ebook img

Effective gluon potential and Yang-Mills thermodynamics PDF

0.08 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Effective gluon potential and Yang-Mills thermodynamics

Effective gluon potential and Yang-Mills 3 1 thermodynamics 0 2 n a J 1 3 Chihiro Sasaki∗ ] FrankfurtInstituteforAdvancedStudies,D-60438FrankfurtamMain,Germany h E-mail:[email protected] p - p Krzysztof Redlich e InstituteofTheoreticalPhysics,UniversityofWroclaw,PL-50204Wrocław,Poland h [ E-mail:[email protected] 1 v WederivethePolyakov-loopthermodynamicpotentialintheperturbativeapproachtopureSU(3) 5 4 Yang-Mills theory. The potential expressed in terms of the Polyakov loop in the fundamental 6 representationcorrespondstothatofthestrong-coupling expansion,ofwhichtherelevantcoef- 7 ficientsofthegluonenergydistributionarespecifiedbycharactersoftheSU(3)group. Athigh . 1 temperature,thepotentialexhibitsthecorrectasymptoticbehavior,whereasatlowtemperature, 0 3 it disfavors gluons as appropriate dynamical degrees of freedom. To quantify the Yang-Mills 1 thermodynamicsinconfinedphase,weintroduceahybridapproachwhichmatchestheeffective : v gluon potential to that of glueballs, constrained by the QCD trace anomaly in terms of dilaton i X fields. r a XthQuarkConfinementandtheHadronSpectrum, October8-12,2012 TUMCampusGarching,Munich,Germany ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ EffectivegluonpotentialandYMthermodynamics ChihiroSasaki 1. Introduction The structure of the QCD phase diagram and thermodynamics at finite baryon density is of crucial importance in heavy-ion phenomenology. Due to the sign problem in lattice calculations, a major approach to a finite density QCD is based on effective Lagrangians possessing the same global symmetries as the underlying QCD. The SU(N ) Yang-Mills theory has a global Z(N ) c c symmetrywhichisdynamically brokenathightemperature. Thisischaracterized bythePolyakov loop that plays a role of an order parameter of the Z(N ) symmetry [1]. Effective models for c the Polyakov loop were suggested as a macroscopic approach to the pure gauge theory [2, 3]. Theirthermodynamicsisqualitativelyinagreementwiththatobtainedinlatticegaugetheories[4]. Alternative approaches arebasedonthequasi-particle picture ofthermalgluons [5]. Whengluons propagating in a constant gluon background are considered, the quasi-particle models naturally merge with the Polyakov loops, that appear in the partition function, as characters of the color gaugegroup[6,7,8,9,10]. In this contribution we show, that the SU(3) gluon thermodynamic potential can be derived directly from the Yang-Mills theory and isexpressed in terms ofthe Polyakov loops in the funda- mentalrepresentation. Wesummarizeitspropertiesandarguethatathighttemperatures,itexhibits the correct asymptotic behavior, whereas at low temperatures, it disfavors gluons [11]. We there- foresuggestahybridapproachtoYang-Millsthermodynamics,whichcombinestheeffectivegluon potential withglueballs implementedasdilatonfields. 