molecules Article Effects of Agitation, Aeration and Temperature on Production of a Novel Glycoprotein GP-1 by Streptomyces kanasenisi ZX01 and Scale-Up Based on Volumetric Oxygen Transfer Coefficient YongZhou1,†,Li-RongHan1,2,†,Hong-WeiHe1,BuSang3,Dai-LinYu3,Jun-TaoFeng1,2and XingZhang1,2,* 1 ResearchandDevelopmentCenterofBiorationalPesticides,NorthwestAgriculture&ForestryUniversity, Yangling712100,Shaanxi,China;[email protected](Y.Z.);[email protected](L.-R.H.); [email protected](H.-W.H.);[email protected](J.-T.F.) 2 ShaanxiResearchCenterofBiopesticideEngineering&Technology,Yangling712100,Shaanxi,China 3 AgricultureResearchInstitute,TibetAcademyofAgriculturalandAnimalHusbandryScience, Lhasa850032,Tibet,China;[email protected](B.S.);[email protected](D.-L.Y.) * Correspondence:[email protected],Tel.:+86-029-8709-2122 † Theseauthorscontributedequallytothiswork. Received:8December2017;Accepted:5January2018;Published:11January2018 Abstract: The effects of temperature, agitation and aeration on glycoprotein GP-1 production by Streptomyces kanasenisi ZX01 in bench-scale fermentors were systematically investigated. The maximum final GP-1 production was achieved at an agitation speed of 200 rpm, aeration rate of 2.0 vvm and temperature of 30 ◦C. By using a dynamic gassing out method, the effects of agitation and aeration on volumetric oxygen transfer coefficient (k a) were also studied. The L valuesofvolumetricoxygentransfercoefficientinthelogarithmicphaseincreasedwithincreaseof agitationspeed(from14.53to32.82h−1)andaerationrate(from13.21to22.43h−1). Inaddition, asuccessfulscale-upfrombench-scaletopilot-scalewasperformedbasedonvolumetricoxygen transfercoefficient,resultinginfinalGP-1productionof3.92,4.03,3.82and4.20mg/Lin5L,15L, 70Land500Lfermentors,respectively. Theseresultsindicatedthatconstantvolumetricoxygen transfercoefficientwasappropriateforthescale-upofbatchfermentationofglycoproteinGP-1by StreptomyceskanasenisiZX01,andthisscale-upstrategysuccessfullyachieved100-foldscale-upfrom bench-scaletopilot-scalefermentor. Keywords: scale-up;glycoprotein;Streptomyces;anti-TMV;volumetricoxygentransfercoefficient 1. Introduction As an important part of natural products, microbial metabolites exhibit high diversity in producing species, functions, bioactivities and chemical structures, which have gradually become ascientificresearchhotspotinrecentyears[1]. Streptomycesisacommonandwellknownspecies of microorganism, and metabolites isolated from Streptomyces account for nearly half of the total numberofmicrobialcompounds[1–3]. Antibioticsandsimilarsmallmoleculecompoundsconstitute an important group of metabolites produced by Streptomyces and usually show various biological activities,representingthemaintopicofstudiesandliteratureallthetime[4,5].Withtherapidprogress ofmethodsandtechnologiesforscreeningandisolation,thenumberofnovelmicrobialmetabolites continuestogrow,butanumberofbiologicalmacromolecules,suchaspolysaccharides,polypeptides andglycoproteins,werealsosimultaneouslydiscovered[6–10]. Molecules2018,23,125;doi:10.3390/molecules23010125 www.mdpi.com/journal/molecules Molecules2018,23,125 2of14 It is well known that microbial growth and their metabolite production in bioreactors are greatly influenced by the medium components and physical factors, such as agitation, aeration, temperature, fermentation time and dissolved oxygen (DO) [11]. Both agitation and aeration are important parameters for all aerobic processes, and have a significant effect on the production of mostbiopolymers,includingxanthan[12],gellan[13],pullulan[14],curdlan[15],andsoon[16–18]. Agitationplaysanimportantmixingandshearingroleinfermentationprocesses. Itnotonlyimproves massandoxygentransferbetweenthedifferentphases,butalsomaintainshomogeneouschemicaland physicalconditionsinthemediumbycontinuousmixing. Ontheotherside,agitationcancauseshear forces,whichinfluencemicroorganismsinseveralways,suchaschangesinmorphology,variationin growthandmetaboliteformationandevencausingdamagetocellstructures. Aerationdetermines theoxygenationofthefermentationprocess,andalsocontributestomixingofthefermentationbroth, especiallywheremechanicalagitationspeedsarelow[18,19]. Process