ebook img

Effects of abiotic environmental factors and land use on the diversity of carrion-visiting silphid beetles PDF

24 Pages·2017·1.8 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Effects of abiotic environmental factors and land use on the diversity of carrion-visiting silphid beetles

RESEARCHARTICLE Effects of abiotic environmental factors and land use on the diversity of carrion-visiting silphid beetles (Coleoptera: Silphidae): A large scale carrion study ChristianvonHoermann1,2*,DennisJauch1,CarolinKubotsch1,KirstenReichel-Jung1, SandraSteiger1,ManfredAyasse1 a1111111111 1 InstituteofEvolutionaryEcologyandConservationGenomics,UniversityofUlm,Ulm,Germany, 2 DepartmentofConservationandResearch,BavarianForestNationalPark,Grafenau,Germany a1111111111 a1111111111 *[email protected] a1111111111 a1111111111 Abstract Anthropogeniclandusecausesglobaldeclinesinbiodiversity.Despitetheknowledgethat animalcarrionisthemostnutrient-richformofdeadorganicmatter,studiesonlandscape OPENACCESS andlocalscalesdeterminingwhetherandthemeansbywhichlanduseintensityinfluences Citation:vonHoermannC,JauchD,KubotschC, Reichel-JungK,SteigerS,AyasseM(2018)Effects thediversityofthecarrion-associatedinsectfaunaaregloballyscarce.Weinvestigatedthe ofabioticenvironmentalfactorsandlanduseon effectsoflanduseintensityandabioticandbioticenvironmentalfactorsontheabundance, thediversityofcarrion-visitingsilphidbeetles speciesrichness,anddiversityoftheimportantecosystem-service-providingsilphidbeetle (Coleoptera:Silphidae):Alargescalecarrionstudy. taxon(carrionbeetles)inthreeregionsofGermany.In61foreststandsdistributedover PLoSONE13(5):e0196839.https://doi.org/ 10.1371/journal.pone.0196839 threegeographicallydistinctregionsinCentralEurope,wetrappedsilphidbeetleson exposedpigletcadaversduringlatesummer.Inallthreeregions,higherambienttempera- Editor:PauloDeMarcoJu´nior,Universidade FederaldeGoias,BRAZIL turesandhigherfinesandcontentswereassociatedwiththeabundanceofthesilphid beetletaxa.Thecarrioncommunitysilphiddiversitywasnegativelyaffectedbyanincrease Received:July10,2017 inmeanambienttemperatureinallthreeregions.Althoughmanagementintensityinforests Accepted:April20,2018 didnotaffecttheoverallabundanceofSilphidae,theabundanceofNicrophorushumator Published:May30,2018 decreasedsignificantlywithhigherforestmanagementintensityacrossallthreeregions. Copyright:©2018vonHoermannetal.Thisisan Unmanagedandage-classforestsshowedahigherabundanceofN.humatorcompared openaccessarticledistributedunderthetermsof withextensivelymanagedforeststands.ThesefindingsindicatethatN.humatorhaspoten- theCreativeCommonsAttributionLicense,which tialasanindicatorspeciesforanthropogenicdisturbancesinforests.Overall,thedirect permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal responsesofthesilphidbeetlecommunitytodiversesoilcharacteristicsunderlinesoilasan authorandsourcearecredited. importantfactordeterminingtheabundanceanddiversityofnecrophagouscarrionbeetles DataAvailabilityStatement:Allrelevantdataare inCentralEurope.Toprotectthesevaluableecosystem-serviceproviders,forest-manage- withinthepaperanditsSupportingInformation ment-inducedsoilmodificationsneedtobepaidcloseattention. files.ThedatasetfileisavailablefromtheDryad database(DOI:doi:10.5061/dryad.r5c64). Funding:Thisworkhasbeen(partly)fundedbythe GermanResearchFoundation(DFG)Priority Program1374"Infrastructure-Biodiversity- Exploratories"(AY12/9-1,STE1874/4-1toDr. ChristianvonHoermann,http://www.biodiversity- exploratories.de).Thefundershadnoroleinstudy PLOSONE|https://doi.org/10.1371/journal.pone.0196839 May30,2018 1/24 Effectoflanduseonsilphidbeetlediversity design,datacollectionandanalysis,decisionto Introduction publish,orpreparationofthemanuscript. Increasinglanduseintensityandlandusechangearemajordriversofbiodiversityloss,partic- Competinginterests:Theauthorshavedeclared