ebook img

Effects of acetic acid, furfural and p-hydroxybenzoic acid on succinic acid fermentation by ... PDF

85 Pages·2014·7.58 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Effects of acetic acid, furfural and p-hydroxybenzoic acid on succinic acid fermentation by ...

MASTER'S THESIS Effects of Acetic Acid, Furfural and P- hydroxybenzoic Acid on Succinic Acid Fermentation by Escherichia coli BSS133 Mireille Ginésy 2014 Master of Science in Engineering Technology Chemical Engineering Luleå University of Technology Department of Civil, Environmental and Natural Resources Engineering Effects of acetic acid, furfural and p-hydroxybenzoic acid on succinic acid fermentation by Escherichia coli BSS133 MireilleGine´sy Thursday20th March,2014 1 2 Abstract 3 Abstract Duringhemicellulosehydrolysis,amandatorysteppriortofermentation,degradationproducts areformedfromsugarsandligninInthecaseofhardwoodhemicellulose,acetateisalsoreleasedfrom xylan deacetylation. Those compounds might be inhibitory for both Escherichia coli growth and the succinic acid production. In the present work, E. coli growth was first tested on both glucose and xylose in the presence of different inhibitors: sodium acetate [0-12 g/L]; furfural [0-3 g/L] and4-hydroxybenzoicacid[0-2g/L].Thisinvestigationwasperformedinshakeflasks,usingsmall size inocula. Afterwards, eleven fermentations in batch mode were carried out in 1-L fermentors, following a full factorial design with three centred points. The ranges of inhibitors studied were: aceticacid[0-10g/L],furfural[0-2g/L]andp-hydroxybenzoicacid[0-2g/L].Finally,hemicellulose was extracted from birch wood, hydrolysed with 2.7% sulfuric acid and used as a substrate for a fermentation. The results showed that furfural was the most toxic compound. Besides, its association with acetic acid was synergistic since no growth occurred when furfural and acetic acid were present in the media at 2 and 10 g/L, respectively. Nevertheless, E. coli was able to hydrolyse these two compounds to some extent. Low POH concentrations did not have any significant effect on the growthandfermentationperformanceof E.coli. Aceticacidathighconcentrationsaffectedboththe growthandthesuccinicacidproduction. Indeed, lowersuccinicacidconcentrationswereobtained when there was an initial concentration of 10 g/L of acetic acid in the media. Acetic acid, furfural andphenolswerefoundinthehydrolysatesatconcentrationof13.3g/L,2.2g/Land1.5g/Lrespec- tively. AsexpectedfromtheexperimentalmodelE.coliwasthusnotabletogrowonundetoxified birtchwoodhemicellulosehydrolysateswhenusingabatchprocess. 4 Preface Preface Thisthesisworkwasconductedinspring2011atLulea˚ UniversityofTechnology(LTU). It was financially supported by grants from the Swedish Energy Agency and Swedish GovernmentalAgencyforInnovationSystem(VINNOVA). FirstofallIwouldliketothanksProfessorKrisBerglundforallowingmetoperformmy masterthesisprojectwithinthebiochemicaltechnologygroup. Iwouldalsoliketoexpress mygratitudetoProfessorUlrikaRova. ThankyouforprovidingmeasubjectthatIcameto likeverymuch, despiteinitialdoubts. FinallyIwouldliketothanksmysupervisorJonas Helmerius. Ilearnedalotunderyoursupervision. Contents 1 Introduction 10 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Succinicacid 12 2.1 Succinicacidandindustry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.1 Marketsandapplications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.2 Chemicalsynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.3 Fermentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Succinicacidfermentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 Differentsuccinicacidproducers . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 E.coli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 MixedacidfermentationinE.coli . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.4 ProductionofsuccinicacidbyE.coli . . . . . . . . . . . . . . . . . . . . . . 20 3 Utilisationofhardwoodhemicelluloses 21 3.1 Hemicellulosestructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Hydrolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 Inhibitorsinhydrolysates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.1 Generationofinhibitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.2 Inhibitorsinhardwoodhemicellulosehydrolysates . . . . . . . . . . . . . 26 3.4 Toxicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4.1 Inhibitionmechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4.2 Inhibitioneffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.5 Overcominginhibitionproblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5.1 Detoxification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5.2 Processdesign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.5.3 Strainimprovement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4 Methods 43 4.1 Bacterialstrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 Growthinvestigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.1 Culturemedium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.2 Inoculumpreparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.3 Cultureconditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3 Fermentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3.1 Experimentaldesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3.2 Inoculumpreparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3.3 Reactormediumpreparation . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5 6 CONTENTS 4.3.4 Fermentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.4 Hydrolysates: preparationandfermentation . . . . . . . . . . . . . . . . . . . . . 47 4.4.1 Hemicelluloseextractionandhydrolysis . . . . . . . . . . . . . . . . . . . 47 4.4.2 Mediapreparationandfermentation . . . . . . . . . . . . . . . . . . . . . . 47 4.5 Analyticalprocedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.5.1 Celldensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.5.2 Cellviability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.5.3 Sugars,inhibitorsandsuccinicacidanalysis . . . . . . . . . . . . . . . . . 49 4.5.4 POHconcentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.6 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.6.1 Specificgrowthrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.6.2 Biomassyield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.6.3 Volumetricproductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.6.4 Productyield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5 Results&analysis 51 5.1 Growthinvestigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.1.1 Evolutionofthecelldensity . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.1.2 Evolutionoftheinhibitorsconcentrations . . . . . . . . . . . . . . . . . . . 52 5.2 FermentationsResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2.1 Duplicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2.2 Growthphase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2.3 Productionphase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.2.4 Evolutionofinhibitorsconcentrations . . . . . . . . . . . . . . . . . . . . . 58 5.3 Fermentationsanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.3.1 PLSmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.3.2 Analyticalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.4 Hydrolysates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6 Discussion 67 7 Conclusion 70 8 Futureprospects 71 Listofabbreviations 72 References 84 List of Figures Figure1. Basicprincipleofabiorefinery . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure2. Structureofsuccinicacid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure3. Potentialusesofbiobasedsuccinicacid . . . . . . . . . . . . . . . . . . . . . 13 Figure4. Chemicalsynthesisofsuccinicacid . . . . . . . . . . . . . . . . . . . . . . . 14 Figure5. ScanningelectronmicrographofEscherichiacoli . . . . . . . . . . . . . . . . 17 Figure6. HexoseandpentosemetabolisminE.coli. . . . . . . . . . . . . . . . . . . . 18 Figure7. Tricarboxylicacidcycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure8. MixedacidfermentationpathwayinE.coli . . . . . . . . . . . . . . . . . . . 19 Figure9. StandingvolumeofdifferenthardwoodspeciesinSweden . . . . . . . . . 21 Figure10. Plantcellwall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure11. Structureofglucuronoxylanfromhardwood . . . . . . . . . . . . . . . . . . 23 Figure12. Effectsofxylanoticenzymesonxylan . . . . . . . . . . . . . . . . . . . . . . 24 Figure13. Generationofinhibitorsduringhardwoodhydrolysis . . . . . . . . . . . . 25 Figure14. Summary of the inhibition mechanisms of the toxic compounds in hemi- cellulosichydrolysates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure15. Inflowofweakacidinthecytosol . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure16. Schematicrepresentationoftheuncouplingtheory . . . . . . . . . . . . . . 29 Figure17. Schematicrepresentationofsyntheticuncouplersaction . . . . . . . . . . . 29 Figure18. ModesoftoxicityoffurfuralinE.coli . . . . . . . . . . . . . . . . . . . . . . 32 Figure19. Overcomingtheinhibitionproblems . . . . . . . . . . . . . . . . . . . . . . 36 Figure20. Methodsforthedevelopmentofinhibitor-resistantmicroorganism . . . . . 41 Figure21. MetabolicpathwaysinE.coliBSS133 . . . . . . . . . . . . . . . . . . . . . . 43 Figure22. ExperimentalmatrixconstructedwithModde9.0 . . . . . . . . . . . . . . . 46 Figure23. Afermentationrun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure24. Evolution of the cell density for sodium acetate, furfural and POH for differentinhibitorsconcentrations . . . . . . . . . . . . . . . . . . . . . . . . 51 Figure25. Evolutionofthecellviabilityforsodiumacetateandfurfuralfordifferent inhibitorsconcentrations: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Figure26. Atypicalfermentationprofile,initialconcentrations: AA:5g/L;Fur:1g/L; POH:1g/L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Figure27. Celldensityduringthegrowthandproductionphases . . . . . . . . . . . . 57 Figure28. Evolutionofaceticacidthroughoutthefermentations . . . . . . . . . . . . 58 7 8 LISTOFFIGURES Figure29. Plotofnormalizedresidualsforthethreeresponses . . . . . . . . . . . . . . 60 Figure30. Plotsofobservedagainstpredictedforthethreeresponses . . . . . . . . . 60 Figure31. Plotsofdistancetomodelforalltheresponses. . . . . . . . . . . . . . . . . 61 Figure32. Effectsplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Figure33. Interactionplotsforfurfuralandaceticacid . . . . . . . . . . . . . . . . . . 62 Figure34. InteractionplotsforaceticacidandPOH . . . . . . . . . . . . . . . . . . . . 62 Figure35. InteractionplotsforfurfuralandPOH . . . . . . . . . . . . . . . . . . . . . 63 Figure36. Variableimportanceplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Figure37. Response4Dcontourplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Figure38. Response4Dcontourplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Figure39. Response4Dcontourplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Figure40. Effectplot(productionphase) . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Figure41. InteractionplotsforaceticacidandPOH(productionphase) . . . . . . . . 65 Figure42. VIPplot(productionphase) . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 List of Tables Table1. Comparison of the fermentation performances of different succinic acid producers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table2. Comparisonofdifferenthydrolysismethods . . . . . . . . . . . . . . . . . . 24 Table3. Phenolsinhardwood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table4. Compositionofdifferenthardwoodhemicellulosehydrolysates . . . . . . . 27 Table5. InhibitoreffectonE.coliLY01 . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table6. Effects of acetic acid, furfural, POH and the combination acetic acid and furfural on different parameters during ethanol fermentation by bakers’ yeast(asreportedin[74]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table7. CSLbasedmediumrecipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table8. PBSrecipe(pH=7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table9. Comparison of inhibition (using OD ) on glucose and on xylose with 550 differentinhibitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Table10. Full factorial design: factors (acetic acid, furfural, and p-hydroxybenzoic acid) and responses (specific growth rate, lag phase, biomass yield, volu- metricproductivity,productionyieldandfinalsuccinicacidtitre) . . . . . . 56 Table11. Differencesbetweenthetworunsoftheexperimentnumber6(10g/Lacetic acid,2g/LPOH). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table12. PLStotalsummaryafterexclusion . . . . . . . . . . . . . . . . . . . . . . . . 59 Table13. Summaryoffitforindividualresponse . . . . . . . . . . . . . . . . . . . . . . 59 Table14. Sugarandinhibitorsconcentrationsduringthehydrolysatesfermentation . 66 Table15. InhibitionofE.coligrowthbyaceticacid,furfuralandPOH. . . . . . . . . . 69 9

Description:
Governmental Agency for Innovation System (VINNOVA). First of all I would .. In order to do that, this work was divided into three parts. First a growth
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.