RESEARCHARTICLE Effects of abiotic environmental factors and land use on the diversity of carrion-visiting silphid beetles (Coleoptera: Silphidae): A large scale carrion study ChristianvonHoermann1,2*,DennisJauch1,CarolinKubotsch1,KirstenReichel-Jung1, SandraSteiger1,ManfredAyasse1 a1111111111 1 InstituteofEvolutionaryEcologyandConservationGenomics,UniversityofUlm,Ulm,Germany, 2 DepartmentofConservationandResearch,BavarianForestNationalPark,Grafenau,Germany a1111111111 a1111111111 *[email protected] a1111111111 a1111111111 Abstract Anthropogeniclandusecausesglobaldeclinesinbiodiversity.Despitetheknowledgethat animalcarrionisthemostnutrient-richformofdeadorganicmatter,studiesonlandscape OPENACCESS andlocalscalesdeterminingwhetherandthemeansbywhichlanduseintensityinfluences Citation:vonHoermannC,JauchD,KubotschC, Reichel-JungK,SteigerS,AyasseM(2018)Effects thediversityofthecarrion-associatedinsectfaunaaregloballyscarce.Weinvestigatedthe ofabioticenvironmentalfactorsandlanduseon effectsoflanduseintensityandabioticandbioticenvironmentalfactorsontheabundance, thediversityofcarrion-visitingsilphidbeetles speciesrichness,anddiversityoftheimportantecosystem-service-providingsilphidbeetle (Coleoptera:Silphidae):Alargescalecarrionstudy. taxon(carrionbeetles)inthreeregionsofGermany.In61foreststandsdistributedover PLoSONE13(5):e0196839.https://doi.org/ 10.1371/journal.pone.0196839 threegeographicallydistinctregionsinCentralEurope,wetrappedsilphidbeetleson exposedpigletcadaversduringlatesummer.Inallthreeregions,higherambienttempera- Editor:PauloDeMarcoJu´nior,Universidade FederaldeGoias,BRAZIL turesandhigherfinesandcontentswereassociatedwiththeabundanceofthesilphid beetletaxa.Thecarrioncommunitysilphiddiversitywasnegativelyaffectedbyanincrease Received:July10,2017 inmeanambienttemperatureinallthreeregions.Althoughmanagementintensityinforests Accepted:April20,2018 didnotaffecttheoverallabundanceofSilphidae,theabundanceofNicrophorushumator Published:May30,2018 decreasedsignificantlywithhigherforestmanagementintensityacrossallthreeregions. Copyright:©2018vonHoermannetal.Thisisan Unmanagedandage-classforestsshowedahigherabundanceofN.humatorcompared openaccessarticledistributedunderthetermsof withextensivelymanagedforeststands.ThesefindingsindicatethatN.humatorhaspoten- theCreativeCommonsAttributionLicense,which tialasanindicatorspeciesforanthropogenicdisturbancesinforests.Overall,thedirect permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal responsesofthesilphidbeetlecommunitytodiversesoilcharacteristicsunderlinesoilasan authorandsourcearecredited. importantfactordeterminingtheabundanceanddiversityofnecrophagouscarrionbeetles DataAvailabilityStatement:Allrelevantdataare inCentralEurope.Toprotectthesevaluableecosystem-serviceproviders,forest-manage- withinthepaperanditsSupportingInformation ment-inducedsoilmodificationsneedtobepaidcloseattention. files.ThedatasetfileisavailablefromtheDryad database(DOI:doi:10.5061/dryad.r5c64). Funding:Thisworkhasbeen(partly)fundedbythe GermanResearchFoundation(DFG)Priority Program1374"Infrastructure-Biodiversity- Exploratories"(AY12/9-1,STE1874/4-1toDr. ChristianvonHoermann,http://www.biodiversity- exploratories.de).Thefundershadnoroleinstudy PLOSONE|https://doi.org/10.1371/journal.pone.0196839 May30,2018 1/24 Effectoflanduseonsilphidbeetlediversity design,datacollectionandanalysis,decisionto Introduction publish,orpreparationofthemanuscript. Increasinglanduseintensityandlandusechangearemajordriversofbiodiversityloss,partic- Competinginterests:Theauthorshavedeclared ularlyinforestecosystems[1–3].Approximately82%ofCentralEuropeanforestsarehuman- thatnocompetinginterestsexist. dominatedandthereforearehighlydisturbed[4].Inmanyforests,intensifiedage-classfor- estryhasreducedthequalityofthehabitatandalsoitsstructuralheterogeneity[5].The