ebook img

Effective dipole-dipole interactions in multilayered dipolar Bose-Einstein condensates PDF

0.94 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Effective dipole-dipole interactions in multilayered dipolar Bose-Einstein condensates

Effective dipole-dipole interactions in multilayered dipolar Bose-Einstein condensates Matthias Rosenkranz, Yongyong Cai, and Weizhu Bao Department of Mathematics, National University of Singapore, 119076, Singapore (Dated: January 31, 2012) We propose a two-dimensional model for a multilayer stack of dipolar Bose-Einstein condensates formed by a strong optical lattice. We derive effective intra- and interlayer dipole-dipole interac- tion potentials and provide simple analytical approximations for a given number of lattice sites at arbitrary polarization. We find that the interlayer dipole-dipole interaction changes the transverse aspect ratio of the ground state in the central layers depending on its polarization and the number of lattice sites. The changing aspect ratio should be observable in time of flight images. Further- 2 more, we show that the interlayer dipole-dipole interaction reduces the excitation energy of local 1 perturbations affecting the development of a roton minimum. 0 2 PACSnumbers: 67.85.-d,03.75.Kk,03.75.Lm,03.75.Hh n a J I. INTRODUCTION dipole moments much larger than in atomic BECs [24]. 0 Incontrasttosolidstatethinfilmstructures,thelayer 3 Layered structures of magnetic materials play a cru- width and spacing of BECs in optical lattices are pre- cial role both in today’s technology and in fundamen- cisely tunable with external fields. This makes dipolar ] s talphysicaltheories. Technologicalexamplesareaplenty BECs a prime candidate for investigating the effects of a in the magneto-electronic industries, e.g., hard disks or DDIinmultilayers. Forexample, ithasbeenshownthat g magnetic sensors. One theoretical goal of studying mul- the DDI stabilizes quasi-two-dimensional ultracold gases - t tilayers is to illuminate the elusive theory of high-T su- for perpendicular polarization [9, 25] and enables con- n c a perconductivity, where the layered structure appears to trolled chemical reactions [23]. Another intriguing effect u play a crucial role [1]. For a realistic theory of atomic or istheoccurrenceofinterlayerboundstates[26–31]. How- q molecular multilayers it is, however, vital to include the ever,itisstilluncleartowhatextendeffectivemodelsfor t. dipole-dipole interaction (DDI) between the underlying multilayers of dipolar BEC at arbitrary polarization are a particles. valid and how interlayer DDI can be detected. m Thestudyofmagneticsingle-andmultilayerfilmshas In this article, we investigate the effect of interlayer - enjoyedalonghistoryincondensedmatterphysics(fora DDI on the ground state of the BEC. We present an d n recentreview,seeRef.[2]andreferencestherein). There, effective two-dimensional (2D) model for an arbitrarily o an alternating structure of ferromagnetic and nonmag- polarized dipolar BEC in a strong one-dimensional (1D) c netic layers is deposited on a substrate, e.g., by atomic opticallattice. Our2Dmodeloffersaclearadvantagefor [ beam epitaxy. However, structural instabilities induced, numerical computation of ground state properties com- 1 e.g.,bytemperaturechangesandfilmthicknessvariation pared to computations for a full three-dimensional (3D) v often complicate experiments in thin films. Gross-Pitaevskiiequation(GPE):ourcomputationtimes 6 Quantum-degeneratedipolargaseshavereceivedmuch reducetosecondsinsteadofdozensofhours. Previously, 7 attention recently from both theoretical and experimen- such dimension-reduced models have been derived for 1 tal studies (for recent reviews, see Refs. [3, 4]). Their BECswithoutDDI[32–38]andwithdipolarinteractions 6 DDI crucially affects the ground-state properties [5, 6], . 1 stability [7–9], and dynamics of the gas [10]. Further- 0 more, they offer a route for studying exciting many- x 2 body quantum effects, such as a superfluid-to-crystal :1 quantum phase transition [11], supersolids [12] or even U U‘+1‘ U2‘D+2‘ v topological order [13]. Recent advances in experimen- 2D 2D Xi tal techniques have paved the way for a Bose-Einstein 1 2π2γ4 condensate (BEC) of 52Cr with a magnetic dipole mo- r γ d a ment 6µ (Bohr magneton µ ), much larger than con- B B ventional alkali BECs [14–16]. Promising candidates for ϑ future dipolar BEC experiments are Er and Dy with z ψ even larger magnetic moments of 7µ and 10µ , respec- ‘ δ B B tively [17, 18]. Furthermore, DDI-induced decoherence andspintextureshavebeenobservedinalkali-metalcon- FIG.1. (Coloronline)SetupofthemultilayereddipolarBEC densates [19, 20]. Dipolar effects also play a crucial role polarized along d. An optical lattice along z separates the in experiments with Rydberg atoms [21] and heteronu- dipolarBECinto2Dlayersinthex–y planewithdistanceδ. clearmolecules[22,23]. Bosonicheteronuclearmolecules ApartfromtheintralayerDDIU2D,eachlayerinteractswith other layers via the interlayer DDI Uj(cid:96). mayprovideabasisforfutureexperimentsonBECswith 2D 2 in a single layer [39, 40]. We also derive the effective 2D At zero temperature, a weakly interacting BEC is de- intra- and interlayer DDI potentials governing the layers scribedbytheGPE[41]. Forsimplicity,weintroducedi- of quasi-2D BECs. These potentials allow for useful an- mensionless quantities by rescaling lengths with the