optimization is generally performed in bench-scale bioreactors, and then scaled up to larger scale for commercial production [20]. The objective of scale-up is to design and build a larger scale system on the basis of the results obtained from small scale devices [21]. The scale-upstrategyneedstobebasedonsomecriteriasuchasvolumetricoxygentransfercoefficient (k a), volumetricpowerconsumption(P/V),impellertipspeed(Vs)andmixingtime(t )[22–24]. L m Foraerobicfermentation,oxygensupplyisoneofthekeylimitingfactorsformicrobialgrowthand productformation,thusvolumetricoxygentransfercoefficient(k a)isgenerallyusedasascale-up L criterion[25,26]. k aplaysanimportantroleinthedesign,scale-upandeconomyofthefermentation L process. This coefficient is considerably influenced by a lot of factors, such as geometrical and operationalcharacteristicsofvessels,mediumcomponentsandthemicroorganisms’morphology[27]. Anumberofmethodshavebeendevelopedfork ameasurement,suchaschemicalmethods,sodium L sulfite oxidation method, absorption of CO , physical methods, and dynamic methods [28–30]. 2 The dynamic gassing out method is the most common method and includes the determination of oxygentransferrate(OTR)andoxygenuptakerate(OUR),respectively[31]. StreptomyceskanasenisiZX01(CGMCC4893)wasoriginallyisolatedfromsoilaroundKanasLake (XinjiangProvince,China)[32]. OurpreviousstudyindicatedthatstrainZX01canproduceanovel glycoproteinGP-1withactivityagainstplantviruses,especiallytobaccomosaicvirus(TMV)[33,34]. However, batch fermentation of strain ZX01 was found to be extremely unstable, affording low GP-1productionandrequiringlongfermentationperiods,whichnotonlyreducetremendouslythe efficiencyoffutureresearch,butalsoseriouslyhinderpotentialindustrialproductionofthestrainand commercialdevelopmentofitsrelatedfermentationproducts[35]. In the present work, the effects of agitation, aeration and temperature on the production of glycoproteinGP-1byStreptomyceskanasenisiZX01ina5Lfermentorwereinvestigatedsystematically. Inaddition,theprocesswasscaledupfrombench-scale(5L)topilot-scale(15L,70Land500L)on thebasisofmaintainingthevalueofk atostudythefeasibilityforfutureindustrialproductionof L glycoproteinGP-1asanovelanti-plantvirusagent. 2. Results 2.1. EffectofTemperatureontheBenchScaleFermentationofStrainZX01 Figure1showsfermentationresultsunder25,30,35and40◦C,withaerationrateandagitation speedcontrolledat1.0vvmand150rpm,respectively. AsshowninFigure1A,timecourseofcell growthwasclearlydividedintothreephases(logarithmicphase,stationaryphaseanddeclinephase). Themaximumvaluesofdrycellweight(DCW)were3.15,2.94,2.85and2.78g/Lat25,30,35and 40◦C,respectively(Table1). Inotherwords,alowertemperaturewasbeneficialtogrowthofstrain ZX01althoughcellgrowthrateincreasedwithincreaseoftemperatureinthebeginning(24h). Molecules2018,23,125 3of14 Molecules 2018, 23, 125 3 of 13 Figure 1. The effect of temperature on DCW (A); GP-1 production (B) and DO (C) during batch Figure 1. The effect of temperature on DCW (A); GP-1 production (B) and DO (C) during batch fermentation of Streptomyces kanasenisi ZX01 in a 5 L fermentor. fermentationofStreptomyceskanasenisiZX01ina5Lfermentor. Table 1. The final GP-1 production, the maximum DCW and kLa under different temperatures, agitation Table1.spTeheedsfi annadl aGePra-t1iopnr roadteusc itni oan 5, Lth feermmeanxtiomr.u mDCWandkLaunderdifferenttemperatures,agitation speedsandaerationratesina5Lfermentor. Parameters The Final GP-1 Production (mg/L) The Maximum DCW (g/L) kLa (h−1) Temperature (°C) 25 1.32 3.15 - 30 Th2e.47F inalGP-1 TheM2a.9x4i mum - Paramete rs 35 Prod2.u20c tion(mg/L) DCW2.85( g/L) kL-a (h−1) 40 1.95 2.78 - TempAergaittautioren ((r◦pCm)) 150 25 2.59 1.32 33..1025 14.53- 200 30 3.05 2.47 23..9124 18.23- 250 2.16 2.67 27.21 35 2.20 2.85 - 300 1.87 2.61 32.82 40 1.95 2.78 - Aeration (vvm) 0.5 2.50 3.00 13.21 1.0 2.96 3.10 16.70 Agitation(rpm) 150 2.59 3.02 14.53 1.5 3.41 3.25 18.91 200 3.05 3.12 18.23 2.0 3.86 3.39 22.43 250 2.16 2.67 27.21 The time course of GP-1 p3r0o0duction are illust1r.a8t7ed in Figure 1B. In log2a.r6i1thmic phase, GP-312 b.8eg2an to be sAynetrhaetisoizned(v avnmd) was excre0t.e5d quickly with c2e.l5l 0growth. After a low 3p.0ro0duction rate in 1st3a.t2i1onary phase, GP-1 was largely accu1m.0ulated in the ferm2.9en6tation broth due to 3g.r1a0dual cell death d1u6r.7in0g the decline phase. GP-1 producti1o.n5 initially increas3e.4d1 with the increase of3 t.2em5perature. After1 87.29 1h, the higher temperature of 35 and2 4.00 °C accelerated 3e.n8z6yme inactivation and3. 