homogenizationofsuchanthropogenicallyinfluencedecosystemsonthelandscapescale, wherebyspeciesassemblagesbecomeincreasinglydominatedbyasmallnumberofwide- spreadspecies,isoneofthemainthreatstobiodiversity[6,7].Commendably,inrecentyears, modernforestmanagementstrategieshaveavoidedlarge-scaleclear-fellinginage-classforests orhaveestablishedincreasedamountsofdeadwoodinforeststoincreasespeciesrichness[8]. Nevertheless,theaboveindicatesthatlandusetypeandintensityaffectsthediversityofinsects, includingthatofforest-dwellingcarrioninsectcommunities;thisinturnmighthaveanega- tiveimpactontheimportantecosystemservices,suchascarcassremovalrateandnutrient cycling,carriedoutbytheseinsects[9,10]. Animalcarrionisthemostnutrient-richformofdeadorganicmatteranddecomposesata fastrate[11–13].Thesetwokeyqualitiesofhighnutrientconcentrationandacceleratedtem- poraldynamicsmakecarrionahighlyimportantcomponentofthedetrituspool[14].Carrion hasasignificantimpactonterrestrialbiodiversityandecosystempropertiesthroughitsinflu- enceonbelow-groundmicrobialcommunities,soilnutrients,arthropodsandonscavenging vertebrates[15].Consequently,animalcarrionisapreconditionfortheevolutionandmainte- nanceofdetritivoreanddecomposerdiversity,andinturn,thediversityofdetritivoresand decomposersimpactsnutrientcyclingratesandultimatelyinfluencesproducerandconsumer diversity[12]. Interrestrialecosystems,thedecompositionanddispersionofcarrionnutrientsisheavily dependentonabioticfactors,suchasthetemperature,humidity,soiltype,andpH-valuesof soil(e.g.,seereferencesin[16]),andontheavailabilityofinsectdetritivoresanddecomposing microorganisms[17].Consequently,forthecontinuousfunctioningofecosystemprocesses andservices,thebiodiversityofthecarcass-associatedinsectandmicrobialfaunamustbepre- served,andtherefore,theirinfluencingfactorsneedtobeidentified. Forfunctionalarthropodgroupssuchaspredatorsandwooddecomposers,severalstudies havefoundclearindicationsthattheyarenegativelyaffectedbyforestmanagement(e.g., [18,19]).Beetles(Insecta:Coleoptera)occupydiverseniches,andseveralspeciesarespecificto theirgivensubstrates(e.g.,[20,21]).Consideringtheseaspects,beetlesinvolvedintheprocess ofdecompositionwilloftenformasignificantpartofthebiodiversityoftheircarrionmicro- habitat[21–23].Inparticular,carrionbeetles(Coleoptera:Silphidae)arefrequentlyassociated withvertebratecadaversandprovideawiderangeofecosystemservices[24,25]bypromoting thebreakdownandrecyclingoforganicmatterintoterrestrialecosystems[26–29].Mostsil- phidspeciesarenecrophagousbutcanalsopreyoncarrion-inhabitingnecrophagousflylar- vae,othersmallnecrophilouscarrionbeetles,andflyeggs[26,27,30,31].ThetaxonSilphidaeis partofthetaxonStaphylinoideaandisdividedintotwogroups:theNicrophorinae(11species innorthwesternEurope;allfromthegenusNicrophorus,calledburyingbeetles)andtheSil- phinae(17speciesinnorthwesternEurope)[24,26,30,32,33,34].Accordingtotheirname, buryingbeetles(Nicrophorus)burysmallvertebratecadaversinthesoilasfoodfortheirlarvae [35].Theelaboratebiparentalcarecarriedoutbyoneconspecificpairofbeetles,whichhave securedafreshlydeadcadaversuitableforreproduction,hasbeenknownforalongtimein thetaxonNicrophorus[36].Buryingbeetlesalsocolonizelargevertebratecadaversinhigh numbers[37,38].Dozensofburyingbeetleindividuals,particularlyduringtheperiodwhen theirovariesarematuring,convergeonlargecadaversthataretoolargeforburialanduse PLOSONE|https://doi.org/10.1371/journal.pone.0196839 May30,2018 2/24 Effectoflanduseonsilphidbeetlediversity themasfeedingsites(>300g,[24,36]).IncontrasttotheNicrophorinae,femaleSilphinaespe- ciesaresemelparousandlaytheireggsinoronthesoilaroundlargevertebratecadavers,and noparentalcareoftheirlarvaeisprovided[24,30,39].Silphidspromotetherecyclingofnutri- entsandtheirnecrophagousfeedingactivitiesmayalsodestroysomefociofinfectionof humanpathogenicbacteria[40]. Dynamicchangesinthecompositionoforganisms(especiallyarthropods)thatvisitcarrion duringitsvariousdecompositionstageshasbeenwidelydocumented[41–45].However,asno