lat- alytical approximations, which were used in a previous tice distance δ = π/k , that is, r → rδ, energies with l workonmultilayerdipolarBECswithperpendicularpo- (cid:126)2/mδ2 = 2E /π2 (E is the recoil energy), and the r r larization [27]. We establish that the 2D model is valid wave function of the gas with the central density n(0), (cid:112) by comparing its ground states to ground states of the ψ → ψ n(0). In these units the normalization of the 3D GPE for weakly interacting BECs at zero tempera- wave function is (cid:82) d3r|ψ(r,t)|2 = N/n(0)δ3 with N the ture [41]. We suggest that the interlayer DDI is observ- totalnumberofatoms. Awayfromshaperesonances,the able in the transverse aspect ratio of the central layers wavefunctionψ =ψ(r,t)ofthedipolarBECisgoverned after time of flight expansion. Moreover, we calculate by the GPE [6, 43, 44] the Bogoliubov excitation energies for a transversely ho- (cid:20) (cid:21) 1 mogeneousBECwithcontact,intra-andinterlayerDDI. i∂ ψ = − ∇2+V +V +(g−g )|ψ|2+V ψ. (2) The interlayer DDI reduces the squared Bogoliubov en- t 2 ho o d dd ergy and, therefore, influences the occurance of a roton Here, g =4πa n(0)δ2 is the dimensionless contact inter- s minimum. action strength with a the s-wave scattering length and s In Sec.II we present our2D modeland effective intra- g =mc n(0)δ2/3(cid:126)2 is the dimensionless DDI strength. d dd and interlayer potentials for a dipolar BEC trapped in a Furthermore, V (ρ) = (m2ω2δ4/2(cid:126)2)ρ2 with ρ = (x,y) ho strong 1D optical lattice. We also present a single mode and V (z) = (V¯ π2/2)sin2(πz), where V¯ is the lattice o 0 0 approximation valid for the central layers of the BEC. amplitude in units of the recoil energy E . The nonlocal r In Sec. III we compare ground states of our model and dipolar potential V is given by dd its single mode approximation to ground states of the (cid:90) 3D GPE. We find good agreement between these ground V (r)=−3g ∂ d3r(cid:48)U (r−r(cid:48))|ψ(r(cid:48),t)|2 (3) dd d dd 3D states, which indicates the validity of our model. In Sec. IV we compute numerically the aspect ratio of the with the kernel U (r)=1/4π|r| and the notation ∂ = 3D d BEC in the central layer as a function of the number of d·∇, ∂ =∂2. latticesitesandpolarizationdirection. Wefindamarked dd d change in the aspect ratio owing to the interlayer DDI, which should be observable in experiments. In Sec. V A. Coupled modes we derive the Bogoliubov dispersion for a transverse ho- mogeneous, multilayered dipolar BEC. We conclude in For strong optical lattices we derive an effective 2D Sec. VI. In App. A we give a detailed derivation of the equation for the wave function on each lattice site. This 2D model presented in Sec. II. is possible because a strong optical lattice with V (cid:29)(cid:126)ω 0 causes the BEC to form layers separated by the lat- tice distance δ (cf. Fig. 1) [41, 45]. We assume that II. EFFECTIVE 2D MODEL the axial extend γ of the BEC in each layer is much larger than the s-wave scattering length. Additionally, Weconsider a dilute dipolar BEC atzero temperature in the quasi-2D regime γ−2 (cid:29) |g −g | [46]. This con- d trapped in a transverse harmonic potential V (x,y) = ho dition allows us to approximate the optical lattice as a m2ω2(x2+y2) and a longitudinal optical lattice Vo(z) = train of harmonic potentials and the axial wave func- V sin2(k z). Here, m is the particle mass, ω the trap tion as its ground state. Then the wave function sepa- 0 l frequency, V0 the lattice height, and kl the wave num- rates into ψ(r,t)=e−it/2γ2(cid:80)(cid:96)ψ(cid:96)(ρ,t)w(cid:96)(z) [33, 40, 41]. ber of the lattice laser. We focus on atomic BECs The sum extends over all lattice sites (cid:96). Under our as- with a magnetic dipole moment but it is straightfor- sumptions the axial wave function on each site (cid:96) at posi- ward to extend the analysis to degenerate bosonic gases tion z is described by a Gaussian w (z) = w(z−z ) = (cid:96) (cid:96) (cid:96) with electric dipole moments. We assume that an ex- (1/πγ2)1/4e−(z−z(cid:96))2/2γ2; the Gaussians do not mutually ternal field polarizes the atoms along a normalized axis (cid:82) overlap ( dzw (z)w (z) (cid:39) 0 for (cid:96) (cid:54)= j). In the quasi- (cid:96) j d = (dx,dy,dz) = (cosφsinϑ,sinφsinϑ,cosϑ) with φ 2D limit γ−2 = (cid:112)V¯ π2. More generally, in a homoge- andϑtheazimuthalandpolarangles,respectively. Then 0 neous BEC it is also possible to treat the layer width the dipole-dipole interaction (DDI) is described by γ as a variational parameter that minimizes the Gross- c |r|2−3(d·r)2 Pitaevskii energy functional [9]. By inserting this wave U (r)= dd , (1) dd 4π |r|5 function into Eq. (2) and integrating out the z direction weobtainthefollowingequationfortheradialwavefunc- where c = µ D2 with µ is the magnetic vacuum per- dd 0 0 tion ψ =ψ (ρ,t) at site (cid:96) (cid:96) (cid:96) meability and D the dipole moment (for electric dipoles (cid:20) (cid:21) cdd = D2/(cid:15)0, where (cid:15)0 is the vacuum permittivity). We i∂ ψ = −1∇2+V +(cid:2)g¯−g¯ (cid:0)1−3d2(cid:1)(cid:3)|ψ |2+V(cid:96) ψ . note that it is possible to modify the DDI strength c t (cid:96) 2 ho d z (cid:96) 2D (cid:96) dd by means of a rotating magnetic field [42]. (4) 3 1)− 0.4 largerthanthelayerwidth(|δ(cid:96)j|(cid:29)γ), η(x→+∞)van- ofδ |ℓ−j|=45 1)− 3 icsohmeseainddentthiceaml.oBduecliauofsethoefkoeurrnealsssu|Uˆmejvp(cid:96)etni|onantdha|Utˆojδd(cid:96)d(cid:29)|bγe-, nits 