2. Thermodynamics ofhotgluons Westartfromthepartition function ofthepureYang-Millstheory Z= DAm DCDC¯ exp i d4xLYM , (2.1) Z (cid:20) Z (cid:21) with gluon Am and ghost C fields. Following [3, 12] we employ the background field method to evaluate the functional integral. The gluon field is decomposed into the background A¯m and the quantum Aˇm fields, Am =A¯m +gAˇm . (2.2) Thepartitionfunction isarranged as d3p lnZ=V lndet 1−Lˆ e−|~p|/T +lnM(f ,f ), (2.3) (2p )3 A 1 2 Z (cid:16) (cid:17) where Lˆ is the Polyakov loop matrix in the adjoint representation and the two angular variables, A f andf ,represent therankofthe SU(3)group. TheM(f ,f )istheHaarmeasure 1 2 1 2 8 f −f 2f +f f +2f M(f ,f ) = sin2 1 2 sin2 1 2 sin2 1 2 , (2.4) 1 2 9p 2 2 2 2 (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) forafixedvolumeV,whichisnormalized suchthat 2p 2p df df M(f ,f )=1. (2.5) 1 2 1 2 0 0 Z Z 2 EffectivegluonpotentialandYMthermodynamics ChihiroSasaki ThefirstterminEq.(2.3)yieldsthegluonthermodynamic potential d3p W =2T trln 1−Lˆ e−Eg/T , (2.6) g (2p )3 A Z (cid:16) (cid:17) where E = |~p|2+M2 is the quasi-gluon energy and the effective gluon mass M is introduced g g g fromphenomenological reasons. q We define the gauge invariant quantities from the Polyakov loop matrix in the fundamental representation Lˆ ,as F 1 1 F = trLˆ , F¯ = trLˆ† . (2.7) 3 F 3 F Performingthetraceovercolorsandexpressing itintermsofF anditsconjugateF¯,onearrivesat W =2T d3p ln 1+ (cid:229) 8 C e−nEg/T , (2.8) g (2p )3 n Z n=1 ! withthecoefficientsC , n C = 1, 8 C = C =1−9FF¯ , 1 7 C = C =1−27FF¯ +27 F¯3+F 3 , 2 6 C3 = C5=−2+27FF¯ −8(cid:0)1 FF¯ 2,(cid:1) C = 2 −1+9FF¯ −27 F¯3(cid:0)+F 3(cid:1) +81 FF¯ 2 . (2.9) 4 h i Thus,thegluonenergydistributionisidentifiedso(cid:0)lelybyth(cid:1)echara(cid:0)cters(cid:1)ofthefundamentalandthe conjugate representations ofthe SU(3)gaugegroup. WeintroduceaneffectivethermodynamicpotentialinthelargevolumelimitfromEq.(2.3)as follows: W = W g+W F +c0, (2.10) whereW isgivenbyEq.(2.8)andtheHaarmeasurepartisfoundas g W F = −a0Tln 1−6FF¯ +4 F 3+F¯3 −3 FF¯ 2 . (2.11) h i The potential (2.10) has, in general, three free para(cid:0)meters; a(cid:1), c (cid:0)and t(cid:1)he gluon mass M . They 0 0 g can be chosen e.g. to reproduce the equation of state obtained in lattice gauge theories. It is straightforward tosee, thattheresultofanon-interacting boson gasisrecovered atasymptotically hightemperature. Indeed, taking F ,F¯ →1onefinds d3p W (F =F¯ =1)=16T ln 1−e−Eg/T . (2.12) g (2p )3 Z (cid:16) (cid:17) On the other hand, for a sufficiently large M /T, as expected near the phase transition, one can g approximate thepotential as W ≃ T2Mg2 (cid:229) 8 CnK (nb M ), (2.13) g p 2 n 2 g n=1 3 EffectivegluonpotentialandYMthermodynamics ChihiroSasaki with the Bessel function K (x). In the quasi-particle approach, the above result can also be con- 2 sidered as a strong-coupling expansion, regarding the relation M (T)=g(T)T with an effective g gaugecoupling g(T). Theeffective action tothe next-to-leading order ofthe strong coupling expansion is obtained intermsofgroupcharacters as[10], S(SC)=l S +l S +l S +l S , (2.14) eff 10 10 20 20 11 11 21 21 with products of characters S , specified by two integers p and q counting the numbers of fun- pq damental and conjugate representations, and couplings l being real functions of temperature. pq Making the character expansion of Eq. (2.13), one readily finds the correspondence between S pq andC as n C =S , C =S , C =S , C =S . (2.15) 1,7 10 2,6 21 3,5 11 4 20 Onthe other hand, taking the leading contribution, exp[−M /T]in the expansion, the “mini- g malmodel”isdeduced with W ≃−F(T,M )FF¯ , (2.16) g g wherethenegativesignisrequiredforafirst-ordertransition[10]. ThefunctionF canbeextracted from Eq. (2.10) and the resulting potential is of the form widely used in the PNJL model [13, 14, 15,16]. 