ularlyinforestecosystems[1–3].Approximately82%ofCentralEuropeanforestsarehuman- thatnocompetinginterestsexist. dominatedandthereforearehighlydisturbed[4].Inmanyforests,intensifiedage-classfor- estryhasreducedthequalityofthehabitatandalsoitsstructuralheterogeneity[5].The homogenizationofsuchanthropogenicallyinfluencedecosystemsonthelandscapescale, wherebyspeciesassemblagesbecomeincreasinglydominatedbyasmallnumberofwide- spreadspecies,isoneofthemainthreatstobiodiversity[6,7].Commendably,inrecentyears, modernforestmanagementstrategieshaveavoidedlarge-scaleclear-fellinginage-classforests orhaveestablishedincreasedamountsofdeadwoodinforeststoincreasespeciesrichness[8]. Nevertheless,theaboveindicatesthatlandusetypeandintensityaffectsthediversityofinsects, includingthatofforest-dwellingcarrioninsectcommunities;thisinturnmighthaveanega- tiveimpactontheimportantecosystemservices,suchascarcassremovalrateandnutrient cycling,carriedoutbytheseinsects[9,10]. Animalcarrionisthemostnutrient-richformofdeadorganicmatteranddecomposesata fastrate[11–13].Thesetwokeyqualitiesofhighnutrientconcentrationandacceleratedtem- poraldynamicsmakecarrionahighlyimportantcomponentofthedetrituspool[14].Carrion hasasignificantimpactonterrestrialbiodiversityandecosystempropertiesthroughitsinflu- enceonbelow-groundmicrobialcommunities,soilnutrients,arthropodsandonscavenging vertebrates[15].Consequently,animalcarrionisapreconditionfortheevolutionandmainte- nanceofdetritivoreanddecomposerdiversity,andinturn,thediversityofdetritivoresand decomposersimpactsnutrientcyclingratesandultimatelyinfluencesproducerandconsumer diversity[12]. Interrestrialecosystems,thedecompositionanddispersionofcarrionnutrientsisheavily dependentonabioticfactors,suchasthetemperature,humidity,soiltype,andpH-valuesof soil(e.g.,seereferencesin[16]),andontheavailabilityofinsectdetritivoresanddecomposing microorganisms[17].Consequently,forthecontinuousfunctioningofecosystemprocesses andservices,thebiodiversityofthecarcass-associatedinsectandmicrobialfaunamustbepre- served,andtherefore,theirinfluencingfactorsneedtobeidentified. Forfunctionalarthropodgroupssuchaspredatorsandwooddecomposers,severalstudies havefoundclearindicationsthattheyarenegativelyaffectedbyforestmanagement(e.g., [18,19]).Beetles(Insecta:Coleoptera)occupydiverseniches,andseveralspeciesarespecificto theirgivensubstrates(e.g.,[20,21]).Consideringtheseaspects,beetlesinvolvedintheprocess ofdecompositionwilloftenformasignificantpartofthebiodiversityoftheircarrionmicro- habitat[21–23].Inparticular,carrionbeetles(Coleoptera:Silphidae)arefrequentlyassociated withvertebratecadaversandprovideawiderangeofecosystemservices[24,25]bypromoting thebreakdownandrecyclingoforganicmatterintoterrestrialecosystems[26–29].Mostsil- phidspeciesarenecrophagousbutcanalsopreyoncarrion-inhabitingnecrophagousflylar- vae,othersmallnecrophilouscarrionbeetles,andflyeggs[26,27,30,31].ThetaxonSilphidaeis partofthetaxonStaphylinoideaandisdividedintotwogroups:theNicrophorinae(11species innorthwesternEurope;allfromthegenusNicrophorus,calledburyingbeetles)andtheSil- phinae(17speciesinnorthwesternEurope)[24,26,30,32,33,34].Accordingtotheirname, buryingbeetles(Nicrophorus)burysmallvertebratecadaversinthesoilasfoodfortheirlarvae [35].Theelaboratebiparentalcarecarriedoutbyoneconspecificpairofbeetles,whichhave securedafreshlydeadcadaversuitableforreproduction,hasbeenknownforalongtimein thetaxonNicrophorus[36].Buryingbeetlesalsocolonizelargevertebratecadaversinhigh numbers[37,38].Dozensofburyingbeetleindividuals,particularlyduringtheperiodwhen theirovariesarematuring,convergeonlargecadaversthataretoolargeforburialanduse PLOSONE|https://doi.org/10.1371/journal.pone.0196839 May30,2018 2/24 Effectoflanduseonsilphidbeetlediversity themasfeedingsites(>300g,[24,36]).IncontrasttotheNicrophorinae,femaleSilphinaespe- ciesaresemelparousandlaytheireggsinoronthesoilaroundlargevertebratecadavers,and noparentalcareoftheirlarvaeisprovided[24,30,39].Silphidspromotetherecyclingofnutri- entsandtheirnecrophagousfeedingactivitiesmayalsodestroysomefociofinfectionof