3 (δ this is fulfilled for the interlayer DDI between any two (u 2 ˆU2D distinct sites. As a consequence, we split the total effec- jℓ2D 0.2 00 20 40 tiveDDIpotentialintoasumofintralayerandinterlayer ˆeU 1 k (δ−1) terms v ti ula Vˆ(cid:96) (k)=3g [(d cosϕ+d sinϕ)2−d2]Uˆ (k)|(cid:91)ψ |2(k) m 2D d x y z 2D (cid:96) Cu 0.00 1 2 3 4 5 +3g (cid:88)[d cosϕ+d sinϕ−id sgn(δ )]2 d x y z (cid:96)j k (unitsof δ−1) j(cid:54)=(cid:96) ×Uˆj(cid:96)(k)|(cid:91)ψ |2(k), FIG. 2. (Color online) Cumulative interlayer DDI Uˆj(cid:96) for 2D j 2D (8) 52Cratdifferentlayerseparations (cid:96) j . Thesolidlinesshow | − | the interlayer DDI [Eq. (9)], whereas the dashed line shows the approximation Eq. (10) for nearest neighbors [Eq. (10) wheresgn(x)isthesignofx. Thekernelsofthispotential is indistinguishable from the solid lines for larger distances]. are Uˆ =2Uˆ00 and ThedottedlineindicatestheintralayerDDI.Theinsetshows 2D 2D theintralayerDDIandtherectanglewithinindicatestheex- tend of the main panel. We set V0 =30Er. Uˆj(cid:96)(k)= ke−2δγ(cid:96)2j2η(cid:18)γ2k√−|δ(cid:96)j|(cid:19). (9) 2D 4 2γ √ √ Here, g¯ = g/ 2πγ and g¯ = g / 2πγ are the effective d d 2Dinteractionsstrengths. Intheremainderofthisarticle In the limit of negligible layer width (γ (cid:28) |δ(cid:96)j|) the in- terlayer DDI in Eq. (9) can be approximated by weneglectstronglysuppressedtermsintheeffectiveDDI potential V(cid:96) (see Appendix A for details). We find the 2D following expression for its Fourier transform Vˆ2(cid:96)D(k) = Uˆj(cid:96)(k)(cid:39) ke−|δ(cid:96)j|k ((cid:96)(cid:54)=j). (10) F[V(cid:96) ](k) with k=k(cosϕ,sinϕ) 2D 2 2D Vˆ(cid:96) (k)=3g (cid:88)(cid:16)(cid:2)(d cosϕ+d sinϕ)2−d2(cid:3)Uˆj(cid:96) (k) This approximation becomes an identity in the limit 2D d x y z even γ → 0 and nonzero |δ |. The second line of Eq. (8) j (cid:96)j +2idz(dxcosϕ+dysinϕ)Uˆojd(cid:96)d(k)(cid:17)|(cid:91)ψj|2(k). idsirtehcetiionnt.erIlanyseerrtDinDgIappoptreonxtimialatfoiornar(b10it)rainrytopEolqa.ri(z8a)tifoonr (5) perpendicularpolarization,werecovertheinterlayerDDI potential used in Refs. [27, 29]. We expect our general- Here, ized interlayer DDI potential to be valid for bosons as well as fermions because fermions in different layers oc- Uˆejv(cid:96)en(k)= k4e−2δγ(cid:96)2j2 (cid:20)η(cid:18)γ2k√+2γδ(cid:96)j(cid:19)+η(cid:18)γ2k√−2γδ(cid:96)j(cid:19)(cid:21), cuTpyhedikffeerrneenltoqfuathnetuimntesrtlaatyeesr. DDI potential Uˆ2jD(cid:96)(k) is showninFig.2asacumulativeplotoverthefivenearest (6) lattice sites. For comparison we also show the intralayer DDI. Although not shown in Fig. 2, we established that Uˆj(cid:96) (k)= ke−2δγ(cid:96)2j2 (cid:20)η(cid:18)γ2k√+δ(cid:96)j(cid:19)−η(cid:18)γ2k√−δ(cid:96)j(cid:19)(cid:21), forrealisticparametersthepotentialsUˆejv(cid:96)enandUˆojd(cid:96)d(for odd 4 2γ 2γ (cid:96) (cid:54)= j) are indistinguishable from Uˆj(cid:96) at the plot reso- 2D (7) lution. For interlayer interactions beyond nearest neigh- bors the approximation for Uˆj(cid:96) in Eq. (10) becomes in- where δ(cid:96)j =((cid:96)−j), η(x)=exp(x2)erfc(x) and erfc(x)= distinguishablefromEq.(9). T2DheinterlayerDDIislinear 1−erf(x) is the complementary error function. in momentum for long wavelengths and drops exponen- TheeffectivedipolarinteractionVˆ(cid:96) [Eq.(5)]contains tially for short wavelengths. It has been shown that this 2D both an intralayer DDI and an interlayer DDI. The in- behavior leads to very weakly bound states in bilayer tralayer DDI are the terms in Eq. (5) with (cid:96) = j. By systems [27, 30, 31, 47]. According to Eq. (8) its sign is setting(cid:96)=j inEqs.(6)-(7)wefindthateachlayerexpe- determined by the polarization direction. The interlayer riences the effective DDI potential of a quasi-2D dipolar and intralayer DDI for predominantly perpendicular po- BEC [40]. The interlayer DDI are the terms in Eq. (5) larization(ϑ<π/4)isattractiveinmomentumspacefor with (cid:96) (cid:54)= j. For perpendicular polarization (d = 1, all k, whereas the interlayer DDI for predominantly par- z d = d = 0) we recover the interlayer DDI potential allel polarization (ϑ > π/4) becomes repulsive for some x y discussed, e.g., in Ref. [27]. If the layer distance is much k around the major axis with ϕ=φ. 4 B. Single mode approximation [Eq. (12)] [50] using the normalized gradient flow (imag- inary time) method. For the time discretization we used If we assume that the the BEC densities in each layer backward Euler finite difference [50]. For the spatial dis- vary little over the central sites, we can simplify the 2D cretizationweemployedthesinepseudospectral[48]and modeltoasingleequationforthecentralsitewavefunc- theFourierpseudospectralmethods[40]forthe3DGPE tion ψ (ρ). This assumption is reasonable for large lat- and the 2D models, respectively. For the 3D compu- 0 tices and we will test its validity in Sec. III. The single tation we assumed that the wave function vanishes at wave function ψ (ρ) approximates the wave functions in the boundaries. We integrated the 3D ground states 0 alllatticesitesfarfromtheboundaries. Consequently,we over the individual lattice sites to find the Ns densities replacetheeffectivedipolarpotentialVˆ(cid:96) (k)[Eq.