large-scalecarrionstudyisavailablethatexplicitlyexaminestheinteractingeffectoflanduse intensificationandbioticandabioticenvironmentalfactorsonoverallcarrionecology[17], keyknowledgegapsstillexistconcerningtheeffectoflanduseoncarcass-inhabitinginsect diversity,speciesrichnessandabundance,andconsequently,theircriticalecosystemservices. Toaddressthisareaofknowledge,wehaveconductedalarge-scalestudyinwhichwehave exposed75pigletcadaversacrossdifferentlymanagedforeststandsinCentralEuropeand monitoredcadaver-visitingsilphidbeetlesduringthewholecourseofdecomposition.We havehypothesisedthatforestmanagementintensityandotherbioticandabioticenvironmen- talfactorswillaffectsilphidbeetleabundance,speciesrichness,anddiversity.Forestmanage- mentintensityhasbeenquantifiedbyusingtherecentlydevelopedsilviculturalmanagement intensityindicator(SMI),whichcombinesthreemaincharacteristicsofagivenstand:stand age,treespecies,andaboveground,living,anddeadwoodenbiomass[46].Ourconclusions canbegeneralizedbecauseourstudyencompassesthreeregionsdifferingingeology,topogra- phy,andclimate. Methodsandmaterials Ethicsstatement Allnecessarypermitswereobtainedforthedescribedfieldstudies.Noanimalswerekilledfor thisstudy.Allcadaversofexclusivelystillbornpigletswereobtainedunderveterinarysupervi- sion(specialpermitforanimalby-products(EG)No.1069/2009)fromalocalpigfarmer (WinfriedWalter,Go¨gglingen,Germany).Forfieldsamplingofarthropods,anexemption existedconcerning§67BNatSchGandspeciesprotectionlegislationaccordingto§45 BNatSchG. Studysitesandpigletcadaverexposure WeconductedourstudyinthreedifferentgeographicalregionsinGermanyasspecifiedby theframeworkoftheBiodiversityExploratories(http://www.biodiversity-exploratories.de): theSchwa¨bischeAlb(Baden-Wu¨rttemberg,48˚20´60.0´´Nto48˚32´3.7´´N;9˚12´13.0´´ Eto9˚34´48.9´´E)intheSouth-West,theHainich-Du¨nregion(Thuringia,50˚56´14.5´´N to51˚22´43.4´´N;10˚10´24.0´´Eto10˚46´45.0´´E)inCentralGermany,andtheBio- spherereserveSchorfheide-Chorin(Brandenburg,52˚47´24.8´´Nto53˚13´26.0´´N;13˚ 23´27´´Eto14˚8´52.7´´E)intheNorth-East.Amoredetaileddescriptionofthethree regionsissuppliedinsupplementalmethods.Inall,75forestexperimentalplots(EPs,25in eachofthethreeregions)ofonehectareeachwereselectedfollowingastratifiedrandom designwithstratarepresentingdiverseforestmanagementintensitiesandseveralotherabiotic factorssuchassoiltypeandsoildepth(FigA1inS2File,[47]).These25plotschosenper regionrepresenttheexistingrangeofdifferentlanduseintensities[47]. FromAugust4thuntilSeptember4th2014,wesimultaneouslyexposed75stillbornpiglet cadavers(Susscrofadomestica,1.44kgaverageweight)on25forestEPsperregion(onepiglet perplot,FigA1inS2File).EPsweresufficientlyspacedataminimumdistanceof200m betweentheouteredgesoftwoEPs(BiodiversityExploratoriescriteria,after[47])toavoid PLOSONE|https://doi.org/10.1371/journal.pone.0196839 May30,2018 3/24 Effectoflanduseonsilphidbeetlediversity crossinteractionsamongindividualcadavers.Weusedpigletsasacarrionsubstratebecauseof theirwell-studiedandassuredsuccessionofcarrioninsects,andbecausetheyareawell-estab- lishedmodelsysteminforensicentomology(e.g.,[45,48,49,50]).Furthermore,theyarepresent nationwideasthewild-typeSusscrofa(wildboar)intheforesthabitatsofGermany.Aftera defrostingperiodof24hours,freshlydeadpigletexposurestartedonAugust4th(n=38)and 5th(n=37)andlasteduntilSeptember3th(n=38)and4th(n=37),respectively.Allcadavers ofexclusivelystillbornpigletswereobtainedunderveterinarysupervision(specialpermitfor animalby-products(EG)No.1069/2009)fromalocalfarmerinGo¨gglingen(Baden-Wu¨rttem- berg,Germany)andwerefrozen(-20˚C)upuntil24hrsbeforethestartofexposure.Sincethe studyaimedtofocusoninsectcommunities,allpigletswereexposedinblackwirecages(63 cmx48cmx54cm,MHHandelGmbH,Munich,Germany)toexcludefeedingandremoval bylargerscavengerssuchasfoxes,wildboars,orraccoons.Wemounteddataloggers(Ther- mochroniButton,Whitewater,WI,USA)insideofeachwirecagetorecordthetemperature