ebook img

Effective Evolution Equations from Quantum Dynamics PDF

97 Pages·2016·1.326 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Effective Evolution Equations from Quantum Dynamics

SPRINGER BRIEFS IN MATHEMATICAL PHYSICS 7 Niels Benedikter Marcello Porta Benjamin Schlein Effective Evolution Equations from Quantum Dynamics 123 SpringerBriefs in Mathematical Physics Volume 7 Series editors Nathanaël Berestycki, Cambridge, UK Mihalis Dafermos, Cambridge, UK Tohru Eguchi, Tokyo, Japan Atsuo Kuniba, Tokyo, Japan Matilde Marcolli, Pasadena, USA Bruno Nachtergaele, Davis, USA More information about this series at http://www.springer.com/series/11953 Niels Benedikter Marcello Porta (cid:129) Benjamin Schlein Effective Evolution Equations from Quantum Dynamics 123 Niels Benedikter Benjamin Schlein Department ofMathematical Sciences Institute of Mathematics University of Copenhagen University ofZurich Copenhagen Zurich Denmark Switzerland Marcello Porta Institute of Mathematics University of Zurich Zurich Switzerland ISSN 2197-1757 ISSN 2197-1765 (electronic) SpringerBriefs inMathematical Physics ISBN978-3-319-24896-7 ISBN978-3-319-24898-1 (eBook) DOI 10.1007/978-3-319-24898-1 LibraryofCongressControlNumber:2015950862 SpringerChamHeidelbergNewYorkDordrechtLondon ©TheAuthor(s)2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia (www.springer.com) Preface In these notes we review the material presented at the summer school on “Mathematical Physics, Analysis and Stochastics” held at the University of HeidelberginJuly2014.Weconsiderthetimeevolutionofquantumsystemsandin particular the rigorous derivation of effective equations approximating the many-body Schrödinger dynamics in certain physically interesting regimes. We would like to thank Manfred Salmhofer and Christoph Kopper for orga- nizing the summer school “Mathematical Physics, Analysis and Stochastics” and for encouraging us to write up these notes. The work of Marcello Porta and of Benjamin Schlein has been supported by the ERC grant MAQD-240518. Niels BenedikterhasbeenpartiallysupportedbytheERCgrantCoMBoS-239694andby the ERC Advanced grant 321029. Copenhagen Niels Benedikter Zurich Marcello Porta Zurich Benjamin Schlein v Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Mean-Field Regime for Bosonic Systems . . . . . . . . . . . . . . . . . . . . 7 3 Coherent States Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4 Fluctuations Around Hartree Dynamics. . . . . . . . . . . . . . . . . . . . . 31 5 The Gross-Pitaevskii Regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6 Mean-Field Regime for Fermionic Systems . . . . . . . . . . . . . . . . . . 57 7 Dynamics of Fermionic Quasi-Free Mixed States. . . . . . . . . . . . . . 79 Appendix A: The Role of Correlations in the Gross-Pitaevskii Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 vii Chapter 1 Introduction Systems of interest in physics and other natural sciences can be described at the microscopic and the macroscopic level. Microscopically, a system is described in termsofitselementaryconstituentsandtheirfundamentalinteractions.Whilesucha descriptionisveryaccurate,itistypicallynotwell-suitedforcomputationsbecause ofthelargenumberofdegreesoffreedom.Examplesofmicroscopictheoriesinclude Newton’s theory of classical mechanics, Schrödinger’s quantum mechanics, quan- tumelectrodynamicsandEinstein’sgeneralrelativity.1Ontheotherhand,amacro- scopic description of the system does not resolve the constituents and only takes intoaccounteffectiveinteractions.Itfocusesonmacroscopicallyobservablequan- titieswhicharisefromthecollectivebehaviorofthesystemandareofinterestfor the observer. Such a description is less accurate but it is much more accessible to computations.ExamplesofmacroscopictheoriesareBoltzmann’skinetictheoryof gases, the Navier-Stokes and the Euler equations of hydrodynamics, the Hartree and Hartree-Fock theory, the BCS theory of superconductors and superfluids, the Ginzburg-Landautheory,theGross-PitaevskiitheoryofBose-Einsteincondensation andtheVlasovtheoryofplasmaphysics. Because of the great importance of effective macroscopic theories for making qualitativeandquantitativepredictionsaboutthebehaviorofphysicallyinteresting systems,akeygoalofstatisticalmechanicsistounderstandtheiremergencefrom microscopictheoriesinappropriatescalingregimes(alsocalledlimits,eventhough weoftenthinkoftheparameterasbeinglargebutfinite).Heremathematicalphysics can and should play a central role to put the effective theories, which are often 1Of course we do not claim that these theories are absolutely fundamental from the view of a