(8)]by |ψ3D(ρ)|2 =(cid:82)δ((cid:96)+1/2)dz|ψ(r)|2. To determine the valid- 2D (cid:96) δ((cid:96)−1/2) the site-local potential ity of the 2D model we compared the 2D ground states ψ (ρ) to ψ3D(ρ). Using the single mode approximation (cid:16) (cid:96) (cid:96) Vˆ (k)=3g [(d cosϕ+d sinϕ)2−d2]Uˆ (k) reduced the computation times drastically: typically to 2D d x y z 2D less than a minute, compared to 2–3 hours for the cou- +(cid:88)[d cosϕ+d sinϕ−id sgn(j)]2Uˆj0(k)(cid:17) pled equations and ∼ 1 day for the 3D GPE. In this x y z 2D j(cid:54)=0 section we only consider polarization in the x–z plane, (cid:91) that is d = (sinϑ,0,cosϑ) (cf. Fig. 1). Because the ex- ×|ψ |2(k). 0 ternal potential is radially symmetric, this simplification (11) corresponds to choosing the transverse projection of the polarization direction as the x axis. Inserting the inverse Fourier transform of Eq. (11) into Eq. (4) we are left with the uncoupled equation To compare the axial profiles of the coupled 2D and 3Dgroundstateswecomputedtherelativeparticlenum- (cid:20) (cid:21) i∂ ψ = −1∇2+V +(cid:2)g¯−g¯ (cid:0)1−3d2(cid:1)(cid:3)|ψ |2+V ψ bers in each lattice site. Because of the long range of t 0 2 ho d z 0 2D 0 the DDI, we observe fairly pronounced boundary effects (12) in the 3D computations for strong dipolar interactions forthecentralsitewavefunctionψ =ψ (ρ). Weassume g (cid:39) g. For this reason we omit the N outermost lat- 0 0 d b alatticethatissymmetricaroundthecentralsitesothat tice sites in the overall normalization. Then the relative the dipole terms linear in d in Eq. (11) vanish after numberofparticlesinsite(cid:96)forthe2Dmodelisgivenby z summation. Using Eq. (10) for Uˆj0 we can perform the N = (cid:82) d2ρ|ψ (ρ)|2/(cid:80)Ns−Nb (cid:82) d2ρ|ψ (ρ)|2 (the rel- 2D (cid:96) (cid:96) j=−Ns+Nb (cid:96) summation in Eq. (11) and find ative particle number N3D for the 3D GPE follows by (cid:96) replacing |ψ |2 with |ψ3D|2). Figure 3 shows the parti- Vˆ2D(k)(cid:39)3gd[(dxcosϕ+dysinϕ)2−d2z] (13) cle number (cid:96)difference ((cid:96)N(cid:96)3D − N(cid:96))/N03D relative to the ×(cid:2)Uˆ (k)+UˆNs∗(k)(cid:3)|(cid:91)ψ |2(k) particle number at the central lattice site. Although the 2D 2D 0 number difference varies slightly over the central lattice sites, the difference between the GPE and the 2D model with Eq. (4) remains smaller than 4% and 1% for the two pa- UˆNs∗(k)=k(cid:18)1−e−(Ns∗+1)k/2 −1(cid:19). (14) rameter sets, respectively. 2D 1−e−k Next we compared the density profiles of the central latticesite|ψ (ρ)|2 forthecoupledandsinglemodemod- Here, we summed over N∗ central lattice sites. In the 0 s els with |ψ3D(ρ)|2. The sum of the densities of the cou- limit of an infinite lattice the maximum of U2NDs∗ moves pled 2D an0d the total density of the 3D GPE are nor- towards k = 0 with limk→0Uˆ2∞D(k) = 1. Therefore, the malized to a function proportional of the total particle total DDI potential for an infinite stack of BECs does number N(N). However, in the single mode approxima- not vanish anymore at k = 0 (dashed line in the inset tion we only consider a single wave function which has, of Fig. 2). However, this is a pathological case because consequently, a normalization less than N. If the BEC for any finite Ns the total DDI potential vanishes at k = density were the same in all layers, th√e normalization of 0 and our assumption of slowly varying wave functions thissinglewavefunctionwouldbeN/ N . Becausethe s breaks down towards the boundary. density varies slightly across layers, instead we chose to normalizethesinglemodedensitytotheparticlenumber in the central layer of the GPE. The ground state densi- III. VALIDITY OF THE 2D MODEL tiesforvariousDDIstrengthsandpolarizationanglesare showninFig.4. Wefindthatboththecoupledandsingle In this section, we investigate the validity of the ef- modemodelsdescribethegroundstatewellforanypolar- fective 2D model for multilayered dipolar BECs intro- ization. We only observe a slight difference between the duced in Sec. II. To this end we computed ground models for strong DDI on the order of the contact inter- states for the 3D GPE [Eq. (2)] [48], the coupled 2D actionandparallelpolarization(topleftpanelinFig.4). model [Eq. (4)] [49], and the single mode 2D model Thismeansthateventhesinglemodeapproximationde- 5 0.02 ggd = 1290 ggd = 12 (a) D 2 30 0 )/N 0.00 )/N a)0 3DNℓ N0− tsof 0 ϑ= π2 − 0.02 ℓ ni Nℓ − (N (u ( y ϑ=π/2, g /g=19/20 2 d − 0.04 − 0.01 2 (b) ) 0 a 3D0 0 of /N /N ts 0 ϑ= π4 3DN)ℓ 0.00 N)0 (uni − y − ℓ 2 ℓ N − N ( ( 2 ϑ=π/4, g /g=1/2 d ) 0.01 0 − 20 10 0 10 20 a − − lattice site ℓ of s 0 ϑ=0 t ni u FIG. 3. (Color online) Relative particle number difference ( between GPE ground state and the 2D model [Eq. (4)] for y 2 individual lattice sites. The particle numbers are relative to − the particle number in the central layer N3D (bars). The 2 0 2 2 0 2 0 − − discsindicatetheparticlenumberdifferenceinthe2Dmodel x (unitsof a0) x (unitsof a0) relative to the central site (right axis label). The parameters are Ns = 61 lattice sites with V0 = 20Er, Er/(cid:126)ω = 60, and 0.025 0.125 0.225 g=100(cid:112)2Er/(cid:126)ωπ2. |ψ0|2,|ψ03D|2 (arbit. units) FIG. 4. (Color online) Ground state densities of the central scribes the ground state of the multilayer dipolar BEC latticesiteforvariousDDIstrengthsandpolarizationangles. well. ItsaccuracydiminishesforstrongDDIbecausethe Thefilledsurfacesaretheprojectionofthecentralsiteofthe true densities vary sufficiently strongly over the central GPEresults,whereasthesolid(dashed)contourlinesarethe lattice sites. ground states of the coupled (single mode) 2D equation (4). The plotted densities are all