3ce9ll senescence, re2s2u.4lt3ing in a reduction of the GP-1 production rate. The final GP-1 production from 25 to 40 °C were 1.66, 2.47, 2.25 and 1.95 mg/L, respectively (Table 1). ThetimecourseofGP-1productionareillustratedinFigure1B.Inlogarithmicphase,GP-1began The DO concentration profiles under different temperatures are presented in Figure 1C. All DO tobesycnotnhceesnitzreatdioanns ddewcraesaseexdc dreratemdatqicuailclyk tloy aw mitihnicmeullmg lreovwelt wh.itAhifnt e2r4 ah,l aonwd pthreond ruocseti solnowralyt eduinrinstga tionary phase,G P-1waslargelyaccumulatedinthefermentationbrothduetogradualcelldeathduringthe declinephase. GP-1productioninitiallyincreasedwiththeincreaseoftemperature. After72h,the highertemperatureof35and40◦Cacceleratedenzymeinactivationandcellsenescence,resultingina reductionoftheGP-1productionrate. ThefinalGP-1productionfrom25to40◦Cwere1.66,2.47,2.25 and1.95mg/L,respectively(Table1). Molecules2018,23,125 4of14 TheDOconcentrationprofilesunderdifferenttemperaturesarepresentedinFigure1C.AllDO concentrationsdecreaseddramaticallytoaminimumlevelwithin24h,andthenroseslowlyduring therestMofolefceurlems 2e01n8t, a23t,i o12n5 time. DOconcentrationsweresolowat30,35and40◦C,evendecr4e aofs 1i3n gto0% saturationduringlogarithmicphaseandstationaryphase. Bycontrast,DOconcentrationmaintained above2t0h%e rseastt uofr afetrimonendtautrioinn gtimthee. DwOh ocolencfeenrtmraetinontast wioenrep sroo lcoews sata 3t0l,o 3w5 atnedm 4p0e °rCa,t euvreeno dfe2cr5ea◦sCin.gT thoa tisthe 0% saturation during logarithmic phase and stationary phase. By contrast, DO concentration reasonthatGP-1productionat25◦Cismuchlowerthanothers,becausestrainZX01couldnottake maintained above 20% saturation during the whole fermentation process at low temperature of 25 °C. advantaTgheato ifs othxey rgeeasnonfu tlhlayt tGoPs-1ypnrtohdeuscitzioena ant d25p °rCo ids umcuecgh llyocwoepr rtohateni nothGePrs-,1 b.eTcahueses tsutrdaiyn iZnXd0i1c acoteudld thatthe optimumnott teamkep aedrvaatnutargeef oofr oSxytgreepnt foumllyy ctoe ssyknatnhaessieznei asnidZ pXr0od1utcoe pglryocdopurcoeteignl yGcPo-1p. rTohtee sitnudGyP in-d1icwataesd 3th0at◦ C. the optimum temperature for Streptomyces kanasenisi ZX01 to produce glycoprotein GP-1 was 30 °C. 2.2. EffectofAgitationonFermentationofStrainZX01onBenchScale 2.2. Effect of Agitation on Fermentation of Strain ZX01 on Bench Scale Theexperimentswereconductedattheconstantaerationrateof1.0vvmandtemperatureof The experiments were conducted at the constant aeration rate of 1.0 vvm and temperature of 30◦Cwithdifferentagitationspeedsof150,200,250and300rpm,respectively(Figure2). 30 °C with different agitation speeds of 150, 200, 250 and 300 rpm, respectively (Figure 2). Figure 2. The effect of agitation speed on DCW (A); GP-1 production (B) and DO (C) during batch Figure2. TheeffectofagitationspeedonDCW(A);GP-1production(B)andDO(C)duringbatch fermentation of Streptomyces kanasenisi ZX01 in 5 L fermentor. fermentationofStreptomyceskanasenisiZX01in5Lfermentor. At first the production of GP-1 increased approximately at the same level under the four Atafigristatttiohne sppreoeddsu, catniodn thoefnG bPec-a1mine csrigenaisfeicdanatplyp droifxfeirmenatt eafltyera 2t4t hhe. Tshaem mealxeivmeulmun fidnearl pthroedfuocutirona gitation of GP-1 was achieved at 200 rpm (3.05 mg/L), and the final GP-1 production at 150, 250 and 300 rpm speeds,andthenbecamesignificantlydifferentafter24h. ThemaximumfinalproductionofGP-1was were 2.69, 2.36 and 1.87 mg/L, respectively. The highest values of DCW from 150 to 300 rpm were achievedat200rpm(3.05mg/L),andthefinalGP-1productionat150,250and300rpmwere2.69, 2.92, 3.10, 2.77 and 2.61 g/L, respectively (Table 1). The higher agitation speeds of 250 and 300 rpm 2.36and1.87mg/L,respectively. ThehighestvaluesofDCWfrom150to300rpmwere2.92,3.10, could cut off mycelium and damage the cell structure owing to unbearable shear force. 