3. A hybridapproach Although the potential (2.10) describes quite well thermodynamics in deconfined phase, it totally fails in the confined phase. In the confined phase, hF i=0 is dynamically favored by the ground state,thustheC =1termremainsasthemaincontribution. Consequently 1 d3p W (F =F¯ =0)≃2T ln 1+e−Eg/T . (3.1) g (2p )3 Z (cid:16) (cid:17) One clearly sees that W does not posses the correct sign in front of exp[−E /T], expected from g g the Bose-Einstein statistics. This implies that the entropy and the energy densities are negative. Ontheotherhand, ifone usesthe approximated form (2.16), thepressure vanishes atanytemper- ature below T . Obviously, this isan unphysical behavior since there exist color-singlet states, i.e. c glueballs, contributing tothermodynamics andtheymustgenerate anon-vanishing pressure. This aspect is in a striking contrast to the quark sector. The thermodynamic potential for quarks andanti-quarks with N flavorsisobtained as[13,17] f d3p W =−2N T ln 1+N F +F¯e−E+/T e−E+/T +e−3E+/T +(m →−m ), (3.2) q+q¯ f (2p )3 c Z h (cid:16) (cid:17) i with E±=E ∓m being the energy of aquark oranti-quark. In the limit, F ,F¯ →0, the one- and q two-quark states are suppressed and only the three-quark (“baryonic”) states, ∼exp(−3E(±)/T), survives. This, on a qualitative level, is similar to confinement properties in QCD thermodynam- ics [15]. One should, however, keep in mind, that such quark models yield only colored quarks 4 EffectivegluonpotentialandYMthermodynamics ChihiroSasaki beingstatistically suppressed atlowtemperatures. Ontheotherhand,unphysical thermodynamics below T described by the gluon sector (2.10) apparently indicates, that gluons are physically for- c bidden. Interestingly, this property is not spoiled by the presence of quarks. Indeed, in this case andatT <T thethermodynamic potential isapproximated as c T2 M 2N 3M W +W ≃ M2K g − fM2K q . (3.3) g q+q¯ p 2 g 2 T 3 q 2 T (cid:20) (cid:18) (cid:19) (cid:18) (cid:19)(cid:21) Assuming that glueballs and nucleons are made from two weakly-interacting massive gluons and threemassivequarksrespectivelyandputtingempiricalnumbers,M =1.7GeVandM = glueball nucleon 0.94 GeV, one finds that M =0.85 GeV and M =0.31 GeV. Substituting these mass values in g q Eq. (3.3), one still gets the negative entropy density at any temperature and for either N =2 or f N =3,asfoundinthepureYang-Millstheory. f Theunphysical equationofstate(EoS)inconfinedphasecanbeavoided, whengluondegrees offreedomarereplacedwithglueballs. Aglueballisintroducedasadilatonfieldc representingthe mn gluoncompositehAmn A i,whichisresponsiblefortheQCDtraceanomaly[18]. TheLagrangian isofthestandard form, 1 B c 4 c 4 Lc = 2¶ m c¶ m c −Vc , Vc = 4 c ln c −1 , (3.4) 0 " 0 # (cid:18) (cid:19) (cid:18) (cid:19) withthebagconstantBandadimensionfulquantityc ,tobefixedfromthevacuumenergydensity 0 andtheglueball mass. Onereadilyfindsthethermodynamic potential oftheglueballs as B d3p W = W c +Vc + 4, W c =T (2p )3 ln 1−e−Ec /T , Z (cid:16) (cid:17) ¶ 2Vc Ec = |~p|2+Mc2, Mc2 = ¶c 2 , (3.5) q whereaconstant B/4isaddedsothatW =0atzerotemperature. We propose the following hybrid approach which accounts for gluons and glueballs degrees offreedom bycombining Eqs.