normalized to 1. The coupled and single mode results are almost indistinguishable except in the top left panel. The parameters are as in Fig. 3. The IV. INTERLAYER-DDI-INDUCED CHANGE OF plots use the magnetic length a =(cid:112)(cid:126)/mω as length unit. THE ASPECT RATIO 0 TheinterlayerDDIcancauseobservableeffectsinmul- The aspect ratio of the central layer is then given by tilayered dipolar BECs. This becomes apparent from R /R . Magnetostriction causes the dipolar BEC to ex- Fig. 2. The strength of the interlayer DDI is compara- y x pand along the polarization direction [3, 40]. Figure 5 ble to the strength of the intralayer DDI at wavelengths shows the aspect ratio as well as the individual mean larger than δ. We expect that the anisotropy of the DDI radii of the BEC as a function of the number of lattice forϑ>0leadstoachangeintheaspectratioofaquasi- sites N . The case N = 1 corresponds to a single layer 2D dipolar BEC in the central layer of a stack of dipolar s s dipolar BEC. We observe that the interlayer DDI causes BECs. In this section, we investigate these effects nu- an additional reduction in the aspect ratio depending on merically using the single mode approximation for the the number of lattice sites and polarization angle. For central layer. perpendicular polarization the aspect ratio remains un- Todeterminethemeanradiiofthecentrallayerfirstwe changed because the DDI is isotropic. However, the in- computedgroundstatedensitiesforavaryingnumberof dividual radii decrease. We have also computed aspect lattice sites at a constant normalization. We calculated ratiosforastrongerlatticewithV =40E andobserved the mean radii as 0 r a similar dependence of the mean radii on N . For this s (cid:90) stronger lattice and ϑ = π/4 the aspect ratio was closer R2 = d2ρα2|ψ (ρ)|2, (α=x,y). (15) α 0 to 1 and its change slightly smaller than at V = 20E . 0 r 6 √ 1.0 ary state ψ (t), that is, ψ (ρ,t) = e−iµt[ ν + ξ(ρ,t)]. (cid:96) (cid:96) ϑ=π/2 R We expand the perturbation in a plane wave basis as ) x a0 0.8 Ry/Rx ξ(cid:96)(ρ,t) = (1/2π)(cid:82) d2q(cid:0)uq(cid:96)ei(q·ρ−ωqt) +vq∗(cid:96)e−i(q·ρ−ωqt)(cid:1) of Ry and insert ψ (ρ,t) into Eq. (4). Here, ω are the exci- s (cid:96) q nit R tation frequencies of quasimomentum q and uq(cid:96), vq(cid:96) are (u 1.00 ϑ=π/4 x the mode functions in layer (cid:96). Keeping terms linear in radius 0.19.52 RRyy/Rx Gtheennexescietaqtuiaotnisonusqf(cid:96)oranpderpvqe(cid:96)ndwiceulfianrdpothlaeriBzaotgioonliubov-de n ϑ=0 Mea Rx,Ry ω u = q2u +ν(g¯+2g¯ )(u +v ) 1.0 R /R q q(cid:96) 2 q(cid:96) d q(cid:96) q(cid:96) y x (17) 1 11 21 −g ν(cid:88)Uˆj(cid:96)(q)(u +v ), d 2D qj qj Total number of lattice sites N s j q2 FIG. 5. (Color online) Mean radii and aspect ratio of the −ωqvq(cid:96) = 2 vq(cid:96)+ν(g¯+2g¯d)(vq(cid:96)+uq(cid:96)) cTehnetrdailffBerEeCntlapyaenrealsscaofrurnescptioonndotfothdeiffneurmenbterpoolfalraizttaitcieonsitaens-. −gdν(cid:88)Uˆ2jD(cid:96)(q)(vqj +uqj). (18) gles. The interlayer DDI has a noticeable effect over sev- j eral lattice sites. The lines are marked at the right and are only to guide the eye. The parameters are as in Fig. 3 with Excitationsinlayer(cid:96)arecoupledtoexcitationsinalllay- gd/g=19/20. ers through the interlayer DDI. However, the interlayer DDIdropsexponentiallywiththedistance[cf. Fig.2and Eq. (9)]. Therefore, first we only take into account near- Forperpendicularpolarizationthemeanradiiandaspect est neighbor interactions |(cid:96)−j|≤1. Then the matrix of ratio were nearly indistinguishable from the top panel thesystemofEqs.(17)–(18)becomestridiagonalandcan in Fig. 5. The DDI-induced change of aspect ratio has be solved for its eigenenergies. The resulting Bogoliubov been observed in a single layer 52Cr via time of flight energy E (q)=ω is determined by B q expansion[15, 51]. We suggest that the dependence of the aspect ratio on Ns could also be observed via time q2(cid:20)q2 of flight expansion. To observe the central layers, in this EB2(q)= 2 2 +2(g¯+2g¯d)ν experiment the outer layers would have to be removed (19) (cid:21) on a time scale short enough to suppress equilibration, −3g νUˆ (q)−12g νUˆ(cid:96)+1,(cid:96)(q) . e.g., with additional lasers focused on the outer layers. d 2D d 2D This is followed immediately by time of flight expansion of the BEC. The observable effect is largest for parallel Because Uˆj(cid:96)(q) vanishes for zero quasimomentum, the 2D √ polarization ϑ=π/2. speed of sound c = lim ∂E (q)/∂q = g¯ν+2g¯ ν is q→0 B d notinfluencedbytheinterlayerDDI.Onlytheintralayer DDIincreasesthespeedofsoundviaitszeromomentum V. BOGOLIUBOV EXCITATIONS mode. NowwegeneralizetheBogoliubovenergyinmultilayer Inthissectionweinvestigatetheinfluenceofinterlayer dipolar BECs to arbitrary polarization. After inserting DDI on the excitation spectrum of a layered quasi-2D the expansion of the 2D wave functions into Eq. (4) we dipolarBEC.Inparticular,weconsiderlocaldensityfluc- find the squared Bogoliubov energy tuations of the layered BEC and derive their Bogoliubov energy. Their Bogoliubov energy can assume imaginary q2(cid:20)q2 E2(q)= +2[g¯−g¯ (1−3d2)]ν values for suitable parameters, which indicates the on- B 2 2 d z (20) set of a dynamical instability that leads to exponential (cid:21) growth of excitations. +6gdνWˆ2(cid:96)D(cid:96)(q)−12gdν(cid:12)(cid:12)Wˆ2(cid:96)D+1,(cid:96)(q)(cid:12)(cid:12) . TodeterminetheBogoliubovenergyweconsidersmall perturbations around