2.77and2.6T1hge/ DLO,r ecsopnceecntitvraetliyon( Tparbofliele1s) .wTehree ghriegahtleyr daigffietraetniot nunsdpeere dfosuor fle2v5e0lsa onfd a3g0it0atriopnm spcoeeudlsd cutoff myceliu(mFigaunred 2dCa).m DaOg ceonthceenctrealtliosntr wucatsu driestionwctilyn glowtoeru antb 1e5a0r rapbmle, asnhde maraifnotracinee.d below 5% saturation ThfeorD mOostc oofn tcheen titmraet. iIonn copnrtroafistl,e DsOw ceonrecengtrreaatitolnys dwiefrfee rmeonsttlyu nredmearinfeodu arbolevve e2l0s%o, 3f0%ag aintadt i4o0n% speeds saturation at 200, 250 and 300 rpm, respectively. The results showed that 200 rpm was the optimal (Figure2C).DOconcentrationwasdistinctlylowerat150rpm,andmaintainedbelow5%saturation agitation speed for Streptomyces kanasenisi ZX01 to produce glycoprotein GP-1. formostofthetime. Incontrast,DOconcentrationsweremostlyremainedabove20%,30%and40% saturati onat200,250and300rpm,respectively. Theresultsshowedthat200rpmwastheoptimal agitationspeedforStreptomyceskanasenisiZX01toproduceglycoproteinGP-1. Molecules2018,23,125 5of14 2.3. EffeMctoloecfuAlese 2r0a1t8i, o2n3, 1o2n5 FermentationofStrainZX01onBenchScale 5 of 13 Th2e.3f.e Ermffecetn otf aAteiroantisonw one rFeercmaernrtiaetdiono ouf tStartaidn iZffXe0r1e nont Baeenrcaht iSocnaler atesof0.5,1.0,1.5and2.0vvm,with sameagitationspeedof200rpmandtemperatureof30◦C.Figure3showstheeffectofaerationrate The fermentations were carried out at different aeration rates of 0.5, 1.0, 1.5 and 2.0 vvm, with onGP-1sapmreo adguitcattiioonn ,spDeeCdW of a20n0d rpDmO ancdo ntecmenpetrraattuioren odf 3u0r °iCn.g Ftighueref e3r smhoewnsta tthieo enffpecrto ocfe asesr.atIionnt rhaitse partof experimoenn Gt,Pt-1h eprfionduacltiporno, dDuCcWti oanndo DfOG Pco-1nciennctrraetaiosne dduarsinage trhaet ifoernmreantteatiionnc rperaosceesds. (I2n. 5th0i,s 2p.9ar6t, o3f .41 and 3.85mge/xLpearitm0e.n5t,, 1th.0e, f1in.5al apnroddu2c.0tiovnv omf ,GrPe-s1p ineccrteivaseeldy )as( Taaerbalteio1n) .ratTeh iencereffaesecdt o(2f.5a0e, r2a.9t6io, n3.4r1a taendo n GP-1 3.85 mg/L at 0.5, 1.0, 1.5 and 2.0 vvm, respectively) (Table 1). The effect of aeration rate on GP-1 productionwasmoresignificantthanbothagitationspeedandtemperature. Ontheotherhand,the production was more significant than both agitation speed and temperature. On the other hand, the maximumDCWalsoincreasedwhenaerationrateincreased(3.00,3.10,3.25and3.39g/Lat0.5,1.0, maximum DCW also increased when aeration rate increased (3.00, 3.10, 3.25 and 3.39 g/L at 0.5, 1.0, 1.5and12..50 avnvdm 2.,0 rvevsmp,e rcetsipveecltyiv)e(lTya) b(Tleab1le). 1). Figure 3. The effect of aeration rate on DCW (A); GP-1 production (B) and DO (C) during batch Figure 3. The effect of aeration rate on DCW (A); GP-1 production (B) and DO (C) during batch fermentation of Streptomyces kanasenisi ZX01 in a 5 L fermentor. fermentationofStreptomyceskanasenisiZX01ina5Lfermentor. All DO concentration profiles decreased greatly before 24 h, and then remained above 10%, 15%, All2D5%O ancdo n30c%en startautriaotinonp arto 0fi.5l,e 1s.0d, 1e.c5r aenads e2d.0 vgvrmea, trleyspbeecftiovreely2 (4Fihgu,raen 3dC)t.h Tehne DreOm leavienles din astbaotivonea1ry0 %,15%, phase increased with increase of aeration rates. The DO concentrations were never less than 10% in all 25%and30%saturationat0.5,1.0,1.5and2.0vvm,respectively(Figure3C).TheDOlevelsinstationary conditions, which indicated that oxygen supply was enough for cell depletion. The result indicated phaseincreasedwithincreaseofaerationrates. TheDOconcentrationswereneverlessthan10%inall that 2.0 vvm was the optimal aeration rate to obtain a higher production of glycoprotein GP-1. conditions,whichindicatedthatoxygensupplywasenoughforcelldepletion. Theresultindicated that2.02v.4v.m Effwectass oft hAegiotaptitoinm aandl aAeerraattiioonn onr aktLae otno Boebntcah iSncaaleh igherproductionofglycoproteinGP-1. The volumetric oxygen transfer coefficient (kLa) represents the capacity of oxygen supply and 