ofthecarrionmicrohabitatevery30minutesduringthewholefieldworkperiod.Wirecages containingcadaversandcontrols(pitfalltrapswithoutcarcassesandwirecages)wereinstalled atadistanceof100mtoeachotherwithindifferentlymanagedforeststands(FigA1inS2 File).Controlswereneededtocapturetheprevailingandnotnecessarilycarrion-associated insectfaunaofthehabitat(FigA1inS2File). Installationofpitfalltrapsandbeetlesampling Ontheperipheryofeachcadaver,weinstalledtwopitfalltrapsfortrappingofcadaver-associ- atedinsects.Onepitfalltrapwasinstalledadjacenttotheheadofthepiglet,withtheotherone beingadjacenttoitsanus.Thisallowedustosituatebothtrapsinsideeachwirecagebytaking intoconsiderationtwoimportantsettlementareas(headandanus)forcadaver-inhabiting insects[51].Pitfalltrapswerecomposedoftwoground-levelsmoothiecupsstackedinside eachother(half-literPLAcups;diameter:95mm,height:151.2mm;HuhtamakiFoodservice GmbH,Alf/Mosel,Germany).Theinnercupwasfilledwithanodorlesssoapysolution(one dropofdetergent,KlarEcoSensitive,AlmaWin,Winterbach,Germany)toreducesurfaceten- sion.Forprotectionagainstrainfall,eachsingletrapwasequippedwitharaincover(con- structedatUlmUniversity,Ulm,Germany).Forcontrols,weappliedthesameprocedureas describedabove,withtheonlydifferencesbeingnocadaverandnowirecageinthesecases. Forreasonsofcomparability,thedistanceofthetwocontroltrapsatonesinglecapturesite correspondedtothedistancebetweenthepigletheadandanus.Atotalof7trap-emptying eventsperexposedcadaverandcontrolduringthewholedecompositionperiodwerecon- ducted:at2,4,6,9,16,23,and30daysafterday0ofexposure.Thesesamplingintervalscov- eredallthedistinctstagesofdecompositionbasedonlarge-scalesuccessiondatainthe literature[45,49].At48hrsbeforethetrap-emptyingevents,weopenedthelidcoveredthepit- falltraps(PLAdome-coversforsmoothiecups;diameter:95mm;HuhtamakiFoodservice GmbH,Alf/Mosel,Germany)toguaranteeaconstantsampleperiodforeachtrappingevent. Therefore,eachinsectsamplingeventlasted48hrs.Forlatermorphologicalassessmentand classificationofdecaystagesinthelaboratory[20],alloftheconductedtrap-emptyingevents wereaccompaniedbyphoto-documentationofthedecompositionstagesofallexposedpiglet cadavers. Allcollectedinsectindividualsweretransferredinto70%ethanol(VWRInternational GmbH,Darmstadt,Germany)forlatersortingtolargertaxonomicgroupsandsubsequent speciesidentificationinthelaboratory.Allsilphidindividualswereidentifiedtospecieslevel [52]andstoredatUlmUniversity(InstituteofEvolutionaryEcologyandConservationGeno- mics,DepartmentofBiology).Foranysingletrap-emptyingevent,wepooledalldataforthe2 PLOSONE|https://doi.org/10.1371/journal.pone.0196839 May30,2018 4/24 Effectoflanduseonsilphidbeetlediversity cupsoneithersideofeachpigletoneachplot.Thesamewastrueforthecontrols.Becauseof lossesofpigletcadavers(onecadaverintheSchwa¨bischeAlbandthreecadaversinHainich- Du¨n)andtheprohibitionoftherightofentryonparticularsamplingdaystoatotalof10 plots,thesamplingcampaignresultedin294sampleunitsfortheSchwa¨bischeAlb,224sample unitsforHainich-Du¨n,and336sampleunitsforSchorfheide-Chorin.Allthese854sample unitsfromoverall61plotsformedthebasisforlaterstatisticalanalysis. Environmentalvariables Weconsideredatotalof21bioticandabioticenvironmentalvariablesinouranalyses.Allvari- ablesandtheirrespectivevalueswereknownfromseveralinventorycampaignscarriedout withintheBiodiversityExploratories(basicdataincludingsoiltype,soilcomposition,bulk density(fortheupper10cmofthemineralsoil,units:g/cm3),climate,verticalstructure,and management).Exemplarily,soiltypeandsoilcompositionwereconsideredasimportantabi- oticenvironmentalparametersinouranalyses,becausesoilcharacteristicsareknownasan importantfactordeterminingthelocalabundanceofcarrionbeetles[25,36,53]. Statisticalanalyses AllanalyseswereconductedinRversion3.3.1([54],2016).Kruskal-Wallisranksumtests withposthocpairwisecomparisonsbyusingTukeytestswereappliedtotesttheeffectsof