humanpathogenicbacteria[40]. Dynamicchangesinthecompositionoforganisms(especiallyarthropods)thatvisitcarrion duringitsvariousdecompositionstageshasbeenwidelydocumented[41–45].However,asno large-scalecarrionstudyisavailablethatexplicitlyexaminestheinteractingeffectoflanduse intensificationandbioticandabioticenvironmentalfactorsonoverallcarrionecology[17], keyknowledgegapsstillexistconcerningtheeffectoflanduseoncarcass-inhabitinginsect diversity,speciesrichnessandabundance,andconsequently,theircriticalecosystemservices. Toaddressthisareaofknowledge,wehaveconductedalarge-scalestudyinwhichwehave exposed75pigletcadaversacrossdifferentlymanagedforeststandsinCentralEuropeand monitoredcadaver-visitingsilphidbeetlesduringthewholecourseofdecomposition.We havehypothesisedthatforestmanagementintensityandotherbioticandabioticenvironmen- talfactorswillaffectsilphidbeetleabundance,speciesrichness,anddiversity.Forestmanage- mentintensityhasbeenquantifiedbyusingtherecentlydevelopedsilviculturalmanagement intensityindicator(SMI),whichcombinesthreemaincharacteristicsofagivenstand:stand age,treespecies,andaboveground,living,anddeadwoodenbiomass[46].Ourconclusions canbegeneralizedbecauseourstudyencompassesthreeregionsdifferingingeology,topogra- phy,andclimate. Methodsandmaterials Ethicsstatement Allnecessarypermitswereobtainedforthedescribedfieldstudies.Noanimalswerekilledfor thisstudy.Allcadaversofexclusivelystillbornpigletswereobtainedunderveterinarysupervi- sion(specialpermitforanimalby-products(EG)No.1069/2009)fromalocalpigfarmer (WinfriedWalter,Go¨gglingen,Germany).Forfieldsamplingofarthropods,anexemption existedconcerning§67BNatSchGandspeciesprotectionlegislationaccordingto§45 BNatSchG. Studysitesandpigletcadaverexposure WeconductedourstudyinthreedifferentgeographicalregionsinGermanyasspecifiedby theframeworkoftheBiodiversityExploratories(http://www.biodiversity-exploratories.de): theSchwa¨bischeAlb(Baden-Wu¨rttemberg,48˚20´60.0´´Nto48˚32´3.7´´N;9˚12´13.0´´ Eto9˚34´48.9´´E)intheSouth-West,theHainich-Du¨nregion(Thuringia,50˚56´14.5´´N to51˚22´43.4´´N;10˚10´24.0´´Eto10˚46´45.0´´E)inCentralGermany,andtheBio- spherereserveSchorfheide-Chorin(Brandenburg,52˚47´24.8´´Nto53˚13´26.0´´N;13˚ 23´27´´Eto14˚8´52.7´´E)intheNorth-East.Amoredetaileddescriptionofthethree regionsissuppliedinsupplementalmethods.Inall,75forestexperimentalplots(EPs,25in eachofthethreeregions)ofonehectareeachwereselectedfollowingastratifiedrandom designwithstratarepresentingdiverseforestmanagementintensitiesandseveralotherabiotic factorssuchassoiltypeandsoildepth(FigA1inS2File,[47]).These25plotschosenper regionrepresenttheexistingrangeofdifferentlanduseintensities[47]. FromAugust4thuntilSeptember4th2014,wesimultaneouslyexposed75stillbornpiglet cadavers(Susscrofadomestica,1.44kgaverageweight)on25forestEPsperregion(onepiglet perplot,FigA1inS2File).EPsweresufficientlyspacedataminimumdistanceof200m betweentheouteredgesoftwoEPs(BiodiversityExploratoriescriteria,after[47])toavoid PLOSONE|https://doi.org/10.1371/journal.pone.0196839 May30,2018 3/24 Effectoflanduseonsilphidbeetlediversity crossinteractionsamongindividualcadavers.Weusedpigletsasacarrionsubstratebecauseof theirwell-studiedandassuredsuccessionofcarrioninsects,andbecausetheyareawell-estab- lishedmodelsysteminforensicentomology(e.g.,[45,48,49,50]).Furthermore,theyarepresent nationwideasthewild-typeSusscrofa(wildboar)intheforesthabitatsofGermany.Aftera defrostingperiodof24hours,freshlydeadpigletexposurestartedonAugust4th(n=38)and 5th(n=37)andlasteduntilSeptember3th(n=38)and4th(n=37),respectively.Allcadavers ofexclusivelystillbornpigletswereobtainedunderveterinarysupervision(specialpermitfor animalby-products(EG)No.1069/2009)fromalocalfarmerinGo¨gglingen(Baden-Wu¨rttem- berg,Germany)andwerefrozen(-20˚C)upuntil24hrsbeforethestartofexposure.Sincethe studyaimedtofocusoninsectcommunities,allpigletswereexposedinblackwirecages(63 cmx48cmx54cm,MHHandelGmbH,Munich,Germany)toexcludefeedingandremoval