinavpeesrt itgoa itnevtehsetiegfafteec ttsheo feCffTecotsf oTfi -C6AT lo-4f VTit-i6taAnli-u4Vm taitlalonyiusmon ailtlsoyfosr omna ibtsil iftoyrmatarboiolimty taetm ropoemra ttuerme.perature. 22.. EExxppeerriimmeennttaall PPrroocceedduurree 2.1. Material 2.1. Material Incurrentwork,thecommercialTi-6Al-4ValloysheetwasselectedandTable1listischemical In current work, the commercial Ti-6Al-4V alloy sheet was selected and Table 1 list is chemical ccoommppoossititioionnss. .ThTeh teentesnilsei lsetrsetnrgetnhg, tyhi,elydie sltdresntgrethn g(th0(.2σ)0,. 2a)n,da ndducdtiulicttyil wityerwe 1e0re701 M07P0aM, 9P3a0, M93P0a,M anPda , and11%respectively. 11% respectively. Table1.ChemicalcompositionsofTi-6Al-4Vtitaniumalloy(wt%). Table 1. Chemical compositions of Ti-6Al-4V titanium alloy (wt%). Ti TiA l Al V V FFee CC N N H H O OtOhers Others 89.1755 89.167.1545 6.144 .074.07 00.0.07575 0.00.01166 0.0202.0 220.00105.0 0105.1 00.1.4 0.4 2.2. Samples 2.2. Samples TThhee ssaammpplleess wweerree aannnneeaaleledd aatt 776600 °◦CC ffoorr 9900 mmiinn [[2244]], ,tthheenn tthheeyy wweerree ccoooolleedd iinn tthhee QQTTFF--11220000XX vvaaccuuuumm tutubbee fufurnrnacaec ewwithit hthteh teemtempepreartuatrue rceocnotrnotlrloinllgin agccaucrcaucrya cisy ±i1s °±C1, a◦sC s,haoswsnh oinw FniginurFei g1ua.r eTh1ea . mThaxeimmuaxmim huematihnega triantge raanted acnodolcinoogl irnagter aatree a2re0 2°0C◦ C/m/imn.i nD.uDruinrgin ganannenaelianlign gthteh eAArgrgoonn ggaass wwaass continuously injected into the tube. After annealing the samples (see Figure 1b) with different CT continuouslyinjectedintothetube. Afterannealingthesamples(seeFigure1b)withdifferentCTtime time were stored in a liquid nitrogen. All the samples were divided into seven groups according to werestoredinaliquidnitrogen. AllthesamplesweredividedintosevengroupsaccordingtoCTtime. CT time. The details of groups are shown in Table 2. ThedetailsofgroupsareshowninTable2. (a) (b) FFiigguurree 11.. ((aa)) QQTTFF--11220000XX vvaaccuuuumm ttuubbee ffuurrnnaaccee;; aanndd ((bb)) tthhee aannnneeaalleedd ssaammpplleess ffoorr ppuunncchh sshheeaarriningg tetesststs. . TTaabbllee 22.. TTrreeaattmmeenntt ggrroouuppss.. Group Index Treatment Method CT Time GroupIndex TreatmentMethod CTTime AT Annealed - AT Annealed - ACT1 Annealed −196 × 4 h ACT1 Annealed −196×4h ACT2 Annealed −196 × 8 h ACT2 Annealed −196×8h AACCTT33 AAnnnneeaaleledd −−119966 ×× 1122 hh AACCTT44 AAnnnneeaaleledd −−119966 ×× 1166 hh AACCTT55 AAnnnneeaaleledd −−119966 ×× 2200 hh ACT6 Annealed −196×24h ACT6 Annealed −196 × 24 h Metals 2018, 8, x FOR PEER REVIEW 4 of 16 Metals2018,8,295 4of16 2.3. Metallographic Observation 2.3. MAefttaelrlo tgrreaapthmiceOntbss,e trhvaet isounrface of the samples was initially grinded by abrasive paper and then polisAheftde.r Atrfeteartmwaerndtss,, tthhee ssuamrfapclee osufrtfhaeces awmaps lecosrwroadseidn ibtiya lclyhegmriincdale drebagyeanbtsra wsiivthe p88a pveorl%an dH2tOhe, n2 pvoolli%sh HedF., aAnfdte 1r0w vaordl%s, HthNeOsa3.m Fpinleallsyu,r tfhaec esawmapslceo orfr oedacehd gbryoucph ewmaisc adlerteecatgeedn btsy wopitthic8a8l mvoiclr%osHcopOy, 2 (ZEISS microscope; Axio.Imager.A2m, manufactured by Carl Zeiss Microlmaging GmbH,Gottingen, 2vol%HF,and10vol%HNO . Finally,thesampleofeachgroupwasdetectedbyopticalmicroscopy 3 Germany). (ZEISSmicroscope;Axio.Imager.A2m,manufacturedbyCarlZeissMicrolmagingGmbH,Gottingen, Germany). 2.4. Vickers Hardness 2.4. VickersHardness Vickers hardness values of the samples were obtained using Vickers hardness tester under different treatment process. During the tests, the load is 100 N and the duration is 5 s with the Vickers hardness values of the samples were obtained using Vickers hardness tester under magnification is 400 times. In the current study, the sample surface o roughness is Ra0.2. For each different treatment process. During the tests, the load is 100 N and the duration is 5 s with the group sample, five points were tested for hardness, and the average values were calculated magnificationis400times. Inthecurrentstudy,thesamplesurfaceoroughnessisRa0.2. Foreach accordingly. groupsample,fivepointsweretestedforhardness,andtheaveragevalueswerecalculatedaccordingly. 22..55.. TTeennssiillee TTeessttss TThhee ddeettaaiillss ooff tthhee ssaammppllee ddiimmeennssiioonnss aarree sshhoowwnn iinn FFiigguurree 22,, tthhee tteennssiillee tteessttss wweerree ccaarrrriieedd oouutt aatt rroooomm tteemmppeerraattuurree uussiinngg aa uunniivveerrssaall tteessttiinngg mmaacchhiinnee aatta at teennssiilleer raatteeo off2 2m mmm//mmiinn.. TThhrreeee ssaammpplleess iinn eeaacchh ggrorouuppw wereersee lseeclteecdtefdor ftohre ttehset .tTehste. mTahxei mmuamximfourcme (Ffobr)coef t(hFebsa)m opfl ethaen dsathmeptloet aalnddef othrme attoiotanl odfetfhoermgaautigoen leonf gtthhes egcatiuognea fletenrgttehn ssielectfiroanc tuafrteeor fttehnesislaem fpralectcuarne boef otbhtea inseadm.pElne gcinanee rbien gosbttraeisnseσd. b aEnndgisntreaeirninδgc satnrebses calbcu alantded stbryaitnh ee ncgainn ebeer icnaglcsutlraetsesd-s btrya itnhef oernmguinlaee.ring stress-strain formula. (b) 1200 1100 1000 (a) aP900 AT M/sse780000 AACCTT12 rts gn600 AACCTT34 ire500 ACT5 e nig400 ACT6 nE 300 200 100 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Engineering strain/% FFiigguurree 22.. TTeennssiillee ssaammppllee aanndd ssttrreessss aanndd ssttrraaiinn ccuurrvveess uunnddeerr ddiiffffeerreenntt ttrreeaattmmeenntt ((aa)) tthhee tteennssiillee ssaammppllee; (aunndit (:bm) mstr)e;sasn-dstr(bai)ns tcruersvs-esst ruanindecru drvifefseruenndt etrredaitfmfeerennt.t treatment. Figure 2b plots the stress and strain curves of the samples. From Figure 2b, in the process of Figure 2b plots the stress and strain curves of the samples. From Figure 2b, in the process of deformation, elastic deformation occurs firstly, and the stress is proportional to strain. When the deformation, elastic deformation occurs firstly, and the stress is proportional to strain. When the stress exceeds e (e is the elastic limit), and the material starts to yield, it can also be noted that stressexceedsσ (σ istheelasticlimit),andthematerialstartstoyield,itcanalsobenotedthatthere e e there is not apparent yield platform in the curves. Under the condition, the stress value that produces is not apparent yield platform in the curves. Under the condition, the stress value that produces 0.2% residual deformation is defined as its yield limit (s). When the stress exceeds the yield limit, 0.2%residualdeformationisdefinedasitsyieldlimit(σ ). Whenthestressexceedstheyieldlimit, plastic deformation occurs. As the cross-sectional area shsrinks, the maximum force (Fb) when the plastic deformation occurs. As the cross-sectional area shrinks, the maximum force (F ) when the sample is broken is divided by the original cross-sectional area (S0), the result is cablled tensile sampleisbrokenisdividedbytheoriginalcross-sectionalarea(S ),theresultiscalledtensilestrength strength (b). When the stress reachesb, the stage of uniform0 plastic deformation has ended. The (σ ). Whenthestressreachesσ ,thestageofuniformplasticdeformationhasended. Thesamplestarts b b sample starts to produce uneven plastic deformation and form necking, followed by the stress toproduceunevenplasticdeformationandformnecking,followedbythestressdecreases. Whenthe decreases. When the final stress reaches K (Fracture strength), the specimen is found to be broken. finalstressreachesσ (Fracturestrength),thespecimenisfoundtobebroken. K 22..66.. PPuunncchh SShheeaarriinngg TTeessttss In the current study, punch shearing was employed to investigate the effects of ACT on the In the current study, punch shearing was employed to investigate the effects of ACT on the properties of Ti-6Al-4V titanium alloy. The principle of punch shearing and the die are shown in properties of Ti-6Al-4V titanium alloy. The principle of punch shearing and the die are shown in Figure 3a,b,d, respectively. The diameter of the punch is 3 mm and the die is 3.07 mm. A slot is Metals2018,8,295 5of16 Metals 2018, 8, x FOR PEER REVIEW 5 of 16 Figure 3a,b,d, respectively. The diameter of the punch is 3 mm and the die is 3.07 mm. A slot is machined in the die to clamp the sample. In order to obtain better section quality, the punching speed machinedinthedietoclampthesample. Inordertoobtainbettersectionquality,thepunchingspeed is set to be 5 mm/s 24. After ACT, the samples with the length of 30 mm, the width of 19 mm and the issettobe5mm/s24. AfterACT,thesampleswiththelengthof30mm,thewidthof19mmand height of 0.2 mm will be punched and divided into two groups. A group of the samples will be the height of 0.2 mm will be punched and divided into two groups. A group of the samples will immersed into the liquid nitrogen and punched as shown in Figure 3c. Another group of the samples be immersed into the liquid nitrogen and punched as shown in Figure 3c. Another group of the will be punched at room temperature. Fracture surface was detected by optical microscopy (ZEISS sampleswillbepunchedatroomtemperature. Fracturesurfacewasdetectedbyopticalmicroscopy microscope; Axio.Imager.A2m). Table 3 lists the test numbers of the samples under different (ZEISSmicroscope;Axio.Imager.A2m). Table3liststhetestnumbersofthesamplesunderdifferent conditions. During punch shearing, the relationship between the maximum deformation resistance conditions. Duringpunchshearing,therelationshipbetweenthemaximumdeformationresistance Pmax and shear strength  is calculated by the following formula: P andshearstrengthτiscalculatedbythefollowingformula: max = Pmax (cid:0)2πravgt(cid:1) (1) τ = P / 2πr t (1) max avg where t is the thickness of the plate, ravg (cid:0)rprd(cid:1) 2, rp is the radius of the punch, and rd is wheretisthethicknessoftheplate,r = r +r /2,r istheradiusofthepunch,andr isthe avg p d p d trhaed iruasdoiufst hoef tdhiee .die. Servo press (a) (b) Punch Guide sleeve and claming Liquid nitrogen Liquid nitrogen Die Sheet container R=1.515mm R=1.535mm (c) (d) m Punching Die m 8 = h h=3.5mm Punch Slot liquid nitrogen tank R=8.95mm Guide sleeve and clamping FFiigguurree 33.. ((aa)) PPrriinncciippllee ooff ppuunncchh sshheeaarriinngg;; ((bb)) tthhee ppuunncchhiinngg pprroocceessss;; ((cc)) aatt ccrryyooggeenniicc tteemmppeerraattuurree ppuunncchhiinngg;; aanndd ((dd)) tthhee ppuunncchh aanndd ddiiee.. TTaabbllee 33.. TTeesstt ssaammpplleess ffoorr ppuunncchh sshheeaarriinngg tteessttss.. Group Index GroupIndex Number at the Untreated AT ACT1 ACT2 ACT3 ACT4 ACT5 ACT6 theUntreated AT ACT1 ACT2 ACT3 ACT4 ACT5 ACT6 Diff. Temp. NumberatDiff.Temp. Number at room temp. 3 3 3 3 3 3 3 3 Numberatroomtemp. 3 3 3 3 3 3 3 3 NNuummbbeerr oonnlilnineec rcyroygoegneicnic 3 3 33 33 33 33 33 33 33 Metals2018,8,295 6of16 Metals 2018, 8, x FOR PEER REVIEW 6 of 16 2.7. DeepDrawing 2.7. Deep Drawing Inthecurrentwork,deepdrawingtestswerealsoconductedusingaservopresstostudythe In the current work, deep drawing tests were also conducted using a servo press to study the effect of ACT on the formability of Ti-6Al-4V titanium alloy. The size of the sample for the deep effect of ACT on the formability of Ti-6Al-4V titanium alloy. The size of the sample for the deep drawingtestis29mm×29mm×0.2mm. Table4listedthetestcases. Theprincipleofdeepdrawing, drawing test is 29 × 29 × 0.2 mm. Table 4 listed the test cases. The principle of deep drawing, the theschematicdiagramofthedieandpunchareshowninFigure4. Additionally,thediameterofthe schematic diagram of the die and punch are shown in Figure 4. Additionally, the diameter of the punchwithsphereis4mm,andthedieis5.4mm. Duringdeepdrawing,thepunchcontinuously punch with sphere is 4 mm, and the die is 5.4 mm. During deep drawing, the punch continuously descendsdownuntilthesamplehappenstocrack. Atthistime,thedisplacementvalueofthepunchis descends down until the sample happens to crack. At this time, the displacement value of the punch thelimitdepthofdeepdrawing. is the limit depth of deep drawing. Table4.Testsamplesfordeepdrawingtests. Table 4. Test samples for deep drawing tests. GGroruopup InInddeexx ththe eUUnnttrreeaatteedd AATT ACACTT1 1 AACCTT22 AACCTT33 AACCTT44 AACCTT55 AACTC6T6 NNuummbbeerr 33 33 3 3 33 33 33 33 3 3 (a) Servo press (b) R=2mm Punch m R=2.7mm Guide sleeve and claming m Punching Die 0 1 = h Liquid nitrogen Liquid nitrogen Die Sheet container R=8.95mm FFiigguurree 44.. ((aa)) TThhee pprriinncciippllee ooff ddeeeepp ddrraawwiinngg;; aanndd( (bb))t thheep puunncchha annddd diiee.. 33.. RReessuullttss aanndd DDiissccuussssiioonn 33..11.. MMiiccrroossttrruuccttuurraall CChhaarraacctteerriissttiiccss FFiigguurree 55 sshhoowwss tthhee mmiiccrroossttrruuccttuurreess ooff tthhee ssaammpplleess aafftteerr AATT aanndd AACCTT.. AAfftteerr rreeccrryyssttaalllliizzaattiioonn aannnneeaalliinngg,, tthhee mmiiccrroossttrruuccttuurree iiss ccoommppoosseedd ooff αα aanndd ββ pphhaasseess,, aanndd tthhee ββ pphhaassee iiss ddiissppeerrsseedd iinn tthhee bboouunnddaarryyo offe eqquuiaiaxxeeddα αg grarainins.s.I nInF Figiguurere5 5t htheeb rbirgihgthrte rgeigoinosnas raerαe αp hpahsaesse,sa,n adntdh ethbel abclkacgkr agirnasinasr earβe pβh pahseass.eTs.h Tehdei dstirsitbruibtuiotnioonf oβf βp hpahsaesseiss issh sohwownnin inF iFgiugurere5 a5,ab,,ba, nanddit itc acannb bees seeeennc cleleaarrlylyt hthaattβ βp phhaasseess ddiissppeerrssee iinn tthhee bboouunnddaarriieess ooff αα ggrraaiinn aaftfeterr AATT. .HHoowweevveerr, ,aaftfeter rAACCTT11, n,newew phpahsaesse isnicnlculduidnign gα’α a’nadn βd’ βa’rea rperepcriepciitpaitteadt e[d26[]2. 6T].heT hαe’, αβ’’, aβn’da nudntruanntsrfaonrsmfoerdm βe dphβaspeh adsisepdeirsspee ursneifuornmifolyr minl yboinunbdoaurniedsa orife sα opfhαaspehs,a asse ss,haoswsnh oinw FnigiunrFe i5gcu,dre. F5rco,dm. AFrCoTm1 AtoC ATC1Tt2o, AthCe Tc2h,atnhgee cihna mngiceroinstrmuicctruorset rwuictthu trheew initchretahsee ionfc rtheaes CeTo ftitmhee,C isT sthimowe,ni sins hFoigwunrei n5eF,ifg. uItr seh5oeu,fl.dI tbseh nooutledd btheanto ttheed ptrheactipthiteatperse icnipcliutadteinsgi nαc’l,u βd’,i nagndα ’β, βin’,carneadsβe rienmcraerakseabrelym aanrkda dbilsypaenrdsed uisnpifeorrsmeulyn.i fWorhmelny .thWe hCeTn tthimeeC aTrtriimvees aartr i1v2e sha, tth1e2 qhu,tahnetiqtiueasn otfit tiehse opfrtehceippitraetceips iatartee sinacrreeianscerde,a saendd, athned tshizeessi zbeescboemcoe mlaerglaerrg, ear,s asshsohwown nini nFFigiguurere 55gg,,hh.. WWhheenn tthhee ttiimmee iinnccrreeaasseessf frroommA ACCTT44t otoA ACCTT6,6t, htehec hcahnagnegein inth tehme micriocrsotrsutrcutuctrueries eisx hexibhiitbeidteidn iFnig Fuirgeu5rei– 5ni.–Int.n Iet endesetdos btoe obbes eorbvseedrvtheadt tthheatb tohthe qbuoathn tiqtuieasnatnitdiessi zaensdi nscirzeeass einfucrrethaseer, wfuhrtihcheri,n dwihcaictehs itnhdaticAatCeTs cthanatt rAanCsTfo cramn tthreanmsfeotramst atbhlee mβepthasatsaebilne tβo spthaabslee βin’tpoh sataseblaen βd’ αp’hpahsea saen,da nαd’ pthhearseei, sannod othbevrioe uiss nchoa onbgveioinusα cphhaansgee. Tinh eαr peshualstes. aTchheie rveesdulatss aabchoiveeveadre aisn acboonvseis aterne cien wcoitnhsitshtoenseceo bwtaitihn ethdoisne tohbetlaiitnereadt uinre th2e4 .literature 24. IItt ccaann bbee sseeeenn ffrroomm aallll tthhee fifigguurreess tthhaatt bbootthh tthhee qquuaannttiittiieess aanndd ssiizzeess ooff tthhee pprreecciippiittaatteess aarree aappppaarreennttllyy iinnccrreeaasseedd aafftteerr AACCTT.. TThhee rreeaassoonn ccoouulldd bbee tthhaatt,, tthhee αα--TTii iiss aa hheexxaaggoonnaall cclolossee--ppaacckkeedd ssttrruuccttuurree,,w whheerreeaasst thheeβ β--TTiii iss tthhee bbooddyy cceenntteerreedd ccuubbiicc ssttrruuccttuurree,, aanndd tthhee ddiiffffuussiioonn aabbiilliittyy ooff hheexxaaggoonnaall cclloossee--ppaacckkeedds tsrtuructcuturereis ifsa rfabre lboewlotwhe tbhoed byocdeyn tceerendtecruebdi ccustbruicc tsutrreucotwurine gotwoihnegx atog ohneaxlacgloosnea-pl acclokesed- sptrauckcteudr estirsuicntucrleo sies ianr rcalyo.seG aurreatya. lG.[u2 6e]t satla. t[e2d6]t hstaattethde thcoant ttrhaec tcioonntrvaecltoiocnit yveolfotchitey βofp thhaes eβ ipshfaassete irs faster than that of α phase at low temperature, which can produce enough driving force to promote the precipitate of the α titanium particle s depending on the matrix. Moreover, at low temperature, Metals2018,8,295 7of16 thanthatofαphaseatlowtemperature, whichcanproduceenoughdrivingforcetopromotethe pMreectailps i2t0a1t8e, 8o, fx tFhOeR αPEtEitRa RnEiuVmIEWp a rticlesdependingonthematrix. Moreover,atlowtemperatu7r eo,f t1h6e solubilityofvanadiumdropssignificantly,resultinginβphaseisinmetastablestateandtransformed the solubility of vanadium drops significantly, resulting in β phase is in metastable state and tostableβ’phase. ACTcantransformthemetastableβphaseintostableβ’phaseandα’phase. Due transformed to stable β’ phase. ACT can transform the metastable β phase into stable β’ phase and α’ totheprecipitationofprecipitates,thebondingforcebetweengrainboundaryandgrainboundaryis phase. Due to the precipitation of precipitates, the bonding force between grain boundary and grain small,thiswilllowerthebondstrengthatthecrystalboundary,resultinginthedecreaseoftensile boundary is small, this will lower the bond strength at the crystal boundary, resulting in the decrease strength. Ontheotherhand,theeffectofthecoldcompressioninACTprocesscouldmakethegaps of tensile strength. On the other hand, the effect of the cold compression in ACT process could make in the material larger. Especially at the grain boundary, the number of the pores increases due to the gaps in the material larger. Especially at the grain boundary, the number of the pores increases weakbondingforcebetweentheprecipitatesandthegrainboundary. Thus,theunrecoverableplastic due to weak bonding force between the precipitates and the grain boundary. Thus, the unrecoverable deformationiseasiertooccur,theelasticmodulusandtensilestrengthdecrease. plastic deformation is easier to occur, the elastic modulus and tensile strength decrease. Figure5.Cont. Metals2018,8,295 8of16 Metals 2018, 8, x FOR PEER REVIEW 8 of 16 Figure 5. Microstructure of Ti-6Al-4V with different the treatment: (a) AT, 500×; (b) AT, 1000×; (c) Figure 5. Microstructure of Ti-6Al-4V with different the treatment: (a) AT, 500×; (b) AT, 1000×; ACT1, 500×; (d) ACT1, 1000×; (e) ACT2, 500×; (f) ACT2, 1000×; (g) ACT3, 500×; (h) ACT3, 1000×; (i) (c)ACT1,500×;(d)ACT1,1000×;(e)ACT2,500×;(f)ACT2,1000×;(g)ACT3,500×;(h)ACT3,1000×; ACT4, 500×; (j) ACT4, 1000×; (k) ACT5, 500×; (l) ACT5, 1000×; (m) ACT6, 500×; (n) ACT6, 1000×. (i)ACT4,500×;(j)ACT4,1000×;(k)ACT5,500×;(l)ACT5,1000×;(m)ACT6,500×;(n)ACT6,1000×. MMeteatlasls2 2001188,,8 8,,2 x9 5FOR PEER REVIEW 9 9ofo f161 6 3.2. Tensile and Hardness Properties 3.2. TensileandHardnessProperties Figure 6 plots the average values of elastic modulus, tensile strength, yield strength, and the ductFiliigtuy.r eIt 6capnl obtes steheen afrvoemra gFeigvuarelu 6eas tohfate, laafstteirc AmTo, dthuelu esla,stteinc smiloedsutrleuns gisth 1,2y1.i6e lMdPstar,e wnghtehre,aasn adfttehre dAuCctTil1it, yt.heI tacvaenrabgee vseaelunef orof mtheF ieglausrteic6 maothdautl,uas fitse rdeAcTre,atsheede tloa s1t1ic9.2m ModPual.u Fsroism1 F2i1g.6urMe 6Paa,, iwt ihs earlesoa s aoftbesreArvCeTd 1t,htaht ethaev oevraegraellv aavluereaogfet vhaelueelass otifc thmeo edlausltuics misoddeuclruesa asered dtoec1r1ea9s.2edM sPloaw. Flyr owmithF itghue rienc6rae,aistei s aolsfo CoTb tsiemrve,e rdeathchatintgh ea omvienriamlluamv evraalguee voaf l1u1e5s.8o fMtPhae aefltaesrt iAcCmTo4d. uWluitsha trhee dineccrreeaassee dofs CloTw tliymwe,i ftrhotmhe inAcCreTa5s etoo fACCTTt6im, teh,er eaavcehraingge avamluinei mofu tmhev eallausetioc fm11o5d.8ulMusP saliagfhtetrlyA iCncTr4e.aWsei tfhrotmhe 1i1n7c.r5e aMsePoaf tCo T11ti8m.7e , frMomPa.A TChTe 5cotorrAelCatTio6n, tehqeuaatvieorna gise evstaalbuleisohfedth aenedla ist tcicanm boed cuolnucslusldigedh ttlhyaitn tchree aesleasftrioc mmo1d1u7.l5usM oPf aaltlo 1t1h8e.7 sMamPpal.eTs hweictho rAreTla otiro AnCeqTu ias tdioencriesaessetda,b wlishheerdeaasn tdheit eclaanstibce mcoondculluudse ids itnhcartetahseedel aafstteicr mACodTu4,l ubsuot f atlhleth oevsearamllp vlaelsuwesi tohf AthTe eolraAstiCc Tmiosdduelcurse iass leodw,ewr hthearena tshtaht eofe tlahset iucnmtreoadtuedlu ssaimspinlecsr.e Faisgeudrea f6tber shAoCwTs4 , btuetntshilee ostvreernagltlhv, aalnude sito cfatnh ebee lsaesetinc tmhaotd tuhleu vsailsuleosw oebrtatihnaend tbhya tthorfeteh teeustns tarepaptreodacsha meapclhe so.tFhiegru broet6hb shafotwers AteTn sainled sAtrCenTg. tMh,oarnedovietrc,a wnibthe stheeen inthcraetatshee ovfa CluTe stiombeta, itnheed tebnystilher esetrteensgtstha pdpercoreaacshees aacnhdo tthhee r bdoethcraefatseirnAg Ttraenndd AfoCllTo.wMso arecocovredr,awncieth wthitehi nthcree aesqeuoaftiConT taism feo,ltlhoewtse: nsilestrekntgthdec, rweahseersea nkd tihse b ADCT dceocnresatasnint,g atnrden cdalfcoulllaotweds aasc c1o1r4d4a.3n8c MewPait,h anthde equ iast cioonnsatsanfot,l laonwds c:aσlcbu=latketdA DasC T−0β.,0w3.h Feirgeukrei s6cc osnhsotwans t, andcalculatedas1144.38MPa,andβisconstant,andcalculatedas−0.03. Figure6cshowstheyield the yield strength it is clearly observed that with the increase of the CT time, the values of the yield strengthitisclearlyobservedthatwiththeincreaseoftheCTtime,thevaluesoftheyieldstrength strength decreases, and the equation of declining trend is in accordance with that of the tensile decreases, andtheequationofdecliningtrendisinaccordancewiththatofthetensilestrengthas strength as mentioned above, where k is calculated as 1028.74 MPa, and  is calculated as −0.027. mentioned above, where k is calculated as 1028.74 MPa, and β is calculated as −0.027. Figure 6d Figure 6d demonstrates the ductility, and it can be seen that the ductility is increased gradually with demonstratestheductility,anditcanbeseenthattheductilityisincreasedgraduallywithtreatment treatment methods from AT to ACT. Furthermore, with the increase of the CT time, the ductility is methodsfromATtoACT.Furthermore,withtheincreaseoftheCTtime,theductilityisincreased increased remarkably until, the peak value is achieved after ACT3, which is increased by 17.5% remarkablyuntil,thepeakvalueisachievedafterACT3,whichisincreasedby17.5%comparedtothe compared to the values after AT. Afterwards, the values decrease from ACT4 to ACT6. The valuesafterAT.Afterwards,thevaluesdecreasefromACT4toACT6. Thecorrelationequationcan, thcoursr,ebleatδio=n 1e5q.u9a3t+ion1 .6c7aen−, (0th.1u8ts−, 2)b2e. Thδe=i1m5.p9r3o+v1e.6m7eent-(o0f.1m8t-e2c)2han.i cTahlpe roimpeprrtoievsemhaesnot bovfi omusecinhflanuiecnacle opnrtohpeefrotirems ahbailsit yoobfvTioi-u6sA li-n4fVlusehneceet .oAnf tetrhAe CfTo,rmplaabstiilcityd efoofr mTai-t6ioAnl-i4sVm osrheeelitk. elAyfttoero cAcuCrTd, upeltaosttihce ddeecfroeramseaotifoyni eisld msotrreen lgikthelayn tdo eolcacsutirc dmuoed tuol uthse. Tdheecrdeauscet iloift yyiiselcdl esatrrleynginthcr eaansde del,awsthicic mhoredsuullutss.i nThthe e ladtuecoticlcituyr ries nccleeaorlfyc rinacckresadseudri, nwghdicehfo rremsualttiso nin. Tthhee lpatreo pooccrutirornenocfes mof ocortahckzso dnueriinngp udnecfohrsmhaetairoinn.g Tahned thperodpeoprtthioinn odfe sempodortahw zionngei ninc rpeuansec.h shearing and the depth in deep drawing increase. (a) 1200 123 1160 (b) 122 121.6 a 121 P1120 M us/GPa111112890 119.2 118.3 118.1 117.5 118.7 gth σ/b11004800 modul111167 115.8 stren1000 σb=1144.38t-0.030 Elastic 111111345 Tensile 992600 112 AT ADCT1 ADCT2 ADCT3 ADCT4 ADCT5 ADCT6 880 AT ACT1 ACT2 ACT3 ACT4 ACT5 ACT6 Different treatment Different treatment 1080 18.0 1060 17.7 (d) (c) Pa1040 17.4 M σ/s1020 17.1 gth 1000 %16.8 eld stren996800 ctility δ/1166..25 Yi940 Du15.9 δ=15.93+1.67e-(0.18t-2)2 920 σs=1028.74t-0.027 15.6 900 15.3 880 15.0 AT ACT1 ACT2 ACT3 ACT4 ACT5 ACT6 AT ACT1 ACT2 ACT3 ACT4 ACT5 ACT6 Different treatment Different treatment FFigiguurere6 .6C. hCahnagnegseosf otef ntseinlesitlees tt:e(sat): e(laa)s teilcamstiocd mulouds;u(lbu)st; e(nbs)i letesntrseilneg sthtr;e(nc)gythie; ld(c)s tyreienlgdt hs;t(rden)gdtuhc;t i(ldit)y . ductility. Metals 2018, 8, x FOR PEER REVIEW 10 of 16 Metals2018,8,295 10of16 Five points distributed uniformly on each sample were marked by the Vickers hardness tester. VariatFiiovne opfo Vinitcskderiss thriabrudtneedssu nwiiftohr mdilfyfeorneneta tcrheastammepnlte iws sehreowmna rikne Fdigbuyrteh 7e. VTihcke earvsehraagrden veaslsuteess toefr . fVivaer ivaatilouneso ifnV eiacckhe rgsrohuaprd wneesrse wcailtchudlaitfefedr eanntdt trheea tcmuervnet iosf sthhoe wvanriiantiFoing uisr eas7 .foTllhoewasv: erHaVgevavltu0e.0s05o8f wfihveerve alvu eiss itnhee accohnsgtraonut panwde craelccuallcauteldat aesd 3a8n8d.4t HheVc, uarnvde ot fitsh veavriaarbialeti oofn CisTa tsimfoel.l oItw casn: HbeV se=env tf0r.o00m58 Fwighuerree 7v tihsatht ethceo nhsatradnnteasns dvaclaulceus ldatiestdriabsu3te8 8o.n4 HboVt,ha sniddetsi sofv athriea bculervoef.C ItT atlismo ec.aInt cbaen sbeeens etehnatf rtohme hFairgnuerses 7vtahluaetst haereh ainrcdrneeasssedv awluitehs tdhiest rinibcureteasoen obf oCtTh stiimdees, oafndth tehceu irnvcer.eaItsianlgso trceanndb oef sveaelnueths aits tihne ahcacronreds swviathlu tehsea reeqiunactrieoans.e Adlwthitohutghhe itnhcer ehaasredonfeCssT otfim thee, asnadmtphleei nacftreera sAinCgTt riesn odvoefravlall uinecsriesaisneadc, ctohred cwhaitnhgtehse ineq tuhaet ihoanr.dAnletshso aurgeh ntohte ohbavridonuess sbeocfatuhsees athme pmleaaxfitmeruAmC dTififseroevnecrea lbleintwcreeeans etdh,et hmeacxhimanugmes ainndt htheeh maridnnimesusma ries 4n.o5t HoVbv. iIot ucasnb beeca cuosnecltuhdeemd athxiamt AumCTd hifafse riennsicgenbifeitcwanete enfftehcet omna txhime huamrdannedss tohfe tmhei nailmlouym. is4.5HV.ItcanbeconcludedthatACThasinsignificanteffectonthehardnessofthealloy. 