the ground state of Eq. (4). For Here, Wˆj(cid:96)(q) = [(d cosϕ + d sinϕ)2 − d2]Uˆj(cid:96)(q) in simplicity we assume a vanishing transverse harmonic 2D x y z 2D polar coordinates q = q(cosϕ,sinϕ). In general, this potential V = 0 and homogeneous density ν in each ho excitation energy is anisotropic but mirror symmetric layer. For an optical lattice with N sites ν = 1/N . A s s around the polarization direction projected onto the x–y stationary state of the effective 2D GPE (4) is given by √ plane. Interestingly, the interlayer interaction always re- ψ (ρ,t)=ψ (t)=e−iµt ν with the chemical potential (cid:96) (cid:96) ducestheBogoliubovenergycomparedtotheBogoliubov µ=[g¯−g¯ (1−3d2)]ν. (16) energy of a dipolar BEC with only intralayer DDI. This d z meansthatinterlayerDDIdrivestheBECclosertowards Now we add a local perturbation ξ (ρ,t) to the station- an instability regardless of the polarization direction. (cid:96) 7 We gain qualitative insight into instabilities by look- gd = 10 90◦ gd = 20 90◦ ing at the dipole-dominated regime with g/g →0. Set- d ϑ=0 ϑ=π/4 ting g¯ = 0 in Eq. (20) we see that the contact inter- action terms becomes attractive for polarization angles 5 5 4 4 d2z = cos2ϑ < 1/3. Because the DDI terms (last line) 1 2 3 1 2 3 in Eq. (20) vanish at q = 0, this leads to imaginary Bo- 180◦ 0◦180◦ 0◦ goliubov energies at low quasimomenta q. The dipole- dominated quasi-2D BEC ground state is not stable in this regime. However, a repulsive s-wave interaction grep>ulsgidv(e1c−on3tda2zc)t ipnrteevreancttsiotnhi(scotsy2pϑe>of1i/n3s)taabniloittyh.erFionr- (a) 270◦ 270◦ stability of the dipole-dominated quasi-2D BEC occurs gd = 1 90◦ gd = 10 90◦ ϑ=π/2 ϑ=π/2 at nonzero quasimomenta. For perpendicular polariza- tion a sufficiently large negative intralayer DDI term in 5 5 Eq.(19)(largegdν)compensatesthepositivefreeenergy 2 3 4 2 3 4 and local terms (first line). This leads to an instability 1 1 180◦ 0◦180◦ 0◦ in the cross-over regime from quasi-2D to 3D [9]. The interlayer DDI term in Eq. (19) shifts the instability re- gion to smaller quasimomenta. Because in the present article we only consider quasi-2D BECs, we refer to an upcoming article investigating instabilities in the 2D–3D 270◦ 270◦ cross-over regime [52]. 0 2 4 6 8 10 12 14 16 Figure 6 shows the Bogoliubov energy Eq. (20) of a E (q) (unitsof h¯2/mδ2) B dipole-dominated quasi-2D multilayer BEC for three po- larizationdirections. Fornonperpendicularpolarizations (b) 10 the Bogoliubov energy becomes anisotropic with higher ) 2 energies along the projected polarization direction. In mδ g = 10 d Fig. 6 we observe the instability at low momenta for 2/ ϑ=0 ¯h ϑ=π/2. ThecutsinFig.6(b)showthedevelopmentofa of 5 roton minimum at moderately large DDI strength. The s t interlayer DDI advances the development of this mini- ni u g = 20 mum to smaller values of g compared to a single layer ( d d B ϑ=π/4 quasi-2D dipolar BEC. For comparison we also plot the E Bogoliubov energy for 52Cr in Fig. 6(b), where we as- 0 0 1 2 3 4 5 sumed that the contact interaction has been reduced to g =0 via a Feshbach resonance [16]. The interlayer DDI q (unitsof δ−1) strength of 52Cr is too weak to influence the dispersion significantly. FIG.6. (Coloronline)Bogoliubovenergiesfordifferentpolar- izationsandDDIstrengths. Thepolarplotsin(a)aremarked with the magnitude and angle of q. White areas mark un- stable regions. (b): Cuts through Bogoliubov energies at the VI. CONCLUSION polaranglesindicatedin(a). Solidlinesincludeintra-andin- terlayerDDI,whereasdashedlinesonlyincludetheintralayer We showed that interlayer DDI in a multilayer stack DDI.Thegreenlinerepresents52Cr. TheinterlayerDDIdoes ofdipolarBECsmarkedlyreducestheaspectratioofthe notinfluencehighenergieswherethein-planeexcitationsbe- comeparticle-like. ParametersareasinFig.3withg=0and quasi-2D BEC in the central layer. The greatest change ν =1/10. in aspect ratio occurs for parallel polarization. We sug- gestedthatthiseffectoftheinterlayerDDIisobservable in time of flight image of the central layer. Tosimplifynumericalcomputationswepresenteda2D riveasinglemodeapproximationforthequasi-2DBECs model for a stack of quasi-2D dipolar BECs created by in the central sites. This approximation reduces the nu- a strong 1D optical lattice and transversely trapped in a merical computation of mean-field ground states of this harmonic potential. Our model is based on a dimension system from ∼ 1 day to several seconds. The resulting reduction of the GPE assuming a Gaussian axial den- groundstatesmatchthereducedgroundstatesofthe3D sity profile of the wave function in the individual layers. GPE excellently up to moderately large DDI strengths. We derived effective intra- and interlayer DDI potentials For large DDI strengths gd (cid:39)g we still found very good for the resulting coupled quasi-2D BECs. For weak in- agreement at all polarizations. terlayer DDI we observed only small variations in the Finally,theinterlayerDDIreducesthesquaredBogoli- particle numbers per lattice site, which allowed us to de- ubovenergy,whichinfluencesthedevelopmentofaroton 8 minimumandpossiblyleadstoaninstability(imaginary The first term in Eq. (A4) contributes to the contact energy)forlargedensityorDDIstrength. Theexcitation interaction, whereas the second term forms the nonlocal spectrum of local perturbations becomes anisotropic for potential. nonperpendicular polarization. The even kernel