2.4. EffectsofAgitationandAerationonk aonBenchScale transfer in the fermentor, which is relatLed with agitation speed, aeration rate, geometrical characteristic of Thfeervmoelnutmore atnrdic rohxeoylgogeincatlr cahnasrafectrerc ooef fmfiecdieiunmt ([k16]a. )Erfefepcrtse soef nagtsitatthioenc sappeaedci tayndo afeoraxtyiogne nratseu opnp lyand L transferkiLna itnh ea 5fe Lr mfeermnteonrt,owr ahriec shhoiswrne liant Tedabwle i1t.h Tahge iktLaat ivoanluseps einecdr,eaaseerda taiso angritaatteio,ng espoemede tarnicda alecrhataioranc teristic rate increased on bench scale. At agitation speeds of 150 to 300 rpm, the kLa values ranged from offermentorandrheologicalcharacterofmedium[16]. Effectsofagitationspeedandaerationrate on k a in a 5 L fermentor are shown in Table 1. The k a values increased as agitation speed and L L aerationrateincreasedonbenchscale. Atagitationspeedsof150to300rpm,thek avaluesranged L from14.53to32.82h−1. Ataerationratesof0.5to2.0vvm, thevaluesofk awereincreasedfrom L 13.21to22.43h−1. Thek avalueshadawiderrangeofchangeundertheeffectofagitationspeed. L Molecules2018,23,125 6of14 Thek avalueswere18.23and22.43h−1 attheoptimalagitationspeed(200rpm)andaerationrate L (2.0vvm),respectively. In this study, the final GP-1 production and the maximum DCW decreased when k a values L increasedfrom27.21to32.82h−1undertheimpactofagitationspeed(Table1). Inotherwords,too highk ahasnegativeeffectonthefinalGP-1productionandthemaximumDCW.Thereasonshould L beattributedtotremendousshearforcecausedbyhighagitationspeedthatcoulddestroythestructure ofcellandmycelium,andaffectthebiosynthesisofglycoproteinGP-1. 2.5. BenchScaleVerificationExperiments By using one-factor-at-a-time method, temperature, agitation speed and aeration rate on bench scale were sequentially optimized to obtain higher glycoprotein GP-1 production by StreptomyceskanasenisiZX01. FourbatchesfermentationofStreptomyceskanasenisiZX01werecarried outwith200rpm,2.0vvmand30◦Ctoverifytheresultsofoptimizationexperiment. ThefinalGP-1 production, the maximum DCW and k a values of verification test are presented in Table 2. The L resultsrevealthatundertheoptimalconditions,thefinalGP-1productionandthemaximumDCW couldreach3.92mg/Land3.31g/Lonaverage. ThefinalGP-1productionof3.92mg/Lonabench scalewasincreasedby54.33%comparedwith2.54mg/Lbeforeoptimization[35]. Ontheotherside, averagevalueofk awas21.62h−1,whichwasanimportantparameterforscale-upfermentationfrom L benchscaletopilotscale. Table2.ThefinalGP-1production,themaximumDCWandk ain5Lfermentor. L Fermentation TheFinalGP-1 TheMaximum Fermentor k a(h−1) Condition Production(mg/L) DCW(g/L) L 3.89 3.55 22.83 4.05 3.42 21.31 5L 200rpm,2.0vvm 3.90 3.41 21.57 3.83 3.45 20.78 Average 3.92 3.46 21.62 2.6. Scale-UpFermentationonPilotScale Thevolumetricoxygentransfercoefficient(k a)hasbeenapreferredcriterionforscale-upof L aerobicfermentations,owingtounderlyingprincipleoftheoxygentransferrateinordertoachievea similaroxygendemandformicrobialpopulationfromasmallerbioreactortoalargerfermentor[25]. Becausebench-scaleandpilot-scalefermentorshavedifferentgeometriccharacteristicsandagitation systems,thek avalueswereslightlydifferentdespitethefactthesameoperationalconditionswere L used [36]. A previous experiment with the optimal conditions obtained from the bench scale was testedinpilot-scalefermentors,andbothfinalGP-1productionandk avaluesin15L,70Land500L L fermentorswerefoundtobelowerthanthoseonbenchscale(Table3). Therefore,aseriesofscale-upfermentationexperimentswithagitationspeedsof225,250,275and 300rpmwereperformedin15L,70Land500Lfermentors,whentemperatureandaerationratewere thesameasinthebench-scaleexperiments(Table3). TheresultsindicatedthatthehighestfinalGP-1 productionfoundat225rpmwas4.03mg/LwiththemaximumDCWof3.54g/Lin15Lfermentor. Asagitationspeedsincreasedfrom250to300rpm,thefinalGP-1productionandthemaximumDCW decreasedduetothenegativeeffectofshearforce. Similarresultswerealsoobtainedin70Land500L. Molecules2018,23,125 7of14 Table3.Measuredk avaluesatdifferentfermentationconditionsinpilot-scalefermentors. L TheFinalGP-1 TheMaximum Fementor Agitation(rpm) k a(h−1) Production(mg/L) DCW(g/L) L 