bylargerscavengerssuchasfoxes,wildboars,orraccoons.Wemounteddataloggers(Ther- mochroniButton,Whitewater,WI,USA)insideofeachwirecagetorecordthetemperature ofthecarrionmicrohabitatevery30minutesduringthewholefieldworkperiod.Wirecages containingcadaversandcontrols(pitfalltrapswithoutcarcassesandwirecages)wereinstalled atadistanceof100mtoeachotherwithindifferentlymanagedforeststands(FigA1inS2 File).Controlswereneededtocapturetheprevailingandnotnecessarilycarrion-associated insectfaunaofthehabitat(FigA1inS2File). Installationofpitfalltrapsandbeetlesampling Ontheperipheryofeachcadaver,weinstalledtwopitfalltrapsfortrappingofcadaver-associ- atedinsects.Onepitfalltrapwasinstalledadjacenttotheheadofthepiglet,withtheotherone beingadjacenttoitsanus.Thisallowedustosituatebothtrapsinsideeachwirecagebytaking intoconsiderationtwoimportantsettlementareas(headandanus)forcadaver-inhabiting insects[51].Pitfalltrapswerecomposedoftwoground-levelsmoothiecupsstackedinside eachother(half-literPLAcups;diameter:95mm,height:151.2mm;HuhtamakiFoodservice GmbH,Alf/Mosel,Germany).Theinnercupwasfilledwithanodorlesssoapysolution(one dropofdetergent,KlarEcoSensitive,AlmaWin,Winterbach,Germany)toreducesurfaceten- sion.Forprotectionagainstrainfall,eachsingletrapwasequippedwitharaincover(con- structedatUlmUniversity,Ulm,Germany).Forcontrols,weappliedthesameprocedureas describedabove,withtheonlydifferencesbeingnocadaverandnowirecageinthesecases. Forreasonsofcomparability,thedistanceofthetwocontroltrapsatonesinglecapturesite correspondedtothedistancebetweenthepigletheadandanus.Atotalof7trap-emptying eventsperexposedcadaverandcontrolduringthewholedecompositionperiodwerecon- ducted:at2,4,6,9,16,23,and30daysafterday0ofexposure.Thesesamplingintervalscov- eredallthedistinctstagesofdecompositionbasedonlarge-scalesuccessiondatainthe literature[45,49].At48hrsbeforethetrap-emptyingevents,weopenedthelidcoveredthepit- falltraps(PLAdome-coversforsmoothiecups;diameter:95mm;HuhtamakiFoodservice GmbH,Alf/Mosel,Germany)toguaranteeaconstantsampleperiodforeachtrappingevent. Therefore,eachinsectsamplingeventlasted48hrs.Forlatermorphologicalassessmentand classificationofdecaystagesinthelaboratory[20],alloftheconductedtrap-emptyingevents wereaccompaniedbyphoto-documentationofthedecompositionstagesofallexposedpiglet cadavers. Allcollectedinsectindividualsweretransferredinto70%ethanol(VWRInternational GmbH,Darmstadt,Germany)forlatersortingtolargertaxonomicgroupsandsubsequent speciesidentificationinthelaboratory.Allsilphidindividualswereidentifiedtospecieslevel [52]andstoredatUlmUniversity(InstituteofEvolutionaryEcologyandConservationGeno- mics,DepartmentofBiology).Foranysingletrap-emptyingevent,wepooledalldataforthe2 PLOSONE|https://doi.org/10.1371/journal.pone.0196839 May30,2018 4/24 Effectoflanduseonsilphidbeetlediversity cupsoneithersideofeachpigletoneachplot.Thesamewastrueforthecontrols.Becauseof lossesofpigletcadavers(onecadaverintheSchwa¨bischeAlbandthreecadaversinHainich- Du¨n)andtheprohibitionoftherightofentryonparticularsamplingdaystoatotalof10 plots,thesamplingcampaignresultedin294sampleunitsfortheSchwa¨bischeAlb,224sample unitsforHainich-Du¨n,and336sampleunitsforSchorfheide-Chorin.Allthese854sample unitsfromoverall61plotsformedthebasisforlaterstatisticalanalysis. Environmentalvariables Weconsideredatotalof21bioticandabioticenvironmentalvariablesinouranalyses.Allvari- ablesandtheirrespectivevalueswereknownfromseveralinventorycampaignscarriedout withintheBiodiversityExploratories(basicdataincludingsoiltype,soilcomposition,bulk density(fortheupper10cmofthemineralsoil,units:g/cm3),climate,verticalstructure,and management).Exemplarily,soiltypeandsoilcompositionwereconsideredasimportantabi- oticenvironmentalparametersinouranalyses,becausesoilcharacteristicsareknownasan importantfactordeterminingthelocalabundanceofcarrionbeetles[25,36,53]. Statisticalanalyses AllanalyseswereconductedinRversion3.3.1([54],2016).Kruskal-Wallisranksumtests