(2.10)and(3.5), W =Q (T −T)W (c )+Q (T−T )W (F ). (3.6) c c For a given M , the model parameters, a and c , are fixed by requiring, that W (F ) yields a first- g 0 0 order phase transition at T =270 MeV and that W (c ) and W (F ) match at T . The resulting EoS c c followsgeneraltrendsseeninlatticedata[11]. Themodelcanbeimprovedfurtherbyintroducing athermalgluonmass,M (T)∼g(T)T,ascarriedoute.g. in[8]. g 4. Summary Wehavederivedthethermodynamic potentialinthe SU(3)Yang-Millstheoryinthepresence of a uniform gluon background field. The potential accounts for quantum statistics and repro- ducesanidealgaslimitathightemperature. Withinthecharacterexpansion, theone-to-one corre- spondence to the effective action in the strong-coupling expansion isobtained. Different effective potentials usedsofarappearaslimitingcasesofourresult. 5 EffectivegluonpotentialandYMthermodynamics ChihiroSasaki The phenomenological consequence is that gluons are disfavored as appropriate degrees of freedom in confined phase. This property is in remarkable contrast to the description of “con- finement” within a class of chiral models with Polyakov loops [13, 16], where colored quarks are activatedatanytemperature. FurtherinvestigationsoftheSU(3)gluodynamicsguidedbyavailable lattice results with the effective gluon mass and a more realistic description of an effective QCD thermodynamics withquarksaredesired. Acknowledgments C. S. acknowledges partial support by the Hessian LOEWE initiative through the Helmholtz International Center for FAIR (HIC for FAIR). K.R. acknowledges support by the Polish Science Foundation (NCN). References [1] L.D.McLerranandB.Svetitsky,Phys.Lett.B98,195(1981);Phys.Rev.D24,450(1981). [2] R.D.Pisarski,Phys.Rev.D62,111501(2000). [3] R.D.Pisarski,hep-ph/0203271.A.DumitruandR.D.Pisarski,Phys.Lett.B525,95(2002). A.Dumitru,Y.Hatta,J.Lenaghan,K.OrginosandR.D.Pisarski,Phys.Rev.D70,034511(2004) [4] G.Boyd,J.Engels,F.Karsch,E.Laermann,C.Legeland,M.LutgemeierandB.Petersson,Nucl. Phys.B469,419(1996). [5] A.Peshier,B.Kampfer,O.P.PavlenkoandG.Soff,Phys.Rev.D54,2399(1996).M.Bluhm, B.Kampfer,R.SchulzeandD.Seipt,Eur.Phys.J.C49,205(2007).P.LevaiandU.W.Heinz,Phys. Rev.C57,1879(1998). [6] L.Turko,Phys.Lett.B104,153(1981).H.T.Elze,D.E.MillerandK.Redlich,Phys.Rev.D35,748 (1987).D.E.MillerandK.Redlich,Phys.Rev.D37,3716(1988).K.Redlich,F.Karschand A.Tounsi,hep-ph/0302245. [7] P.N.Meisinger,T.R.MillerandM.C.Ogilvie,Phys.Rev.D65,034009(2002),P.N.Meisingerand M.C.Ogilvie,Phys.Rev.D65,056013(2002). [8] P.N.Meisinger,M.C.OgilvieandT.R.Miller,Phys.Lett.B585,149(2004). [9] K.Kusaka,Phys.Lett.B269,17(1999). [10] C.Wozar,T.Kaestner,A.Wipf,T.HeinzlandB.Pozsgay,Phys.Rev.D74,114501(2006). [11] C.SasakiandK.Redlich,Phys.Rev.D86,014007(2012)[arXiv:1204.4330[hep-ph]]. [12] D.J.Gross,R.D.PisarskiandL.G.Yaffe,Rev.Mod.Phys.53,43(1981). [13] K.Fukushima,Phys.Lett.B591,277(2004);Phys.Rev.D68,045004(2003);Prog.Theor.Phys. Suppl.153,204(2004).K.FukushimaandC.Sasaki,arXiv:1301.6377[hep-ph]. [14] S.Roessner,C.RattiandW.Weise,Phys.Rev.D75,034007(2007). [15] C.Sasaki,B.FrimanandK.Redlich,Phys.Rev.D75,074013(2007). [16] C.Ratti,M.A.ThalerandW.Weise,Phys.Rev.D73,014019(2006). [17] E.Megias,E.RuizArriolaandL.L.Salcedo,Phys.Rev.D74,065005(2006). [18] J.Schechter,Phys.Rev.D21,3393(1980). 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.