thedecompositionstageandtraptype(cadaverversuscontrol)onoverallsilphidbeetle abundance. Forthequantificationoftherelativeimportanceofenvironmentalvariablesontotalsilphid beetleabundance,speciesrichness,anddiversity,weusedtherandomforestapproach(ran- domForestfunctionimplementedintheMASSpackage)toidentifythoseenvironmentalvari- ableswithanincreaseofmorethan50%ofthemeansquareerror—inthecaseofomission— togetherwiththemarkedhighestIncNodePurity-valuesoutofall20variablesconsideredin thisstudy(FiguresA1—A7inS1File,after[55,56]and[5]).Therandomforestapproachisa recursivepartitioningandclassificationtreemethod[57]basedonregressiontreesbyusing randominputs[58,59]. Further,weusedgeneralizedlinearmixedmodels(GLMMs)totestforanyeffectsofthe environmentalvariablesonthetotalabundance,speciesrichness,anddiversity(Shannon’s diversityandSimpson’sdominance)ofthesilphidbeetletaxonacrossdifferentlymanaged foreststands.Suchdifferenceswereinvestigatedacrossallsilphidbeetletaxaand,inthecase oftotalabundance,alsoseparatelyforthesinglesilphidspeciesNicrophorusvespilloides, N.investigator, andN.humator.Negativebinomialerrordistributionswereappliedinall thosemodelsinwhichoverdispersionwaspresentwhenpreviouslyfittedwithaPoisson errordistribution(after[60]).Ourdataareexpectedtobetemporallydependentwithineach plot,astheyarecollectedacrossexperimentalplotsduringsevensubsequentvisits.Therefore, wefittedourregressionmodelswitharandomeffectattheplotlevel.Plot-specificrandom effectsshouldcapturemostofthelatentheterogeneity(andover-dispersion)ofthedata.We furtherinvestigatedforestmanagementintensitybyusingaprecalculatedindex(SMI)that canbedescribedbytwocomponents,riskofstandlossandstanddensity,whichtheoretically areindependentofoneanother[46].Theriskcomponentdefinesthecombinedeffectof standageandtreespeciesselectiononSMI[46].Theothercomponent,standdensity,quan- tifiestheeffectofremovalsandregenerationmethodusingactualbiomassrelatedtoarefer- ence[46].SchallandAmmer(2013)commentedthatSMIattheoperationallevelismostly relatedtofellings(tending,thinningandharvestoperations),butinthecaseoftreesremain- inginthestandduetonaturallosses(e.g.windthrow),thediscrepancybetweenfellingsand PLOSONE|https://doi.org/10.1371/journal.pone.0196839 May30,2018 5/24 Effectoflanduseonsilphidbeetlediversity removalsbecomesevenmoreevident.Theystatedthatremovals(usedforSMIdescriptionin theriskcomponent)aremoreindicativeofsilviculturalmanagementintensitythantreesthat arelostduetosilviculturalornaturalreasons[46].SchallandAmmer(2013)consequently proposedtomeasureremovalsbythedeviancebetweenmaximumbiomass(species,ageand sitespecific)andactualbiomassoflivinganddeadtrees.Weincludedallthreesinglecompo- nents‘maintreespecies’,‘standdensity’and‘standage’asfixedfactorsinourGLMMstotest foreffectsontherespectiveresponsevariables(abundance,speciesrichness,Shannon’s diversityandSimpson’sdominance).ThecombinedSMI-index,togetherwiththefixedeffect attheregionlevel(variableexploratory)wasconsideredinseparatenegativebinomial-, gamma-orGaussian-GLMs(thetwolastfamilieswereusedtotesttheeffectsofforestman- agementintensityandregiononsilphiddiversity—afterexaminingdiversity-indicesdistri- butionaswellastheassumptionofnormality,FiguresA2andA3inS2File)inorderto eliminateeffectsoflineardependencyattributabletothecombinationofthreevariablesin oneforestmanagementintensityindexaswellastoeliminateperfectmulticollinearityofthe exploratoryvariable. Apriori,wefittedthoseenvironmentalvariableswithanincreaseofmorethan50%of themeansquareerror—inthecaseofomission—togetherwiththemarkedhighestIncNo- dePurity-values(derivedfromarandomforest)innegativebinomial-,gamma-orGaussian- GLMMsinasequenceaccordingtotheirimportance(Tables1–3,after[5]).Thiswasfol- lowedbymodeldredging.Thedredgefunction(implementedintheMuMInpackage)was appliedformodelsimplification[61]basedonthehighestAkaikeweight.Modeldredging retainsmodelcombinationswiththemostlikelycombinationsofpredictorvariables [62,63]. Finally,wecalculatedShannon’sdiversityas‘–SP (cid:3)ln(P)’whereP istheproportionof i i i individualsbelongingtospeciesi,andSimpson’sdominanceas‘1/SP2’(formulaefrom[64]; i [65]).Morrisetal.