withposthocpairwisecomparisonsbyusingTukeytestswereappliedtotesttheeffectsof thedecompositionstageandtraptype(cadaverversuscontrol)onoverallsilphidbeetle abundance. Forthequantificationoftherelativeimportanceofenvironmentalvariablesontotalsilphid beetleabundance,speciesrichness,anddiversity,weusedtherandomforestapproach(ran- domForestfunctionimplementedintheMASSpackage)toidentifythoseenvironmentalvari- ableswithanincreaseofmorethan50%ofthemeansquareerror—inthecaseofomission— togetherwiththemarkedhighestIncNodePurity-valuesoutofall20variablesconsideredin thisstudy(FiguresA1—A7inS1File,after[55,56]and[5]).Therandomforestapproachisa recursivepartitioningandclassificationtreemethod[57]basedonregressiontreesbyusing randominputs[58,59]. Further,weusedgeneralizedlinearmixedmodels(GLMMs)totestforanyeffectsofthe environmentalvariablesonthetotalabundance,speciesrichness,anddiversity(Shannon’s diversityandSimpson’sdominance)ofthesilphidbeetletaxonacrossdifferentlymanaged foreststands.Suchdifferenceswereinvestigatedacrossallsilphidbeetletaxaand,inthecase oftotalabundance,alsoseparatelyforthesinglesilphidspeciesNicrophorusvespilloides, N.investigator, andN.humator.Negativebinomialerrordistributionswereappliedinall thosemodelsinwhichoverdispersionwaspresentwhenpreviouslyfittedwithaPoisson errordistribution(after[60]).Ourdataareexpectedtobetemporallydependentwithineach plot,astheyarecollectedacrossexperimentalplotsduringsevensubsequentvisits.Therefore, wefittedourregressionmodelswitharandomeffectattheplotlevel.Plot-specificrandom effectsshouldcapturemostofthelatentheterogeneity(andover-dispersion)ofthedata.We furtherinvestigatedforestmanagementintensitybyusingaprecalculatedindex(SMI)that canbedescribedbytwocomponents,riskofstandlossandstanddensity,whichtheoretically areindependentofoneanother[46].Theriskcomponentdefinesthecombinedeffectof standageandtreespeciesselectiononSMI[46].Theothercomponent,standdensity,quan- tifiestheeffectofremovalsandregenerationmethodusingactualbiomassrelatedtoarefer- ence[46].SchallandAmmer(2013)commentedthatSMIattheoperationallevelismostly relatedtofellings(tending,thinningandharvestoperations),butinthecaseoftreesremain- inginthestandduetonaturallosses(e.g.windthrow),thediscrepancybetweenfellingsand PLOSONE|https://doi.org/10.1371/journal.pone.0196839 May30,2018 5/24 Effectoflanduseonsilphidbeetlediversity removalsbecomesevenmoreevident.Theystatedthatremovals(usedforSMIdescriptionin theriskcomponent)aremoreindicativeofsilviculturalmanagementintensitythantreesthat arelostduetosilviculturalornaturalreasons[46].SchallandAmmer(2013)consequently proposedtomeasureremovalsbythedeviancebetweenmaximumbiomass(species,ageand sitespecific)andactualbiomassoflivinganddeadtrees.Weincludedallthreesinglecompo- nents‘maintreespecies’,‘standdensity’and‘standage’asfixedfactorsinourGLMMstotest foreffectsontherespectiveresponsevariables(abundance,speciesrichness,Shannon’s diversityandSimpson’sdominance).ThecombinedSMI-index,togetherwiththefixedeffect attheregionlevel(variableexploratory)wasconsideredinseparatenegativebinomial-, gamma-orGaussian-GLMs(thetwolastfamilieswereusedtotesttheeffectsofforestman- agementintensityandregiononsilphiddiversity—afterexaminingdiversity-indicesdistri- butionaswellastheassumptionofnormality,FiguresA2andA3inS2File)inorderto eliminateeffectsoflineardependencyattributabletothecombinationofthreevariablesin oneforestmanagementintensityindexaswellastoeliminateperfectmulticollinearityofthe exploratoryvariable. Apriori,wefittedthoseenvironmentalvariableswithanincreaseofmorethan50%of themeansquareerror—inthecaseofomission—togetherwiththemarkedhighestIncNo- dePurity-values(derivedfromarandomforest)innegativebinomial-,gamma-orGaussian- GLMMsinasequenceaccordingtotheirimportance(Tables1–3,after[5]).Thiswasfol- lowedbymodeldredging.Thedredgefunction(implementedintheMuMInpackage)was appliedformodelsimplification[61]basedonthehighestAkaikeweight.Modeldredging retainsmodelcombinationswiththemostlikelycombinationsofpredictorvariables [62,63]. Finally,wecalculatedShannon’sdiversityas‘–SP (cid:3)ln(P)’whereP istheproportionof i i i individualsbelongingtospeciesi,andSimpson’sdominanceas‘1/SP2’(formulaefrom[64]; i [65]).Morrisetal.