Uj(cid:96) [Eq. (6)] is determined by the even terms in Eq. (A4) with only radial derivatives. After inserting U and the Gaussians w into Eq. (A4), we 3D j ACKNOWLEDGMENTS need to solve the integral We are grateful for fruitful discussions with Dieter (cid:90)(cid:90) e−[(z(cid:48)−zj)2+(z(cid:48)−zp)2+(z−zq)2+(z−z(cid:96))2]/2γ2 dzdz(cid:48) . Jaksch and Uwe Fischer. This work was supported by (cid:112) 4π2γ2 (x−x(cid:48))2+(y−y(cid:48))2+(z−z(cid:48))2 theAcademicResearchFundofMinistryofEducationof (A5) Singapore Grant No. R-146-000-120-112. We substitute ζ = z −z(cid:48) −(z +z −z −z )/2, ζ(cid:48) = q (cid:96) j p z+z(cid:48)−(z +z +z +z )/2 in Eq. (A5) and integrate q (cid:96) j p over ζ(cid:48). The solution defines the even kernel of the DDI Appendix A: Derivation of the effective 2D model potential with ρ=(cid:112)(x−x(cid:48))2+(y−y(cid:48))2 In this appendix we present the derivation of the ef- (cid:0) (cid:1) fective 2D model for multilayered dipolar BECs in a Ujpq(cid:96)(ρ)= 1 (cid:90) dζe−ζ2/2γ2e− δj2p+δq2(cid:96) /4γ2. 1D optical lattice [Eq. (5)]. First we use the identity even 2(2π)3/2γ (cid:114) (cid:16) (cid:17)2 ρ2+ ζ+ δqj+δ(cid:96)p Udd(r) = −cdd[δ(r)/3+∂dd(1/4π|r|)] to split the DDI 2 into a local and nonlocal part [48, 53]. Then we in- (A6) sert ψ(r,t) = e−it/2γ2(cid:80) ψ (ρ,t)w (z) with w (z) = In Fourier space with k = k(cosϕ,sinϕ) the deriva- j j j j (1/πγ2)1/4e−(z−zj)2/2γ2 into Eq. (2), where we approx- tives ∂d⊥d⊥−d2z∇2⊥ in Eq. (A4) become −k2[(dxcosϕ+ imate Vo(z) (cid:39) 2γ14 (cid:80)j(z −zj)2. We multiply by w(cid:96)(z) d(1y/s2inπ)ϕ(cid:82))2d2−ρfd(2zρ]).e−ikW·ρefoursethtehe2DcoFnovuenriteirontrafˆn(ksf)orm=. and integrate the resulting equation over z. Setting (cid:82) (cid:82) WiththisnormalizationtheconvolutiontheoremisF[f(cid:63) dzw (z)w (z) = 0 for (cid:96) (cid:54)= j and using dzw2(z) = 1, (cid:82) (cid:96) j (cid:112) (cid:96) h] = 2πF[f]F[h]. For radially symmetric f(ρ) = f(ρ): dzw(cid:96)4(z)=1/ 2πγ2 we find fˆ(k)=(cid:82) dρρf(ρ)J (kρ)withJ theBesselfunction. Us- 0 0 (cid:20) (cid:21) ingthisformulafortheFouriertransformoftheEq.(A6) 1 i∂ ψ = − ∇2 +V +g¯(1−(cid:15) )|ψ |2 ψ +Ψ . (A1) and multiplying by 2πk2 from the convolution and the t (cid:96) 2 ⊥ ho dd (cid:96) (cid:96) (cid:96) Fourier transform of the derivatives in Eq. (A4) we find Here, ∇ =∂ +∂ and ⊥ xx yy (cid:34) (cid:32) (cid:33) k γ2k+(δ +δ )/2 Ψ =−3g (cid:90) dzd3r(cid:48)w (z)∂ U (r−r(cid:48)) Uˆejvpeqn(cid:96)(k)= 4 η (cid:112)q2jγ2 (cid:96)p (cid:96) d (cid:96) dd 3D (cid:32) (cid:33)(cid:35) × (cid:88)ψ∗(ρ(cid:48),t)ψ (ρ(cid:48),t)ψ (ρ,t)w (z(cid:48))w (z(cid:48))w (z). +η γ2k−(δqj +δ(cid:96)p)/2 (A7) j p q j p q (cid:112) 2γ2 j,p,q (A2) −2δj2p+2δq2(cid:96)+(δqj+δ(cid:96)p)2 ×e 8γ2 . The kernel in Eq. (A2) fulfills ∇2U (r)=−δ(r) so that 3D for any f =f(r) For j = p = q = (cid:96) Eq. (A7) reduces to the intralayer DDIUˆ (k). Becauseoftheexponentialprefactor,terms ∂ (U (cid:63)f)=−f −∇2(U (cid:63)f), (A3) 2D zz 3D ⊥ 3D where all j,p,q,(cid:96) are mutually unequal are strongly sup- pressed. Similarly, terms with q =j, p=(cid:96) and j (cid:54)=(cid:96) are where (cid:63) denotes a convolution. We expand the direc- exponentially suppressed. The remaining terms q = (cid:96), tional derivative in Eq. (A2) as ∂dd = ∂d⊥d⊥ +d2z∂zz + p = j, and j (cid:54)= (cid:96) form the interlayer DDI kernel Uˆj(cid:96) 2d ∂ with d = (d ,d ). Applying Eq. (A3) to the even z d⊥z ⊥ x y [Eq. (6)]. convolution in Eq. (A2) yields The odd kernel Uj(cid:96) [Eq. (7)] is determined by the odd (cid:32) d2 (cid:88)(cid:90) term in Eq. (A4) with derivative ∂d⊥z. Using ∂z(U3D (cid:63) Ψ =3g z − dzd3r(cid:48)ψ (ρ,t)w (z)w (z) g) = (∂ U ) (cid:63) g we insert the derivative ∂ U into (cid:96) d (cid:112) q q (cid:96) z 3D z 3D 2πγ2 Eq. (A4). Then we need to solve the integral j,p,q ×(cid:0)∂ −d2∇2 +2d ∂ (cid:1)U (r−r(cid:48)) d⊥d⊥ z ⊥ z d⊥z (cid:33)3D −(cid:90)(cid:90) dzdz(cid:48)(z−z(cid:48))e−[(z(cid:48)−zj)2+(z(cid:48)−zp)2+(z−zq)2+(z−z(cid:96))2]/2γ2. ×ψ∗(ρ(cid:48),t)ψ (ρ(cid:48),t)w (z(cid:48))w (z(cid:48)) . 4π2γ2[(x−x(cid:48))2+(y−y(cid:48))2+(z−z(cid:48))2]3/2 j p j p (A8) (A4) Followingthestepsfortheevenkernelweobtaintheodd 9 kernel ization direction. To obtain this approximation we take thelimitγ →0inEqs.(A6)and(A9)treattheGaussians Ujpq(cid:96)(ρ)=− 1 (cid:90) dζ(cid:18)ζ+ δqj +δ(cid:96)p(cid:19) in ζ as approximations for the Dirac delta distribution: odd 2(2π)3/2γ 2 (cid:0) (cid:1) 1 1 × e−ζ2/2γ2e− δj2p+δq2(cid:96) /4γ2 . (A9) γli→m0Uejv(cid:96)en(ρ)= 4π(cid:16)ρ2+δ2 (cid:17)1/2, (A11) (cid:104)ρ2+(cid:16)ζ+ δqj+δ(cid:96)p(cid:17)2(cid:105)3/2 (cid:96)j 2 1 δ lim Uj(cid:96) (ρ)=− (cid:96)j . (A12) γ→0 odd 4π(cid:16) (cid:17)3/2 The Fourier transform of Ujpq(cid:96) [Eq. (A9)] multiplied by ρ2+δ2 odd (cid:96)j 2πk from from the Fourier transforms of the convolution and the remaining radial derivative is given by Againweneglecttheexponentiallysuppressedterms. In- serting these kernels into Eq. (A4) and calculating the (cid:34) (cid:32) (cid:33) k γ2k+(δ +δ )/2 remaining derivatives we find Uˆjpq(cid:96)(k)= η qj (cid:96)p odd 4 (cid:112)2γ2 (cid:90) (cid:88) −η(cid:32)γ2k−(δqj +δ(cid:96)p)/2(cid:33)(cid:35) (A10) V2(cid:96)D(ρ)=3gd j dρ(cid:48)U2jD(cid:96)(ρ−ρ(cid:48))|ψj(ρ(cid:48),t)|2 (A13) (cid:112) 2γ2 with ×e−2δj2p+2δq2(cid:96)8+γ(2δqj+δ(cid:96)p)2. Uj(cid:96)(ρ)(cid:39) 1 (cid:2)ρ2+(1−3d2)δ2 2D (cid:16) (cid:17)5/2 z (cid:96)j 4π ρ2+δ2 (A14) Only terms with q =(cid:96), p=j are not exponentially sup- (cid:96)j pressed in Eq. (A10). Hence, we recover Uˆojd(cid:96)d [Eq. (7)]. −6dzδ(cid:96)jd⊥·ρ−3|d⊥·ρ|2(cid:3). By combining Eqs. (A7) and (A10) with Eq. (A4) and neglecting the suppressed terms in the sum we recover For the intralayer part j =(cid:96) this approximation remains the DDI potential Eq. (5) in Fourier space. valid for ρ(cid:29)γ. We note that Eq. (A14) corresponds to For completeness we present an approximation of the the dimensionless DDI potential Eq. (1) projected onto spatialpotentialformultilayerDDIwitharbitrarypolar- 2D planes separated by δ . (cid:96)j [1] P.A.Lee,N.Nagaosa, andX.-G.Wen,Rev.Mod.Phys. [16] T.Koch,T.Lahaye,J.Metz,B.Fro¨hlich,A.Griesmaier, 78, 17 (2006). and T. Pfau, Nat. Phys. 4, 218 (2008). [2] K. De’Bell, A. B. MacIsaac, and J. P. Whitehead, Rev. [17] A. J. Berglund, J. L. Hanssen, and J. J. McClelland, Mod. Phys. 72, 225 (2000). Phys. Rev. Lett. 100, 113002 (2008). [3] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and [18] M.Lu,S.H.Youn, andB.L.Lev,Phys.Rev.Lett.104, T. Pfau, Rep. Prog. Phys. 72, 126401 (2009). 063001 (2010). [4] M. A. Baranov, Phys. Rep. 464, 71 (2008). [19] M. Fattori, G. Roati, B. Deissler, C. D’Errico, M. Za- [5] K.Go´ral,K.Rza¸z˙ewski, andT.Pfau,Phys.Rev.A61, ccanti, M. Jona-Lasinio, L. Santos, M. Inguscio, and 051601 (2000). G. Modugno, Phys. Rev. Lett. 101, 190405 (2008). [6] S. Yi and L. You, Phys. Rev. A 61, 041604 (2000). [20] M. Vengalattore, S. R. Leslie, J. Guzman, and D. M. [7] L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewen- Stamper-Kurn, Phys. Rev. Lett. 100, 170403 (2008). stein, Phys. Rev. Lett. 85, 1791 (2000). [21] T. Vogt, M. Viteau, J. Zhao, A. Chotia, D. Comparat, [8] L.Santos,G.V.Shlyapnikov, andM.Lewenstein,Phys. and P. Pillet, Phys. Rev. Lett. 97, 083003 (2006). Rev. Lett. 90, 250403 (2003). [22] K. Ni, S. Ospelkaus, D. Wang, G. Quemener, B. Neyen- [9] U. R. Fischer, Phys. Rev. A 73, 031602 (2006). huis,M.H.G.deMiranda,J.L.Bohn,J.Ye, andD.S. [10] S. Yi and L. You, Phys. Rev. A 63, 053607 (2001). Jin, Nature 464, 1324 (2010). [11] H. P. Bu¨chler, E. Demler, M. Lukin, A. Micheli, [23] M.H.G.deMiranda,A.Chotia,B.Neyenhuis,D.Wang, N.Prokof’ev,G.Pupillo, andP.Zoller,Phys.Rev.Lett. G.Quemener,S.Ospelkaus,J.L.Bohn,J.Ye, andD.S. 98, 060404 (2007). Jin, Nat. Phys. 7, 502 (2011). [12] K.Go´ral,L.Santos, andM.Lewenstein,Phys.Rev.Lett. [24] A. Voigt, M. Taglieber, L. Costa, T. Aoki, W. Wieser, 88, 170406 (2002). T. W. Ha¨nsch, and K. Dieckmann, Phys. Rev. Lett. [13] A. Micheli, G. K. Brennen, and P. Zoller, Nat. Phys. 2, 102, 020405 (2009). 341 (2006). [25] S. Mu¨ller, J. Billy, E. A. L. Henn, H. Kadau, A. Gries- [14] A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and maier,M.Jona-Lasinio,L.Santos, andT.Pfau, (2011), T. Pfau, Phys. Rev. Lett. 94, 160401 (2005). arXiv:1105.5015. [15] J. Stuhler, A. Griesmaier, T. Koch, M. Fattori, T. Pfau, [26] M. Klawunn, A. Pikovski, and L. Santos, Phys. Rev. A S.Giovanazzi,P.Pedri, andL.Santos,Phys.Rev.Lett. 82, 044701 (2010). 95, 150406 (2005). [27] M. A. Baranov, A. Micheli, S. Ronen, and P. Zoller, 10 Phys. Rev. A 83, 043602 (2011). tion (Oxford University Press, Oxford, 2003). [28] S.-M. Shih and D.-W. Wang, Phys. Rev. A 79, 065603 [42] S.Giovanazzi,A.Go¨rlitz, andT.Pfau,Phys.Rev.Lett. (2009). 89, 130401 (2002). [29] A.C.Potter,E.Berg,D.-W.Wang,B.I.Halperin, and [43] M. Marinescu and L. You, Phys. Rev. Lett. 81, 4596 E. Demler, Phys. Rev. Lett. 105, 220406 (2010). (1998). [30] M. Rosenkranz and W. Bao, “Scattering and bound [44] B. Deb and L. You, Phys. Rev. A 64, 022717 (2001). states in two-dimensional anisotropic potentials,” [45] S.Burger,F.S.Cataliotti,C.Fort,P.Maddaloni,F.Mi- (2011), in preparation. nardi, and M. Inguscio, EPL 57, 1 (2002). [31] A.G.Volosniev,D.V.Fedorov,A.S.Jensen, andN.T. [46] D. S. Petrov, M. Holzmann, and G. V. Shlyapnikov, Zinner, Phys. Rev. Lett. 106, 250401 (2011). Phys. Rev. Lett. 84, 2551 (2000). [32] W. Bao and W. J. Tang, J. Comput. Phys. 187, 230 [47] A. G. Volosniev, N. T. Zinner, D. V. Fedorov, A. S. (2003). Jensen, and B. Wunsch, J. Phys. B 44, 125301 (2011). [33] W. Bao, D. Jaksch, and P. A. Markowich, J. Comput. [48] W. Bao, Y. Cai, and H. Wang, J. Comput. Phys. 229, Phys. 187, 318 (2003). 7874 (2010). [34] L.Salasnich,J.Phys.A:Math.Theor.42,335205(2009). [49] W. Bao, Multiscale Modeling and Simulation: a SIAM [35] N. B. Abdallah, F. M´ehats, C. Schmeiser, and Interdisciplinary Journal 2, 210 (2004). R. Weisha¨upl, SIAM J. Math. Anal. 37, 189 (2005). [50] W. Bao and Q. Du, SIAM J. Sci. Comput. 25, 1674 [36] N.B.Abdallah,F.Castella, andF.M´ehats,J.Differen- (2004). tial Equations 245, 154 (2008). [51] T. Lahaye, T. Koch, B. Fr¨ohlich, M. Fattori, J. Metz, [37] E. H. Lieb, R. Seiringer, and J. Yngvason, Phys. Rev. A.Griesmaier,S.Giovanazzi, andT.Pfau,Nature448, Lett. 91, 150401 (2003). 672 (2007). [38] J. Yngvason, E. H. Lieb, and R. Seiringer, Commun. [52] M.RosenkranzandU.R.Fischer,“Instabilitiesinquasi- Math. Phys. 244, 347 (2004). 2DdipolarBose-Einsteincondensates,” (2011),inprepa- [39] R.Carles,P.A.Markowich, andC.Sparber,Nonlinear- ration. ity 21, 2569 (2008). [53] D. H. J. O’Dell, S. Giovanazzi, and C. Eberlein, Phys. [40] Y.Cai,M.Rosenkranz,Z.Lei, andW.Bao,Phys.Rev. Rev. Lett. 92, 250401 (2004). A 82, 043623 (2010). [41] L. Pitaevskii and S. Stringari, Bose-Einstein Condensa-

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.