physicist.Itwouldbemorecorrecttoconsiderthemasdifferentlevelsbetweenfundamentaland effective,andwhichtheorywecalleffectiveandwhichfundamentaldependsonthepairweare lookingat.Forexample,wecouldalsoconsiderNewtonianmechanicsasamacroscopictheory arising as an effective theory from quantum mechanics. On the next level we could view non- relativisticquantummechanicsasaneffectivetheoryarisingfromtheStandardModel. ©TheAuthor(s)2016 1 N.Benedikteretal.,EffectiveEvolutionEquationsfromQuantumDynamics, SpringerBriefsinMathematicalPhysics,DOI10.1007/978-3-319-24898-1_1 2 1 Introduction obtained merely by heuristic and phenomenological arguments, on solid grounds andunderstandtherangeandthelimitsoftheirvalidity. Letuspresenttwoexamplesofphysicalsystemswhichcanbedescribedbyeffec- tiveequationsthatcanberigorouslyderivedfrommicroscopictheoriesinappropriate limits. Largeatomsandmolecules.Weconsideraquantum-mechanicalsystemofNelec- tronsand M nucleiofcharges Z1,...,ZM >0lo(cid:2)catedatpositions R1,...,RM ∈ R3.Weassumethesystemtobeneutral,i.e. N = M Z .Forsimplicitywework i=1 i intheBorn-Oppenheimerapproximation,i.e.wekeepthenucleifixed(onlytheelec- tronsaredynamicalparticlesinthisapproximation).Atzerotemperaturethesystem isinitsgroundstate,withenergy E(N)= min (cid:4)ψ,H ψ(cid:5) (1.1) N ψ∈L2(R3N):(cid:3)ψ(cid:3)=1 a where H denotestheHamiltonoperator N (cid:4) (cid:5) (cid:3)N (cid:3)M (cid:3)N (cid:3)M Z 1 Z Z H = −Δ − i + + i j . (1.2) N xj |x − R | |x −x | |R − R | j=1 i=1 j i i<j i j i<j i j NoticethatH actsonthesubspaceL2(R3N)ofL2(R3N)consistingofallfunc- N a tions that are antisymmetric with respect to permutations of the N electrons. (Of course E(N) and H also depend on M, on the charges Z ,...,Z and on the N 1 M positions R ,...,R ). Observe that the last term on the r.h.s. of (1.2) is just a 1 M constant representing the interaction among the nuclei. Already for N (cid:6) 20 it is extremelydifficulttocomputethegroundstateenergy E(N)numericallysincethe eigenvalueequationonehastosolveisapartialdifferentialequationin3N coupled variables. ThomasandFermipostulatedalreadyintheearlystagesofquantummechanics attheendofthe1920sthatthegroundstateenergy E(N)canbeapproximatedby E(N)(cid:6) E (N)= inf E (ρ) (1.3) TF TF ρ≥0,(cid:3)ρ(cid:3)1=N withtheThomas-Fermifunctional (cid:6) (cid:6) 3 (cid:3)M ρ(x) E (ρ)= c ρ5/3(x)dx − Z dx TF 5 TF i |x − R | i=1 i (cid:6) 1 ρ(x)ρ(y) (cid:3)M Z Z + dxdy+ i j . 2 |x −y| |R − R | i<j i j Noticethatonther.h.s.of(1.3)wearelookingforafunctionρ ∈ L1(R3);asa consequence,intermsofnumericalcomputations,theminimizationproblem(1.3) 1 Introduction 3 is much simpler than the original problem (1.1) despite the fact that the resulting Euler-Lagrangeequationsarenonlinear. In[1]LiebandSimonprovedthattheapproximation(1.3)becomesexactinthe limitoflargeN.Moreprecisely,theyshowedthat,whileE(N)andE (N)areboth TF proportionalto N7/3, |E(N)−E (N)|≤CN7/3−1/30 TF foranappropriateconstantC >0.Thisgivesamathematicallyrigorousderivation oftheThomas-Fermitheory,andittellsushowbigN shouldbeinorderforE (N) TF to be a good approximation of the true quantum energy (later, better bounds have beenobtained[2–4]:oneknowsthattheerrorwithrespecttoThomas-Fermitheory isoftheorder N2 inthelimitoflarge N). Kinetictheoryofdilutegases.ConsidernowagasofN classicalparticlesmoving accordingtoNewton’sequations x˙ (t)=v (t) j j (cid:3)N v˙ (t)=− ∇V(x (t)−x (t)) (1.4) j i j i(cid:9)=j for j =1,...,N.HereV isashortrange(compactlysupported),regularpotential. Equation (1.4) is a system of 6N coupled ordinary differential equations. Given appropriateinitialdata,itisknowntohaveauniquesolutionforallt ∈R.However, sincethenumberofparticles N istypicallyextremelylarge,itisalmostimpossible todeducefrom(1.4)interestingqualitativeorquantitativepropertiesofthesolution. At the beginning of the twentieth century Boltzmann, based on clever heuristic arguments,proposedtodescribethedynamicsofthegasbythenonlinearequation ∂ f (x,v)+v·∇ f (x,v) t (cid:6)t (cid:6) x t (cid:7) (cid:8) = dv(cid:11) dωB(v−v(cid:11);ω) f (x,v )f (x,v(cid:11) )− f (x,v)f (x,v(cid:11)) (1.5) t out t out t t S2 forthephase-spacedensity f (x,v),whichshouldmeasurethenumberofparticles t attimet thatarelocatedclosetox ∈R3andhavevelocityclosetov ∈R3.Here v =v+ω·(v(cid:11)−v)ω out v(cid:11) =v(cid:11)−ω·(v(cid:11)−v)ω out are the velocity of two particles emerging from the collision of two particles with velocities v,v(cid:11) and collision vector ω ∈ S2. Boltzmann’s equation is a partial dif- ferential equation in only six variables, and is therefore much more accessible to computationsthan(1.4).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.