(2014)suggestthattheinclusionofmultiplediversitymeasures,spread alongHill’scontinuum[66],providesresearcherswithamorecompleteunderstandingofthe waythatshiftsinabundantandrarespeciesdriveinteractions.Followingtheirrecommenda- tion,weincludednotonlyspeciesrichness(sensitivetorarespecies,[67]),butalso,asafore- mentioned,Shannon’sdiversity(equallysensitivetoabundantandrarespecies;[67])and Simpson’sdominance(sensitivetoabundantspecies,morecommonthanSimpson’sdiversity; [68]).Therandomforestapproachandmodeldredgingforthequantificationoftherelative importanceofenvironmentalvariablesonsilphidbeetlediversitywerecalculatedasdescribed indetailabove(forplotsofvariabledistributionandfordetectingdeparturesfromnormality, seeFiguresA2andA3inS2File). Results Duringthewholefieldworkperiod,wetrapped8446silphidbeetleindividualsof10specieson theperipheryof61exposedpigletcadavers:Nicrophorusvespilloides(n=6599),N.investigator (n=1280),N.humator(n=314),Oiceoptomathoracica(n=158),N.vespillo(n=54),N.inter- ruptus(n=36),Necrodeslittoralis(n=2),Thanatophilussinuatus(n=1),N.vestigator(n=1), andPhosphugaatrata(n=1)(Fig1).Intherespectivecontrols,wetrappedonlyoneindividual ofthespeciesN.vespilloides.Thenumberofindividualstrappedperplotrangedfrom13(one singleplotinHainich-Du¨n)to409individuals(onesingleplotinSchorfheide-Chorin). Cadaver-baitedtrapscapturedsignificantlymoresilphidbeetlescomparedwithunbaitedcon- troltrapsacrossallthreeregions(Kruskal-Wallistest,Chi2=103.01,df=1,P<0.001).Species numberperplotrangedfromonecapturedsilphidspeciesinHainich-Du¨ntosevencaptured speciesinSchorfheide-Chorin. PLOSONE|https://doi.org/10.1371/journal.pone.0196839 May30,2018 6/24 Effectoflanduseonsilphidbeetlediversity Table1. Statisticalcharacteristicsofmodelscomparingthetotalabundanceofsilphidsindiverseforesttypes. Silphidae Randomeffectvariance(group=plot):0.118,StdDev:0.343 Negativebinomialdispersionparameter:19.963(Stderr:11.898) F Estimatedslope StdErrorofestimatedslope P Abundance Finesand 3.384 -0.002 <0.001 0.072 Meanambienttemperature 10.659 0.300 0.092 0.002 Randomeffectvariance(group=plot):0.092,StdDev:0.303 Negativebinomialdispersionparameter:4.036(Stderr:1.851) F Estimatedslope StdErrorofestimatedslope P Abundance SMI(SilviculturalManagementIntensityIndex) 0.111 0.190 0.569 0.740 N.vespilloides Randomeffectvariance(group=plot):0.199,StdDev:0.446 Negativebinomialdispersionparameter:9.890(Stderr:10.243) F Estimatedslope StdErrorofestimatedslope P Abundance Finesand 4.050 -0.002 0.001 0.050 Meanambienttemperature 17.199 0.410 0.099 <0.001 Randomeffectvariance(group=plot):0.454,StdDev:0.674 Negativebinomialdispersionparameter:1.001(Stderr:0.002) F Estimatedslope StdErrorofestimatedslope P Abundance SMI(SilviculturalManagementIntensityIndex) 0.148 0.249 0.646 0.702 N.investigator Randomeffectvariance(group=plot):<0.001,StdDev:0.002 Negativebinomialdispersionparameter:7.266(Stderr:1.541) F Estimatedslope StdErrorofestimatedslope P Abundance Bulkdensity 4.214 0.756 0.368 0.046 Meanambienttemperature 42.181 -0.569 0.088 <0.001 Soiltype 13.006 <0.001 Cambisol:-0.165 0.376 Leptosol:-0.250 0.428 Luvisol:-1.980 0.475 Stagnosol:-2.131 0.644 Randomeffectvariance(group=plot):0.046,StdDev:0.214 Negativebinomialdispersionparameter:7.079(Stderr:2.319) F Estimatedslope StdErrorofestimatedslope P Abundance Exploratory 39.518 <0.001 HEW:-1.990 0.296 SEW:-1.083 0.207 SMI(SilviculturalManagementIntensityIndex) 0.627 0.420 0.531 0.432 N.humator Randomeffectvariance(group=plot):<0.001,StdDev:0.001 Negativebinomialdispersionparameter:3.638(Stderr:1.582) F Estimatedslope StdErrorofestimatedslope P (Continued) PLOSONE|https://doi.org/10.1371/journal.pone.0196839 May30,2018 7/24 Effectoflanduseonsilphidbeetlediversity Table1. (Continued) Silphidae Abundance Managementsystem 4.583 0.007 extensivelymanaged:1.649 1.079 selectionsystem:0.447 0.771 unmanaged:1.271 0.382 Meanambienttemperature 14.731 0.457 0.119 <0.001 Soiltype 2.032 0.107 Cambisol:0.012 0.487 Leptosol:-1.041 0.740 Luvisol:0.176 0.569 Stagnosol:-1.307 0.740 Randomeffectvariance(group=plot):<0.001,StdDev:0.005 Negativebinomialdispersionparameter:0.698(Stderr:0.168) F Estimatedslope StdErrorofestimatedslope P Abundance SMI(SilviculturalManagementIntensityIndex) 7.953 -3.396 1.204 0.007 Resultsofnegativebinomial-GLMMs(plotasrandomeffect)comparingthetotalabundanceofallsilphidbeetletaxaandofthesinglesilphidspeciesNicrophorus vespilloides,N.investigator,andN.humatorindiverseforesttypesinthreeregions(AEW=AlbExperimentalplotWald(inEnglish:forest),HEW=Hainich ExperimentalplotWald(inEnglish:forest),SEW=SchorfheideExperimentalplotWald(inEnglish:forest)).Boldtextindicatessignificanteffects(α=0.05).Important environmentalvariables(FiguresA1—A4inS1File)werefittedfirst,accordingtotheirimportance.Formodeldredging,modelsimplificationbasedonAkaike informationcriterionAIC(dredgefunctionimplementedintheMuMInpackage)wasperformed. https://doi.org/10.1371/journal.pone.0196839.t001 Effectsofenvironmentalcharacteristicsonoverallsilphidbeetle abundance Twoabioticenvironmentalvariablesinfluencedtheabundanceofmembersofallcaptured silphidbeetletaxa(Table1).Fromoveralltwopredictorvariablesinthesimplifiedmodel, witharandomeffectvarianceof0.18(negativebinomial-GLMM,deviance=10.39, P=0.006),‘meanambienttemperature’significantlyaffectedtheabundanceofSilphidae. Thesamewastendentiallytrueforthevariable‘finesand’(Table1).Acrossallthreeregions, totalsilphidbeetleabundanceincreasedwithhighermeanambienttemperatures(Fig2a). Overallbeetleabundancetendedtoincreasewithanincreasingfine-sandcontent(Fig2b). Forestmanagementintensityhadnosignificanteffectonoverallsilphidbeetleabundance (Table1). EffectsofenvironmentalcharacteristicsontheabundanceofN.vespilloides TwoabioticenvironmentalvariablesinfluencedtheabundanceofN.vespilloidesindividuals (Table1).Fromoveralltwopredictorvariablesinthesimplifiedmodel,witharandomeffect varianceof0.20(negativebinomial-GLMM,deviance=15.25,P<0.001),‘meanambienttem- perature’significantlyinfluencedtheabundanceofN.vespilloidesindividuals(Table1).Across allthreeregions,thetotalabundanceofN.vespilloidesincreasedwithhigherambienttempera- tures(Fig3a).Thesamewastendentiallytrueforhigherfine-sandcontents(Fig3b,Table1). Silviculturalmanagementintensity(expressedasanindex)didnotaffectN.vespilloidesabun- dance(Table1). PLOSONE|https://doi.org/10.1371/journal.pone.0196839 May30,2018 8/24 Effectoflanduseonsilphidbeetlediversity Table2. Resultsofnegativebinomial-GLMMscomparingspeciesrichnessofthetaxonSilphidaeinthedifferentforesttypesinthreeregions. Silphidae Randomeffectvariance(group=plot):<0.001,StdDev:0.002 Negativebinomialdispersionparameter:1.001(Stderr:<0.001) Deviance Estimatedslope StdErrorofestimatedslope P Speciesrichness Modelnotsignificant 1.773 0.183 Clay >-0.001 <0.001 Randomeffectvariance(group=plot):<0.001,StdDev:0.002 Negativebinomialdispersionparameter:1.001(Stderr:<0.001) F Estimatedslope StdErrorofestimatedslope P Speciesrichness SMI(SilviculturalManagementIntensityIndex) 0.008 0.043 0.473 0.928 Plotwasusedasarandomeffect.Importantenvironmentalvariables(FigA5inS1File)werefittedfirst,accordingtotheirimportance.Formodeldredging,model simplificationbasedonAkaikeinformationcriterionAIC(dredgefunctionimplementedintheMuMInpackage)wasperformed. https://doi.org/10.1371/journal.pone.0196839.t002 EffectsofenvironmentalcharacteristicsontheabundanceofN.investigator TotalabundanceofN.investigatorwashigherintheSchwa¨bischeAlbwhencomparedwith Hainich-Du¨nandSchorfheide-Chorin,respectively(negativebinomial-GLMM,deviance= 49.19,P<0.001,Fig2c,Table1(variableExploratory)).From,intotal,threepredictorvari- ablesinthesimplifiedmodel,witharandomeffectvarianceoflessthan0.001(negativebino- mial-GLMM,deviance=56.44,P<0.001),thetwoenvironmentalvariables‘meanambient