(2014)suggestthattheinclusionofmultiplediversitymeasures,spread alongHill’scontinuum[66],providesresearcherswithamorecompleteunderstandingofthe waythatshiftsinabundantandrarespeciesdriveinteractions.Followingtheirrecommenda- tion,weincludednotonlyspeciesrichness(sensitivetorarespecies,[67]),butalso,asafore- mentioned,Shannon’sdiversity(equallysensitivetoabundantandrarespecies;[67])and Simpson’sdominance(sensitivetoabundantspecies,morecommonthanSimpson’sdiversity; [68]).Therandomforestapproachandmodeldredgingforthequantificationoftherelative importanceofenvironmentalvariablesonsilphidbeetlediversitywerecalculatedasdescribed indetailabove(forplotsofvariabledistributionandfordetectingdeparturesfromnormality, seeFiguresA2andA3inS2File). Results Duringthewholefieldworkperiod,wetrapped8446silphidbeetleindividualsof10specieson theperipheryof61exposedpigletcadavers:Nicrophorusvespilloides(n=6599),N.investigator (n=1280),N.humator(n=314),Oiceoptomathoracica(n=158),N.vespillo(n=54),N.inter- ruptus(n=36),Necrodeslittoralis(n=2),Thanatophilussinuatus(n=1),N.vestigator(n=1), andPhosphugaatrata(n=1)(Fig1).Intherespectivecontrols,wetrappedonlyoneindividual ofthespeciesN.vespilloides.Thenumberofindividualstrappedperplotrangedfrom13(one singleplotinHainich-Du¨n)to409individuals(onesingleplotinSchorfheide-Chorin). Cadaver-baitedtrapscapturedsignificantlymoresilphidbeetlescomparedwithunbaitedcon- troltrapsacrossallthreeregions(Kruskal-Wallistest,Chi2=103.01,df=1,P<0.001).Species numberperplotrangedfromonecapturedsilphidspeciesinHainich-Du¨ntosevencaptured speciesinSchorfheide-Chorin. PLOSONE|https://doi.org/10.1371/journal.pone.0196839 May30,2018 6/24 Effectoflanduseonsilphidbeetlediversity Table1. Statisticalcharacteristicsofmodelscomparingthetotalabundanceofsilphidsindiverseforesttypes. Silphidae Randomeffectvariance(group=plot):0.118,StdDev:0.343 Negativebinomialdispersionparameter:19.963(Stderr:11.898) F Estimatedslope StdErrorofestimatedslope P Abundance Finesand 3.384 -0.002 <0.001 0.072 Meanambienttemperature 10.659 0.300 0.092 0.002 Randomeffectvariance(group=plot):0.092,StdDev:0.303 Negativebinomialdispersionparameter:4.036(Stderr:1.851) F Estimatedslope StdErrorofestimatedslope P Abundance SMI(SilviculturalManagementIntensityIndex) 0.111 0.190 0.569 0.740 N.vespilloides Randomeffectvariance(group=plot):0.199,StdDev:0.446 Negativebinomialdispersionparameter:9.890(Stderr:10.243) F Estimatedslope StdErrorofestimatedslope P Abundance Finesand 4.050 -0.002 0.001 0.050 Meanambienttemperature 17.199 0.410 0.099 <0.001 Randomeffectvariance(group=plot):0.454,StdDev:0.674 Negativebinomialdispersionparameter:1.001(Stderr:0.002) F Estimatedslope StdErrorofestimatedslope P Abundance SMI(SilviculturalManagementIntensityIndex) 0.148 0.249 0.646 0.702 N.investigator Randomeffectvariance(group=plot):<0.001,StdDev:0.002 Negativebinomialdispersionparameter:7.266(Stderr:1.541) F Estimatedslope StdErrorofestimatedslope P Abundance Bulkdensity 4.214 0.756 0.368 0.046 Meanambienttemperature 42.181 -0.569 0.088 <0.001 Soiltype 13.006 <0.001 Cambisol:-0.165 0.376 Leptosol:-0.250 0.428 Luvisol:-1.980 0.475 Stagnosol:-2.131 0.644 Randomeffectvariance(group=plot):0.046,StdDev:0.214 Negativebinomialdispersionparameter:7.079(Stderr:2.319) F Estimatedslope StdErrorofestimatedslope P Abundance Exploratory 39.518 <0.001 HEW:-1.990 0.296 SEW:-1.083 0.207 SMI(SilviculturalManagementIntensityIndex) 0.627 0.420 0.531 0.432 N.humator Randomeffectvariance(group=plot):<0.001,StdDev:0.001 Negativebinomialdispersionparameter:3.638(Stderr:1.582) F Estimatedslope StdErrorofestimatedslope P (Continued) PLOSONE|https://doi.org/10.1371/journal.pone.0196839 May30,2018 7/24 Effectoflanduseonsilphidbeetlediversity Table1. (Continued) Silphidae Abundance Managementsystem 4.583 0.007 extensivelymanaged:1.649 1.079 selectionsystem:0.447 0.771 unmanaged:1.271 0.382 Meanambienttemperature 14.731 0.457 0.119 <0.001 Soiltype 2.032 0.107 Cambisol:0.012 0.487 Leptosol:-1.041 0.740 Luvisol:0.176 0.569 Stagnosol:-1.307 0.740 Randomeffectvariance(group=plot):<0.001,StdDev:0.005 Negativebinomialdispersionparameter:0.698(Stderr:0.168) F Estimatedslope StdErrorofestimatedslope P Abundance SMI(SilviculturalManagementIntensityIndex) 7.953 -3.396 1.204 0.007 Resultsofnegativebinomial-GLMMs(plotasrandomeffect)comparingthetotalabundanceofallsilphidbeetletaxaandofthesinglesilphidspeciesNicrophorus vespilloides,N.investigator,andN.humatorindiverseforesttypesinthreeregions(AEW=AlbExperimentalplotWald(inEnglish:forest),HEW=Hainich ExperimentalplotWald(inEnglish:forest),SEW=SchorfheideExperimentalplotWald(inEnglish:forest)).Boldtextindicatessignificanteffects(α=0.05).Important environmentalvariables(FiguresA1—A4inS1File)werefittedfirst,accordingtotheirimportance.Formodeldredging,modelsimplificationbasedonAkaike informationcriterionAIC(dredgefunctionimplementedintheMuMInpackage)wasperformed. https://doi.org/10.1371/journal.pone.0196839.t001 Effectsofenvironmentalcharacteristicsonoverallsilphidbeetle abundance Twoabioticenvironmentalvariablesinfluencedtheabundanceofmembersofallcaptured silphidbeetletaxa(Table1).Fromoveralltwopredictorvariablesinthesimplifiedmodel, witharandomeffectvarianceof0.18(negativebinomial-GLMM,deviance=10.39, P=0.006),‘meanambienttemperature’significantlyaffectedtheabundanceofSilphidae. Thesamewastendentiallytrueforthevariable‘finesand’(Table1).Acrossallthreeregions, totalsilphidbeetleabundanceincreasedwithhighermeanambienttemperatures(Fig2a). Overallbeetleabundancetendedtoincreasewithanincreasingfine-sandcontent(Fig2b). Forestmanagementintensityhadnosignificanteffectonoverallsilphidbeetleabundance (Table1). EffectsofenvironmentalcharacteristicsontheabundanceofN.vespilloides TwoabioticenvironmentalvariablesinfluencedtheabundanceofN.vespilloidesindividuals (Table1).Fromoveralltwopredictorvariablesinthesimplifiedmodel,witharandomeffect varianceof0.20(negativebinomial-GLMM,deviance=15.25,P<0.001),‘meanambienttem- perature’significantlyinfluencedtheabundanceofN.vespilloidesindividuals(Table1).Across allthreeregions,thetotalabundanceofN.vespilloidesincreasedwithhigherambienttempera- tures(Fig3a).Thesamewastendentiallytrueforhigherfine-sandcontents(Fig3b,Table1). Silviculturalmanagementintensity(expressedasanindex)didnotaffectN.vespilloidesabun- dance(Table1). PLOSONE|https://doi.org/10.1371/journal.pone.0196839 May30,2018 8/24 Effectoflanduseonsilphidbeetlediversity Table2. Resultsofnegativebinomial-GLMMscomparingspeciesrichnessofthetaxonSilphidaeinthedifferentforesttypesinthreeregions. Silphidae Randomeffectvariance(group=plot):<0.001,StdDev:0.002 Negativebinomialdispersionparameter:1.001(Stderr:<0.001) Deviance Estimatedslope StdErrorofestimatedslope P Speciesrichness Modelnotsignificant 1.773 0.183 Clay >-0.001 <0.001 Randomeffectvariance(group=plot):<0.001,StdDev:0.002 Negativebinomialdispersionparameter:1.001(Stderr:<0.001) F Estimatedslope StdErrorofestimatedslope P Speciesrichness SMI(SilviculturalManagementIntensityIndex) 0.008 0.043 0.473 0.928 Plotwasusedasarandomeffect.Importantenvironmentalvariables(FigA5inS1File)werefittedfirst,accordingtotheirimportance.Formodeldredging,model simplificationbasedonAkaikeinformationcriterionAIC(dredgefunctionimplementedintheMuMInpackage)wasperformed. https://doi.org/10.1371/journal.pone.0196839.t002 EffectsofenvironmentalcharacteristicsontheabundanceofN.investigator TotalabundanceofN.investigatorwashigherintheSchwa¨bischeAlbwhencomparedwith Hainich-Du¨nandSchorfheide-Chorin,respectively(negativebinomial-GLMM,deviance= 