15L 200 3.75 3.55 19.15 225 4.03 3.54 22.52 250 3.92 3.40 25.74 275 3.57 3.20 29.51 300 3.20 3.14 31.43 70L 200 3.55 3.60 17.53 225 3.75 3.60 20.32 250 3.89 3.76 23.11 275 3.50 3.58 26.18 300 3.16 3.32 29.78 500L 200 3.81 3.77 15.04 225 3.96 3.81 18.38 250 4.13 4.01 22.31 275 4.00 3.85 27.04 300 3.80 3.66 32.47 In order to verify the stability of fermentation scale-up process, four batches of repeated experimentswereperformedinpilot-scalefermentors. TheresultslistedinTables2and4showedthat 5L,15L,70Land500LfermentorsachievedfinalGP-1productionof3.92,4.03,3.82and4.20mg/L, themaximumDCWof3.46,3.53,3.69and3.95g/L,withsimilark aof21.62,22.80,23.20and22.24h−1. L Consequently,thebatchfermentationofglycoproteinGP-1bystrainZX01wassuccessfullyscaled upfrombench-scaletopilot-scalethroughcontrollingagitationspeedtomaintaink aconstant. For L scale-upofaerobicfermentation,k aisfrequentlyusedasthecriteriontoensureequaloxygentransfer L conditionsondifferentscales[25]. Thepresentstudyalsodemonstratedthatk awasapplicabletothe L scale-upofbatchfermentationofglycoproteinGP-1productionbyStreptomyceskanasenisiZX01from bench-scaletopilot-scalefermentor. Table4.ThefinalGP-1production,themaximumDCWandk ainpilot-scalefermentors. L Fermentation TheFinalGP-1 TheMaximum Fermentors k a(h−1) Condition Production(mg/L) DCW(g/L) L 3.98 3.52 23.63 4.10 3.55 23.71 15L 225rpm,2.0vvm 4.10 3.61 22.72 3.94 3.45 21.14 Average 4.03 3.53 22.80 3.81 3.71 23.42 3.93 3.76 24.27 70L 250rpm,2.0vvm 3.78 3.65 23.51 3.77 3.63 21.59 Average 3.82 3.69 23.20 4.23 3.93 22.20 4.28 3.90 23.28 500L 250rpm,2.0vvm 4.09 4.06 21.81 4.20 3.91 21.68 Average 4.20 3.95 22.24 Molecules2018,23,125 8of14 3. Discussion Theresearchoneffectsoffermentationconditionssuchastemperature,agitationandaerationand otherparametersduringtheprocess,suchasdissolvedoxygen,pHandreducingsugaronbiopolymers productioncanplayanimportantroleinunderstandingthesynthesisofbiopolymers,fermentation kineticsandprocessscale-up[25]. Temperatureisoneofimportantfactorsaffectingmicrobialfermentation,duetoitscorrelation with all biochemical enzyme catalysis processes. Growth and metabolism of microorganisms shouldproceedundertheappropriatetemperature. Temperaturehasvariousimpactsonmicrobial fermentation,includingcellgrowth,productsynthesis,biosynthesisdirectionandphysicalproperties ofbroth. Accordingtothekineticsofenzymecatalysis,highertemperaturesresultinfasterreaction rates, leading in turn to sped-up growth and product synthesis. However, when the temperature exceeds the optimum growth temperature of a microorganism, inactivation and denaturation of enzymeswilloccur,resultinginmicroorganismdeathandfinallyinreductionofthefermentationcycle. Furthermore,theoptimumtemperaturesforcellgrowthandmetaboliteaccumulationarefrequently different. Theoptimumtemperatureforgrowthofglutamicacid-producingstrainis30–34◦C,for example,whiletheproductionrateofglutamicacidreachesthemaximuminatemperaturerangeof 35–37◦C[37–39]. OurresultsshowthattheoptimumtemperatureforstrainZX01growthandGP-1 accumulationwere25◦Cand30◦C,respectively. Agitationcouldmainlycausemixingandshearinthefermentationprocess, whichcanmake oxygen, heat and nutrients mix fully and be transferred efficiently in the fermentation broth, and dispersetheairintosmallbubblestoimprovethegas-liquidcontactarea,andpreventmyceliafrom clustering to favor of oxygen absorption [19]. Too high an agitation speed not only increases the powerconsumption,butalsocreatesheterogeneousmixingandshearforcesthatcandamagefragile microorganismsandaffectproductformation[13]. Ontheotherhand,whentheagitationspeedis toolow, theviscosityoffermentationbrothwillincrease, leadingto anreductionin masstransfer efficiency[36]. Theresearchrevealedthat200rpmwastheoptimalagitationspeedforstrainZX01to growandproduceglycoproteinGP-1. Aerationnotonlysuppliesthenecessaryoxygenforcellgrowth,butalsoeliminatesexhaustgas generatedduringthefermentationprocess[19]. However,higheraerationrateresultsinareduction in the volume of fermentation broth. Oxygen supply is necessary for microorganisms’ growth in aerobicfermentation,butsomemicroorganismsmaybeaffectedbyoxygentoxicityatexcessiveoxygen