temperature’and‘soiltype’significantlyinfluencedtheabundanceofN.investigatorindividu- als(Table1).Bulkdensitytendentiallyinfluencedbeetleabundance(Table1).Acrossallthree regions,thetotalabundanceofN.investigatordecreasedwithhighermeanambienttempera- tures(FigA4ainS2File).Concerningsoiltype,theabundanceofN.investigator wassignifi- cantlyhigheronLeptosolsoilscomparedwithLuvisolandStagnosolsoiltypes,respectively (FigA4binS2File).Furthermore,totalabundanceofN.investigator tendedtodecreasewith higherbulkdensities(Fig2d).Silviculturalmanagementintensity(expressedasanindex)had noeffectonN.investigatorabundance(Table1). EffectsofenvironmentalcharacteristicsontheabundanceofN.humator From,intotal,threepredictorvariablesinthesimplifiedmodel,witharandomeffectvariance oflessthan0.001(negativebinomial-GLMM,deviance=55.73,P<0.001),‘managementsys- tem’and‘meanambienttemperature’significantlyinfluencedtheabundanceofN.humator individuals(Table1).Acrossallthreeregions,thetotalabundanceofN.humatorwashigher inunmanagedforestscomparedwiththosethatwereextensivelymanaged.Thelatterforest typealsoshowedatendentiallylowerabundanceofN.humatorwhencomparedwithage-class forests(Fig3c).Inaddition,tendentiallymoreN.humatorindividualswerecapturedin unmanagedforestscomparedwithage-classforests(Fig3c).Acrossallthreeregions,thetotal abundanceofN.humatorincreasedwithhighermeanambienttemperatures(FigA5inS2 File).Silviculturalmanagementintensity(expressedasanindex)hadaneffectonN.humator abundance(negativebinomial-GLMM,deviance=5.04,P=0.025).Acrossallthreeregions, highersilviculturalmanagementintensityresultedinadecreaseofabundanceofN.humator (Fig3d,Table1). PLOSONE|https://doi.org/10.1371/journal.pone.0196839 May30,2018 9/24 Effectoflanduseonsilphidbeetlediversity Table3. ResultsofmodelscomparingShannon’sdiversityandSimpson’sdominanceofsilphidsindiverseforesttypes. Silphidae Gaussian-GLMM Randomeffectvariance(group=plot):<0.001,StdDev:0.001 Residualvariance:0.211(Stderr:0.021) F Estimatedslope StdErrorofestimatedslope P Shannon’s diversity Meanambienttemperature 7.840 -0.126 0.045 0.008 Soiltype 20.541 <0.001 Cambisol:-0.519 0.155 Leptosol:-0.526 0.187 Luvisol:-0.907 0.204 Stagnosol:-0.807 0.248 Gaussian-GLMM Randomeffectvariance(group=plot):<0.001,StdDev:0.001 Residualvariance:0.229(Stderr:0.022) F Estimatedslope StdErrorofestimatedslope P Shannon’s diversity Exploratory 7.606 0.001 HEW:-0.439 0.139 SEW:-0.218 0.108 SMI(SilviculturalManagementIntensityIndex) 1.284 -0.368 0.325 0.263 gamma-GLMM Randomeffectvariance(group=plot):0.027,StdDev:0.163 Gammashapeparameter:403.43(Stderr:0.043) F Estimatedslope StdErrorofestimatedslope P Simpson’s dominance Finesilt 4.037 -0.002 0.001 0.051 Meanambienttemperature 23.634 -0.184 0.038 <0.001 Soiltype 15.703 <0.001 Cambisol:-0.360 0.106 Leptosol:-0.365 0.126 Luvisol:-0.658 0.122 Stagnosol:-0.519 0.139 gamma-GLMM Randomeffectvariance(group=plot):0.036,StdDev:0.191 Gammashapeparameter:403.43(Stderr:0.035) F Estimatedslope StdErrorofestimatedslope P Simpson’s dominance Exploratory 22.869 <0.001 HEW:-0.360 0.069 SEW:-0.278 0.065 SMI(SilviculturalManagementIntensityIndex) 2.300 -0.291 0.192 0.136 Statisticalcharacteristicsareshownforallthreeregions.ForGaussian-andgamma-GLMMs,thelink=“log”.Boldtextindicatessignificanteffects(α=0.05).Important environmentalvariables(FiguresA6andA7inS1File)werefittedfirst,accordingtotheirimportance.Formodeldredging,modelsimplificationbasedonAkaike informationcriterionAIC(dredgefunctionimplementedintheMuMInpackage)wasperformed. https://doi.org/10.1371/journal.pone.0196839.t003 PLOSONE|https://doi.org/10.1371/journal.pone.0196839 May30,2018 10/24

Description:
Pitfall traps were composed of two ground-level smoothie cups stacked inside . proposed to measure removals by the deviance between maximum
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.