49.19,P<0.001,Fig2c,Table1(variableExploratory)).From,intotal,threepredictorvari- ablesinthesimplifiedmodel,witharandomeffectvarianceoflessthan0.001(negativebino- mial-GLMM,deviance=56.44,P<0.001),thetwoenvironmentalvariables‘meanambient temperature’and‘soiltype’significantlyinfluencedtheabundanceofN.investigatorindividu- als(Table1).Bulkdensitytendentiallyinfluencedbeetleabundance(Table1).Acrossallthree regions,thetotalabundanceofN.investigatordecreasedwithhighermeanambienttempera- tures(FigA4ainS2File).Concerningsoiltype,theabundanceofN.investigator wassignifi- cantlyhigheronLeptosolsoilscomparedwithLuvisolandStagnosolsoiltypes,respectively (FigA4binS2File).Furthermore,totalabundanceofN.investigator tendedtodecreasewith higherbulkdensities(Fig2d).Silviculturalmanagementintensity(expressedasanindex)had noeffectonN.investigatorabundance(Table1). EffectsofenvironmentalcharacteristicsontheabundanceofN.humator From,intotal,threepredictorvariablesinthesimplifiedmodel,witharandomeffectvariance oflessthan0.001(negativebinomial-GLMM,deviance=55.73,P<0.001),‘managementsys- tem’and‘meanambienttemperature’significantlyinfluencedtheabundanceofN.humator individuals(Table1).Acrossallthreeregions,thetotalabundanceofN.humatorwashigher inunmanagedforestscomparedwiththosethatwereextensivelymanaged.Thelatterforest typealsoshowedatendentiallylowerabundanceofN.humatorwhencomparedwithage-class forests(Fig3c).Inaddition,tendentiallymoreN.humatorindividualswerecapturedin unmanagedforestscomparedwithage-classforests(Fig3c).Acrossallthreeregions,thetotal abundanceofN.humatorincreasedwithhighermeanambienttemperatures(FigA5inS2 File).Silviculturalmanagementintensity(expressedasanindex)hadaneffectonN.humator abundance(negativebinomial-GLMM,deviance=5.04,P=0.025).Acrossallthreeregions, highersilviculturalmanagementintensityresultedinadecreaseofabundanceofN.humator (Fig3d,Table1). PLOSONE|https://doi.org/10.1371/journal.pone.0196839 May30,2018 9/24 Effectoflanduseonsilphidbeetlediversity Table3. ResultsofmodelscomparingShannon’sdiversityandSimpson’sdominanceofsilphidsindiverseforesttypes. Silphidae Gaussian-GLMM Randomeffectvariance(group=plot):<0.001,StdDev:0.001 Residualvariance:0.211(Stderr:0.021) F Estimatedslope StdErrorofestimatedslope P Shannon’s diversity Meanambienttemperature 7.840 -0.126 0.045 0.008 Soiltype 20.541 <0.001 Cambisol:-0.519 0.155 Leptosol:-0.526 0.187 Luvisol:-0.907 0.204 Stagnosol:-0.807 0.248 Gaussian-GLMM Randomeffectvariance(group=plot):<0.001,StdDev:0.001 Residualvariance:0.229(Stderr:0.022) F Estimatedslope StdErrorofestimatedslope P Shannon’s diversity Exploratory 7.606 0.001 HEW:-0.439 0.139 SEW:-0.218 0.108 SMI(SilviculturalManagementIntensityIndex) 1.284 -0.368 0.325 0.263 gamma-GLMM Randomeffectvariance(group=plot):0.027,StdDev:0.163 Gammashapeparameter:403.43(Stderr:0.043) F Estimatedslope StdErrorofestimatedslope P Simpson’s dominance Finesilt 4.037 -0.002 0.001 0.051 Meanambienttemperature 23.634 -0.184 0.038 <0.001 Soiltype 15.703 <0.001 Cambisol:-0.360 0.106 Leptosol:-0.365 0.126 Luvisol:-0.658 0.122 Stagnosol:-0.519 0.139 gamma-GLMM Randomeffectvariance(group=plot):0.036,StdDev:0.191 Gammashapeparameter:403.43(Stderr:0.035) F Estimatedslope StdErrorofestimatedslope P Simpson’s dominance Exploratory 22.869 <0.001 HEW:-0.360 0.069 SEW:-0.278 0.065 SMI(SilviculturalManagementIntensityIndex) 2.300 -0.291 0.192 0.136 Statisticalcharacteristicsareshownforallthreeregions.ForGaussian-andgamma-GLMMs,thelink=“log”.Boldtextindicatessignificanteffects(α=0.05).Important environmentalvariables(FiguresA6andA7inS1File)werefittedfirst,accordingtotheirimportance.Formodeldredging,modelsimplificationbasedonAkaike informationcriterionAIC(dredgefunctionimplementedintheMuMInpackage)wasperformed. https://doi.org/10.1371/journal.pone.0196839.t003 PLOSONE|https://doi.org/10.1371/journal.pone.0196839 May30,2018 10/24
Description: