ebook img

Effects of Anchor Wedge Dimensional Parameters on Post-Tensioning Strand Performance PDF

69 Pages·2013·15.92 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Effects of Anchor Wedge Dimensional Parameters on Post-Tensioning Strand Performance

Effects of Anchor Wedge Dimensional Parameters on Post-Tensioning Strand Performance December 2013 K.Q. Walsh, R.L. Draginis, R.M. Estes, and Y.C. Kurama Report #NDSE-2013-02 barrel anchor anchor housing wedge imprint stress concentration at wide end stress concentration near-uniform at narrow end wedge gap large gap between wedges n.)0.06 /i n.0.05 n (i ai0.04 r st reduced gap between wedges nd 0.03 a r st e 0.02 at m ti0.01 Ul 0.00 8 0 2 4 6 8 0 2 4 6 8 6. 7. 7. 7. 7. 7. 8. 8. 8. 8. 8. Wedge taper angle, WA(degrees) Structural Engineering Research Report Civil and Environmental Engineering and Earth Sciences University of Notre Dame Notre Dame, Indiana This page intentionally left blank. Effects of Anchor Wedge Dimensional Parameters on Post-Tensioning Strand Performance December 2013 Report #NDSE-2013-02 by Kevin Q. Walsh University of Notre Dame Randy L. Draginis Hayes Industries Ltd Richard M. Estes University of Notre Dame Yahya C. Kurama University of Notre Dame Structural Engineering Research Report Civil and Environmental Engineering and Earth Sciences University of Notre Dame Notre Dame, Indiana This page intentionally left blank. ABSTRACT This report describes the findings from an experimental investigation on the effects of important anchor wedge dimensional parameters on the ultimate strains and stresses of seven-wire, low relaxation unbonded post-tensioning (PT) strand at failure. Previous research on industry- representative standard PT anchor components from the U.S. has shown that premature fracture of the strand wires can occur at strand strains as low as 0.01 in./in., or even less in some instances. This strain limit may pose a practical constraint for the use of this construction technique under extreme conditions, such as emerging applications in earthquake-resistant structures. Building on the previous findings, the current research experimentally investigates if significant improvements in the ultimate strand strains can be made by: (1) slightly increasing the taper angle of the wedge outer surface (approximately 1 degree increase) with respect to the taper angle of the anchor housing cavity; and (2) slightly increasing the thickness of the wedge as measured at the crown. The objective in controlling these wedge dimensions is to achieve a more uniform distribution of stresses within the strand-wedge-anchor interface by maintaining a uniform, minimized gap between the individual wedge pieces (i.e., wedge gap control) over the height as well as the circumference of the anchor, and thereby reducing or even eliminating stress concentrations at the narrow end of the anchor. The test results demonstrate that relatively small, controlled deviations from industry-representative standard wedge dimensions can significantly improve the ultimate performance of the strand-anchorage system at failure. A large number of strand-anchorage systems were tested to evaluate the statistical validity of the results involving presumed-optimal dimensions for the wedge taper angle and crown thickness. It is concluded that these dimensional variations, which have not been previously investigated in a systematic study, may represent core design variables affecting the stress transfer at the strand- wedge-anchor interface. To this end, important quality control measures are identified and should be considered for the manufacturing of the wedges as well as the anchor housing. 1 This page intentionally left blank. CONTENTS ABSTRACT .................................................................................................................................... 1  CONTENTS .................................................................................................................................... 2  LIST OF FIGURES ........................................................................................................................ 4  LIST OF TABLES .......................................................................................................................... 6  ACKNOWLEDGMENTS .............................................................................................................. 7  SYMBOLS AND NOTATION ...................................................................................................... 8  INTRODUCTION ........................................................................................................................ 10  1.1 Overview ................................................................................................................. 10  1.2 Objectives ............................................................................................................... 12  1.3 Previous Research at the University of Notre Dame .............................................. 13  1.4 Scope and Approach of Current Research .............................................................. 16  1.5 Organization of Report ........................................................................................... 17  WEDGE TAPER ANGLE DIFFERENTIAL AND CROWN THICKNESS .............................. 18  2.1 Wedge Manufacturing Process ............................................................................... 18  2.2 Introducing a Wedge Taper Angle Differential ...................................................... 18  2.3 Increasing Wedge Thickness Measured at Crown .................................................. 20  EXPERIMENTAL PROGRAM ................................................................................................... 22  3.1 Wedge Dimensions ................................................................................................. 22  3.2 Anchor Dimensions ................................................................................................ 23  3.3 Strand Properties ..................................................................................................... 23  3.4 Test Equipment ....................................................................................................... 24  3.5 Test Setup and Procedure ........................................................................................ 25  3.6 Test Measurements ................................................................................................. 26  TEST RESULTS AND FINDINGS ............................................................................................. 28  4.1 The Effects of Wedge Dimensional Variations on Ultimate Strand Strain ............ 28  4.2 The Effects of Wedge Dimensional Variations on Strand Failure Modes .............. 33  4.3 Statistical Validation of Results .............................................................................. 35  4.4 Quality Control Measures for PT Anchor Components ......................................... 38  SUMMARY AND CONCLUSIONS ........................................................................................... 39  REFERENCES ............................................................................................................................. 41  2 APPENDIX A: TABULATED DATA BY TEST GROUP ......................................................... 44  APPENDIX B: DETERMINATION OF STRAND CROSS-SECTIONAL AREA .................... 53  APPENDIX C: STATISTICAL ANALYSIS DATA AND RESULTS ....................................... 55  3 LIST OF FIGURES Figure 1.1: Strand wire fracture at anchor entry point .................................................................. 11  Figure 1.2: Coupled wall subassembly test results (Weldon and Kurama 2007) showing strand wire fractures (1 kip=4.448 kN) ................................................................................................... 11  Figure 1.3: Plan view of full-scale structure and elevation view of full-scale wall (Smith et al. 2012) (1 in. = 25.4 mm) ................................................................................................................ 12  Figure 1.4: Materials tested by Walsh and Kurama (2009, 2010, 2012) ...................................... 14  Figure 1.5: Representative strand fracture stress versus fracture strain results from Walsh and Kurama (2009, 2010) (1 in.=25.4 mm; 1 psi=6.895 kPa) ............................................................. 14  Figure 1.6: Wedge height versus strand fracture strain (and associated linear trend lines) from Walsh and Kurama (2009) (1 in.=25.4 mm) ................................................................................. 15  Figure 1.7: Anchor housing cavity taper angle versus strand fracture strain (and associated linear trend line) from Walsh and Kurama (2009) (ATA= arctan[(TID–BID)/(2H )]) (1 in.=25.4 mm) 15  a Figure 1.8: Anchor schematic depicting taper angle differential and wedge cross-section as measured at crown ........................................................................................................................ 16  Figure 2.1: Wedge imprint photos (top) and schematics (bottom) inside anchor housing after ultimate strand fracture ................................................................................................................. 19  Figure 2.2: Typical manufacturing dimensions for presumed-optimal, higher tapered wedges in a 0.6-in. PT strand anchorage (ϕ=center hole diameter; difference between minor and major ϕ represents reduction in diameter due to teeth height) ................................................................... 20  Figure 2.3: Anchorages of typical 0.6-in. strand systems with varying wedge gap control ......... 21  Figure 3.1: Wedge crown thicknesses, WT, versus wedge taper angle, WA, for individual test specimens ...................................................................................................................................... 22  Figure 3.2: Testing equipment ...................................................................................................... 24  Figure 3.3: General test setup (1 in.=25.4 mm) ............................................................................ 25  Figure 3.4: Determination of strand strains from measured strand stress and other data ............. 26  Figure 4.1: Wedge taper angle, WA, versus ultimate strand strain for individual test specimens (with second-order trend lines and optimal ranges also shown) ................................................... 29  Figure 4.2: Wedge crown thickness, WT, versus ultimate strand strain for individual test specimens (with second-order trend lines and optimal ranges also shown) ................................. 29  Figure 4.3: Wedge taper angle, WA, versus coefficient of variation, CV, of ultimate strand strain for selected test groups (with second-order trend lines and optimal ranges also shown) ............. 30  Figure 4.4: Wedge crown thickness, WT, versus coefficient of variation, CV, of ultimate strand strain for test groups (with second-order trend lines and optimal ranges also shown) ................. 30  4 Figure 4.5: Number of outer wire slips (top + bottom anchorages) versus ultimate strand strain for individual test specimens (with linear trend lines also shown) ............................................... 34  Figure 4.6: Number of wire fractures (top + bottom anchorages) versus ultimate strand strain for individual test specimens (with linear trend lines also shown) ..................................................... 34  Figure 4.7: Wedge taper angle, WA, versus number of wire fractures (top + bottom anchorages) for individual test specimens (with second-order trend lines and previously-defined optimal ranges also shown) ........................................................................................................................ 35  Figure 4.8: Wedge top thickness, WT, versus number of wire fractures (top + bottom anchorages) for individual test specimens (with second-order trend lines and previously-defined optimal ranges also shown) ........................................................................................................................ 35  5

Description:
relaxation unbonded post-tensioning (PT) strand at failure. uniform, minimized gap between the individual wedge pieces (i.e., wedge gap control)
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.