397 The plots of hardness values Fitting cu rve 396 V H 395 s/ s e n 394 d r a h s 393 r e k c HV=388.4t0.0058 Vi 392 391 AT ACT1 ACT2 ACT3 ACT4 ACT5 ACT6 Different treatment FFigiguurere 77. .VVaarriaiatitoionn oof fVVicickkeerrss hhaarrddnneessss wwiitthh ddiiffffeerreenntt ttrreeaattmmeenntt.. 33.3.3. .EEfffefecctt oonn PPuunncchh SShheeaarriningg PPrrooppeerrttiieess 33.3.3.1.1. .SShheeaarr SSttrreennggtthh FFiigguurree 88aa,b,b sshhooww tthhee sshheeaarr ssttrreennggtthh ooff tthhee ssaammpplleess wwiitthh ddiiffffeerreenntt ttrreeaattmmeennttss aatt bbootthh rroooomm aanndd ccrryyooggeennicic tetemmppeeraratuturer,e r,ersepsepcetcivtievleyl.y I.t Ictanca bne bseeesne efrnomfro FmigFuirgeu 8rae t8haatt hwahtewthheert ahfetrera AfteTr oAr TACorTA, tCheT , sthheeasrh setarernstgrtehn gdtehcrdeeacsreesa sines cionmcopmarpisaornis oton tthoet huenutrnetarteeadte mdamteartiearli.a Il.t Isthsohuoludl dbeb enontoetded ththaat,t ,aaftfeterr tthhee ttrreeaattmmeennttss ffrroomm AATT ttoo AACCTT22,, tthhee sshheeaarr ssttrreennggtthh ggrraadduuaallllyy ddeeccrreeaasseessf frroomm7 76688M MPPaat oto7 74499M MPPaa,,t htheenna aq quuicikckin icnrceraesaesaet aAt CATC3T,3w, hwichhicihs 7i5s 47M54P Ma,Paan,d aanfdte arwftearrwdsairtddse ictr deaescerseatose7s4 t4oM 74P4a MatPAaC aTt4 A.FCrTo4m. FArComT4 AtoCAT4C tTo6 A,tCheT6sh, tehaer sshtreeanrg stthreinsginthcr iesa isnecdrefarosemd 7fr4o4mM 7P4a4t Mo7P5a8 toM 7P5a8. MInPoar.d Ienr otrodsetru tdoy stthuedyef tfhecet esfofefcCtsT oofn CtTh eonp uthnec hpsuhnecahr isnhge,atrhinegp, uthnec hpushnecahr isnhgeawriansgp werafso rpmerefdoramtecdry aotg cernyiocgteenmicp etermatupreer,aatunrde,t haneds htehaer sshtereanr gstthreinsgsthho iws nshinowFing uinre F8igbu. rIte c8abn. bIte csaene nbec leseaerlny cflreoamrlyF ifgruorme 8Fbigtuhraet t8hbe tchhaat nthgee icnhashnegaer isnt rsehnegatrh sotrfesnagmthp loefs saafmterplAeTs aisftsemr AalTle rist hsmanalulenrt rtehaatne dunontreesa.tFedro omneAsC. FTr1otmo AACCTT41, ttoh eAsChTe4a,r tshtere snhgetahr dsetrcerneagstehs dfreocmrea8s3e1s MfrPoamt o83810 7MMPPaa ,tob u8t0d7e McrePaas,i nbgutt ednedcernecaiseisnagr etesnlodwenecdi.eAs taAreC sTlo5,wthede.s hAeta rAsCtrTe5n,g tthher esahcehaers stthreenmgtihn imreuacmhevsa ltuhee omfi8n0i1mMumPa v,aanlude thofe n80it1 inMcPreaa, saensdto th82e3n Mit PinacarteAasCesT 6to. T8h2e3 cMomPap aarti sAoCnTo6f.s Thehaer csotmrepnagrtihsoant roofo smhetaerm stpreenragttuhr eata rnodomcr yteomgepneircatteumrep aenrdat curryeoigsesnhioc wtenmipneFraigtuurree i8sc s.hIotwcann ibne Foigbusreer v8ecd. Iftr ocamn Fbieg uorbes8ecrvtehda tfsrhoema rFsitgruenreg t8hc atthraoto smhetaerm sptreernatguthre aist lroowomer tthemanptehraattuartec risy ologweneirc tthemanp ethraattu arte . cMryeoagnewnihci ltee,mthpeecrhataunrgee. oMfethanewshheialer, stthreen cghthanagtec royfo gtheen ischteeamr psetrraetnugrtehi samt curcyhoggeennitcle rtetmhapnertahteusrhe eiasr msturecnhg gtehnattlerro tohmant etmhep sehraetaur rset.rength at room temperature.

Description:
Keywords: Ti-6Al-4V titanium alloys; cryogenic treatment; mechanical Gao, Y.; Luo, B.H.; Bai, Z.H.; Zhu, B. Effects of deep cryogenic treatment on
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.