concentration[36]. Thisoxygentoxicitysituationdidnotoccurinourstudy,sincethemaximumDCW andfinalGP-1productionwereachievedatthehighestaerationrateof2.0vvm. The scale-up of the fermentation process based on constant k a for improvement of GP-1 L production from bench scale to pilot scale was another important feature in this article, leading toafinalGP-1productionof3.92,4.03,3.82and4.20mg/Lin5L,15L,70Land500Lfermenters, respectively. Theseresultsindicatedthatk awasquitesuitableforthescale-upofbatchfermentation L processofglycoproteinGP-1byStreptomyceskanasenisiZX01. Inordertoensureequaloxygentransfer conditions on different scales, k a has been preferred as the main criterion for scale-up of aerobic L fermentation[25].Kshirsagaretal.reportedthatPHAproductionbyHalomonascamposalisMCMB-1027 wassuccessfullyscaledupfrom14Lto120Lbyfixingk a[40].Quetal.achievedamaximum150-fold L scale-upofDHAproductionfroma10Ltoa1500Lfermentorbasedonmatchedk avalues[20]. L TherewasslightreductionofthefinalGP-1productioninthe70Lfermentor. Incontrast,the result at 500 L was much higher. The hydrodynamic environment in pilot and plant fermenters, includingmixingeffects,shearforcesandoxygentransferefficiency,isnormallymorecomplexthan thatinbench-scalebioreactors[25]. Theincreaseofbrothviscositycausedbyhighmyceliabiomass actsasabarriermakingoxygentransferfromtheliquidphasetocellsdifficult[25]. Thoughagitation speedhasadirecteffectonmixingthatcouldreduceviscosityandincreaseoxygensolubilityand transferinbroth,shearforcescausedbyhigh-speedimpellerwillhaveanegativeeffectoncellgrowth andmetaboliteaccumulation[41]. MoreandmoreresearchershaveusedtheComputationalFluid Molecules2018,23,125 9of14 Dynamics(CFD)techniquetoacquireinformationabouttheflowfieldinfermentorsbysimulating the fermentor structure. Many of them have reported that the impeller types and combinations haveanobviouslycorrelationwiththevolumetricoxygentransfercoefficient. Homogeneousmixing, moderateshearenvironmentandhigherproductproductioncouldbeachievedthroughoptimizing impellernumber,typesandcombinations[42–46]. Hence,inordertoimprovetheflowfieldandair distributioninsidethefermentor,andfurtherincreaseglycoproteinGP-1production,differentimpeller combinationsinlarge-scalefermentorwillbeoptimizedbyusingCFDtechniqueasfuturework. In conclusion, our work showed that the maximum glycoprotein GP-1 production by StreptomyceskanasenisiZX01wasobtainedatanagitationspeedof200rpm,aerationrateof2.0vvm andtemperatureof30◦Cina5Lfermentor. Onthebasisofvolumetricoxygentransfercoefficient, glycoproteinGP-1wassuccessfullyscaledupfrom5Lto15L,70Land500L,resultinginproductions of3.92,4.03,3.82and4.20mg/L,respectively. 4. MaterialsandMethods 4.1. Microorganism StreptomyceskanasenisiZX01,obtainedfromtheResearchandDevelopmentCenterofBiorational Pesticides(Yangling,China),wasisolatedfromsoilatKanasLake(XinjiangProvince,China). Strain ZX01isregisteredattheChinaGeneralMicrobiologicalCultureCollectionCenter(CGMCC)under strain number CGMCC 4893. The strain was maintained on Gauze’s No. 1 agar medium and subculturedatmonthlyintervals,orstoredin20%glycerolat−70◦C. 4.2. InoculumPreparationandMedia StrainZX01waspre-culturedinGauze’sNo. 1agarplatefor72h. Afterpre-culture,aloopof inoculum from the plate was inoculated into the seed medium of 100 mL for preparation of seed inoculum. Forthe5,15and70Lfermentations,seedinoculumwasculturedin500mLshakeflasks with200mLworkingvolumeat30◦Cand150rpmfor72h. For500Lfermentation,seedinoculum wasculturedina50Lseedfermentorcontaining17.5Lseedmediumat30◦Cand150rpmfor72h. The seed medium composition was (in g/L): soluble starch, 20; KNO , 1; K HPO , 0.5; 3 2 4 MgSO ·7H O, 0.5; NaCl, 0.5; FeSO ·7H O, 0.01. The fermentation medium was (in g/L): millet 4 2 4 2 steepliquor,10;solublestarch,10;yeastextract,3;NaCl,2.5;CaCO ,0.2. 3 4.3. Fermentors Four sizesof fermentors were usedin this study, and theirspecifications are listed inTable 5. Bench-scalefermentationwascarriedoutin5Lquadrupleglassbioreactors(GBCN-5C,ZhenjiangEast BiotechEquipmentandTechnologyCo.,Ltd.,Zhenjiang,Zhenjiang,China)with3.5Lworkingvolume. Thebioreactorwasequippedwithathermometer,pHsensor,dissolvedoxygensensor,tachometer, air-flowmeterandinternalpressuresensorandfoam-sensingprobe. Theagitationsystemconsisted of two impellers with four-flat-blade and the magnetic base. The agitation rate was controlled by electromagneticimpulse. Theaerationsystemwasanairinletthrougharingspargerwithanair-flow meterandfilter. Temperaturewasmaintainedconstantbyaheatingsysteminthebottomandcooling water. Thebioreactorandallitspartscontaining3.5Lmediumwassterilizedbyhighpressuresteam sterilizationpotat121◦Cfor30min. Aftersterilization,thefermentationmediumwasinoculatedwith 5%(v/v)seedinoculum. Thesignalofthefoam-sensingprobewasconnectedtoanelectromagnetic valvethrougharelaytoaddantifoam. Stainless steel fermentors (GUJS-15, GUJS-70 and GJ-500 with nominal 15 L, 70 L and 500 L capacity,andworkingvolumesof10L,50Land350L,respectively,ZhenjiangEastBiotechEquipment andTechnologyCo.,Ltd.,Zhenjiang,Zhenjiang,China)wereusedinpilot-scalefermentation. The equipmentalsoincludedathermometer,pHsensor,dissolvedoxygensensor,tachometer,air-flow meter and internal pressure sensor and foam-sensing probe. The agitation was provided by two Molecules2018,23,125 10of14 six-flat-bladeimpellersanddrivenbymechanicalstirredfromthetop. Airflowwassuppliedand controlledbyspidersparger,airfilterandair-flowmeter. Temperaturewasmaintainedconstantby thermostaticwatertankandcoolingwater. Fermentorscouldbesterilizedin-situwithexogenous steam. AlldatasuchasDO,pHandtemperaturewereonlinemonitoredoverthefermentationprocess andinputintoacomputerat1hintervals. Table5.Thespecificationsoffermentors. Fermentor Bench-Scale Pilot-Scale Totalvolume(L) 5 15 70 500 Workingvolume(L) 3.5 10 50 350 Diameteroffermentor(m) 0.15 0.25 0.38 0.75 Diameterofimpeller(m) 0.07 0.10 0.15 0.30 Heightoffermentor(m) 0.30 0.50 0.75 1.50 Baffle 3 4 4 6 Impeller Twoimpellerswithfour-flat-blade Twoimpellerswithsix-flat-blade Typeofdrive Magneticstirred Mechanicalstirred Sterilization Ex-situ In-situ 4.4. ExtractionandDeterminationofGlycoproteinGP-1Production The fermentation broth (100 mL) was centrifuged at 10,000 rpm for 20 min to separate the precipitate and supernatant. The supernatant was concentrated to a volume of 10 mL by rotary evaporatorandthenprecipitatedbyadding4-foldvolumesofethanolat4◦C.Theprecipitatewas redissolvedindistilledwater(10mL)andcentrifuged(10,000rpm,10min)againtoremovethose water-insoluble materials. The supernatant was applied to a DEAE-52 Cellulose anion-exchange column(2cm×60cm)elutedwithdeionizedwaterfirst,andthenwith0.1MNaClataflowrate of 5mL/min. The 0.1 M NaCl fraction was collected and centrifuged (10,000 rpm, 15 min) with centrifugalfilterdevices(3K,0.5mL)toremoveNaCl. ThefractionwassubjectedtoHiTrapTMConA 4Belutedwithbindingbuffer(20mMTris-HCl,0.5MNaCl,1mMMnCl ,1mMCaCl ,pH7.4)and 2 2 elutionbuffer(0.1Mmethyl-α-D-glucoside,20mMTris-HCl,0.5MNaCl,pH7.4)sequentiallyata flowrateof1mL/min. ThefractionelutedwithelutionbufferthatcontainedGP-1wasconcentrated to100µLandanalyzedbyhighperformanceliquidchromatography(HPLC). The concentration of GP-1 was analyzed by a HPLC (Waters, Milford, MA, USA) with a gel filtration column (TSK-gel G2000SWXL, 7.8 × 300 mm, 5 µm, TOSOH, Tokyo, Japan) and a 996 photodiodearraydetectorat280nm. HPLCwasperformedon10µLsamplewith20%acetonitrileata flowrateof0.5mL/minand28◦C.GP-1purifiedpreviously(purity>99%)wasdilutedto10,5,2.5, 1.25and0.625mg/mLasstandards. 4.5. DeterminationofDryCellWeight Theprecipitateobtainedbycentrifugingbrothsamplewaswashedwithdistilledwatertwice,and thenfreeze-driedtoaconstantweightbyfreezedryer(SIMInternationalGroupCo.,Ltd.,Norwood, MA,USA),expressedasdrycellweight(DCW,g/L). 4.6. DeterminationofVolumetricOxygenTransferCoefficient OUR,OTRandk aweredeterminedbydynamicgassingoutmethodusingDOprobe[32]. Based L onthedynamicmassbalanceinbatchfermentation,thefollowingequationforchangesinDOcould beestablished: dC (cid:16) (cid:17) O2 =OTR−OUR= k a C∗ −C −Q ·X (1) dt L O2 O2 O2 ∗ whereC isthedissolvedoxygenconcentrationofthefermentationbroth(g/L),C isdissolved O2 O2 oxygen concentration in equilibrium with oxygen partial pressure (g/L), Q is specific oxygen O2
Description: