WATERRESOURCESRESEARCH,VOL.49,306–327,doi:10.1029/2012WR012700,2013 Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz–1GHz A.Revil1,2 Received21July2012;revised26November2012;accepted29November2012;published24January2013. [ ] Amodelcombininglow-frequencycomplexconductivityandhigh-frequency 1 permittivityisdevelopedinthefrequencyrangefrom1mHzto1GHz.Thelow-frequency conductivitydependsonporewaterandsurfaceconductivities.Surfaceconductivityis controlledbytheelectricaldiffuselayer,theoutercomponentoftheelectricaldoublelayer coatingthesurfaceoftheminerals.Thefrequencydependenceoftheeffectivequadrature conductivityshowsthreedomains.Belowacriticalfrequencyf ,whichdependsonthe p dynamicporethroatsize(cid:2),thequadratureconductivityisfrequencydependent.Betweenf p andasecondcriticalfrequencyf ,thequadratureconductivityisgenerallywelldescribed d byaplateauwhenclaymineralsarepresentinthematerial.Clay-freeporousmaterialswith anarrowgrainsizedistributionaredescribedbyaCole-Colemodel.Thecharacteristic frequencyf controlsthetransitionbetweendoublelayerpolarizationandtheeffectofthe d high-frequencypermittivityofthematerial.TheMaxwell-Wagnerpolarizationisfoundto berelativelynegligible.Forabroadrangeoffrequenciesbelow1MHz,theeffective permittivityexhibitsastrongdependencewiththecationexchangecapacityandthespecific surfacearea.Athighfrequency,abovethecriticalfrequencyf ,theeffectivepermittivity d reachesahigh-frequencyasymptoticlimitthatiscontrolledbythetwoArchie’sexponents mandnlikethelow-frequencyelectricalconductivity.Theunifiedmodeliscomparedwith variousdatasetsfromtheliteratureandisabletoexplainfairlywellabroadnumberof observationswithaverysmallnumberoftexturalandelectrochemicalparameters.Itcould bethereforeusedtointerpretinducedpolarization,induction-basedelectromagnetic methods,andgroundpenetratingradardatatocharacterizethevadosezone. Citation: Revil, A. (2013), Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz– 1GHz, Water Resour.Res.,49, doi:10.1029/2012WR012700. 1. Introduction just to cite few examples [e.g., Linde et al., 2006]. That said,thereisnotasinglemodelabletoexplainthecomplex [2] Thereareanumberofelectricalandelectromagnetic conductivityofunsaturatedmaterialsaswellastheireffec- (EM) geophysical methods providing nonintrusively infor- tive permittivity and their frequency dependences in the mationrelativetothetexture,watercontent,andinterfacial broad range of frequencies of interest in geophysics electrochemistry in the shallow subsurface in an extremely (1mHz–1GHz). broad range of frequencies (1 mHz–1 GHz). The relevant arsenal of nonintrusive techniques include self-potential, [3] In the low-frequency domain (<10 kHz), new mod- els have been developed recently to describe the complex direct current (DC) resistivity, frequency and time-domain conductivity of saturated and unsaturated sands and clayey inducedpolarization,frequencyandtime-domaininduction materials [Revil and Florsch, 2010; Revil, 2012; Revil EMmethods,groundpenetratingradar(GPR),andtheseis- et al., 2012a, 2012b]. There is a vast literature regarding moelectric/electroseismic methods. These nonintrusive this topic in interfacial electrochemistry and colloidal methods have many applications in hydrogeophysics to chemistry [e.g., Schwarz 1962; Dukhin and Shilov, 2002; assessgroundwaterresourcesandtomonitorgroundwater Grosse,2002]aswellasingeophysics[TarasovandTitov, quality or for vadose zone hydrogeology and agriculture 2007]. At very high frequencies, there are also predictive models describing the high-frequency permittivity of po- 1DepartmentofGeophysics,ColoradoSchoolofMines,GreenCenter, rous rocks. These models are empirically based like the Golden,Colorado,USA. Topp model forsoils [Topp andReynolds,1998], based on 2ISTerre,CNRS,UMRCNRS5275,Universit(cid:3)edeSavoie,LeBourget upscaling methods like the volume-averaging method duLac,France. [Pride,1994],orbasedontheeffectivedifferentialmedium Correspondingauthor: A.Revil,DepartmentofGeophysics,Colorado approach or mixing laws (see discussion in Jones and Or School of Mines, Green Center, 1500 Illinoisstreet, Golden, CO 80401, [2002], Cosenza et al. [2003], Robinson and Friedman USA.([email protected]) [2003],andMiyamotoetal.[2005]).Notethatwiththevol- ume-averaging approach, the different phases are consid- ©2012.AmericanGeophysicalUnion.AllRightsReserved. 0043-1397/13/2012WR012700 ered symmetrically while with the differential effective 306 REVIL:ELECTRICALPROPERTIESOFPOROUSMATERIALS medium approach, one phase has to be chosen as the host (for instance, grains immersed in a background fluid or fluidinclusioninamatrix). [4] The situation is much more confused in the interme- diate range of frequencies (10 kHz–10 MHz). Typically, a number of authors in geophysics have extended the high- frequency behavior to lower frequencies by adding a con- tribution related to the Maxwell-Wagner polarization mechanism [Chen and Or, 2006]. Other approaches have relied on using the so-called standard model of colloidal chemistry (developed initially by Dukhin and Shilov and based on the polarization of the diffuse layer, see Grosse [2002])andapplyingthismodeltolow-frequencydatasets [Garrouch and Sharma, 1994]. To fit the data, a stretch of thetexturalparametersisusuallyrequiredandtheobtained set of interfacial properties are not compatible with the tri- ple layer complexation models commonly used in surface electrochemistryofminerals. [5] In this paper, following my previous works [Revil and Florsch, 2010; Revil, 2012; Revil et al., 2012a, 2012b], I claim that the diffuse layer is not the main con- tributortolow-frequencypolarizationofclayeymaterials.I Figure 1. The REV. (a) Sketch of the REV comprised also claim that the Maxwell-Wagner polarization is not ei- between two reservoirs. (b) Sketch of the electrical double ther the dominating mechanism of polarization at interme- layeratthesolidwaterinterface.Thedoublelayerincludes diatefrequencies.Anextremelysimplemodelisdeveloped the Stern layer and the diffuse layer. The charges of these based on the low-frequency polarization of the Stern layer two layers compensate the charge on the mineral surface (the inner layer of the electrical double layer). This model (o plane). The d plane corresponds to the separation plane is proposed for saturated and unsaturated clayey materials between the Stern and the diffuse layers. (c) Sketch of the (water being the wetting phase). It explains for the first solid-waterandwater-airinterfaces. time an important amount of literature data in the fre- quencyrange1mHzto1GHzinaverysimpleway. @D r(cid:2)H¼Jþ ; (1) @t 2. Theory where J ¼ (cid:5)(cid:3) E denotes the conduction current density (in A m(cid:4)2), (cid:5)(cid:3) ¼(cid:5)0þi(cid:5)00 represents the complex conductiv- [6] I consider an unsaturated porous material as shown ity, J ¼@D=@t corresponds to the displacement current inFigure1awithanelectricaldoublelayercoatingthesur- d density(Am(cid:4)2),D¼"Erepresentsthedielectricdisplace- face of the grains (Figure 1b). In the classical literature in ment (in C m(cid:4)2), H denotes the auxiliary magnetic field geophysics,itiscustomarytoseeapolarizationsketchlike (A m(cid:4)1), and " denotes the permittivity or dielectric con- theoneshowninFigure2a[e.g.,Hasted,1961].Inthefre- quency range 1 mHz–1 GHz, the apparent dielectric con- stant (in F m(cid:4)1) of the material. I consider anpffihffiffiaffiffirffiffimonic external electrical field E¼E expð(cid:4)i!tÞ (i¼ (cid:4)1 is the stant of a porous material is explained by two dissipation 0 pure imaginary number, f is the frequency in Hz, ! ¼ 2(cid:6)f mechanisms only: the Maxwell Wagner polarization the angular frequency (in rad s(cid:4)1), and E denotes a con- (called the (cid:2) polarization in electrochemistry, see Grosse 0 stantamplitudeofthealternatingelectricalfield).Thetotal [2002])andthepolarizationofthewatermoleculespastthe current density J is the sum of J and J . This yields J ¼ gigahertz frequency (called the (cid:3) polarization). That said, t d t ð(cid:5)(cid:3)(cid:4)i!"ÞE [Vinegar and Waxman, 1984]. This total cur- we know that in induced polarization, the polarization of rentdensitycanbewrittenas, the electrical double layer plays an important role below 10kHz.Thisnondielectricdispersionmechanismisassoci- J ¼(cid:5)(cid:3) E; (2) ated with the electromigration and accumulation/depletion t eff of charge carriers at discontinuities in the migration path- where(cid:5)(cid:3) ¼(cid:5) (cid:4)i!" istheeffectivecomplexconduc- eff eff eff waysofthechargecarriers.Thismechanismiscalledthe(cid:4) tivity and (cid:5) and " are real positive frequency-depend- eff eff polarization in electrochemistry, and its role is such that it entscalarsdefinedby may be the dominating mechanism of polarization for a very broad frequency range as discussed in this paper (see (cid:5)eff ¼(cid:5)0; (3) Figure2b). " ¼"0(cid:4)(cid:5)00=!: (4) eff 2.1. EffectiveConductivityandPermittivity: Definitions Itisalsopossibletodefineaneffectivequadratureconduc- tivity(inSm(cid:4)1)thatisdirectlyrelatedtotheeffectiveper- [7] I first define the concepts of effective conductivity, mittivityas, effective permittivity, and effective quadrature conductiv- ity. Ampe`re law is given by [e.g., Vinegar and Waxman, 1984], (cid:5)0e0ff ¼!"eff ¼(cid:4)(cid:5)00þ!"0: (5) 307 REVIL:ELECTRICALPROPERTIESOFPOROUSMATERIALS where e denotes the local electrical field (in V m(cid:4)1), N w denotethenumberofionicspecies,q thechargeofspecies i i,andC theirconcentration.Themobilitiesb (inNsm(cid:4)1) i i enteringequation(6)arerelatedtotheclassicalionicmobi- lities (cid:2) (in m2 s(cid:4)1 V(cid:4)1) by b ¼(cid:2)=jqj and to the ionic i i i i self-diffusion coefficients D by D ¼k Tb, where k i i b i b denotes the Boltzmann constant (1.3807 (cid:2) 10(cid:4)23 J K(cid:4)1), and T the absolute temperature (in K). There is also a cur- rentdensityassociatedwiththegrains,j duetotheelectri- s caldoublelayercoatingthesurfaceoftheinsulatinggrains. TheboundaryconditionsattheinterfaceS separating the sw solidphaseandtheporespaceare (cid:3) (cid:4) n (cid:7) e (cid:4)e ¼0; (7) s s w n (cid:7)ðj (cid:4)j Þ¼0; (8) s s w where n denotes the normal unit vector to S directed s sw fromtheporetothesolidphase(Figure1c).Theporespace is filled with two immiscible fluids, the water and air phases (water is assumed to be the wetting phase). The boundaryconditionsattheinterfaceS separatingthenon- aw wettingphase(air)andwaterare (cid:3) (cid:4) n (cid:7) e (cid:4)e ¼0; (9) a a w (cid:3) (cid:4) n (cid:7) j (cid:4)j ¼0; (10) a a w where n denotes the normal unit vector to S directed Figure 2. Dielectric dispersion for polarization in a aw from the water to the nonwetting phase (Figure 1c). In the charged porous media. (a) Classical representation from following,Iwillconsiderthatthesurfacechargedensityat Poleyetal.[1978]andfoundinanumberofpapersingeo- the interface between water and the nonwetting phase can physics. (b) Representation of the three types of polariza- be neglected. The reason to neglect this contribution is tion discussed in the text. The (cid:4) polarization corresponds because there is still a gap of knowledge in describing the to the polarization of the electrical double layer, the (cid:2) conductivity and polarization of this interface, which is, polarization corresponds to the Maxwell-Wagner polariza- however, described by an electrical double layer [Leroy tion,andthe(cid:3) polarizationconcernsthepolarizationofthe et al., 2012] and therefore likely characterized by surface watermolecules. conductionandpolarization. Note that in the conventions used above, (cid:5)00 is positively [9] The microscopic equations given above are now eff averagedatthescaleofanREV.TheREVcorrespondsto defined while (cid:5)00 is negatively defined. Two phase angles the rock volume located in between two large-parallel canbedefined.Theformerisdeterminedfromthecomplex circular disks of area A separated by the distance L. This conductivity tan(cid:7)¼(cid:5)00=(cid:5)0 and the second from the effec- is typically the case of a jacketed cylindrical sample in tive parameters tan(cid:8)¼(cid:5)00 =(cid:5) ¼!" =(cid:5) (note that eff eff eff eff the laboratory. We assume that there is a macroscopic (cid:7)(cid:5)0while(cid:8) (cid:6)0). electrical potential difference (cid:4) . When this potential 2.2. ConductivityandPermittivity: difference is divided by L, one obtains the equivalent AVolume-AveragingApproach macroscopic field perpendicular to the end faces of the [8] Pride [1994] developed a volume-averaging REV. We note z the unit vector normal to the end faces approachusedtoupscaletheNernst-Planckequationtothe (Figure 1a). For example, for the electrical field at the scale of a representative elementary volume (REV) of a pore or grain scale, we have r(cid:2)e(cid:9) ¼0, so the electrical porous rock. He was however concerned only by the satu- fields e(cid:9) can be derived from scalar electrical potentials ratedcaseandmotivatedbythemodelingoftheseismoelec- e(cid:9) ¼(cid:4)r (cid:9) where the index (cid:9) defined the phase (w for tric effect. We use this approach to upscale the Nernst- water, s for solid, a for air). The macroscopic electrical Planckequationtoaporousmaterialsaturatedbytwoimmis- fieldiswrittenas cible fluid phases (water and air). The local current density j (in A m(cid:4)2) occurring in the water phase is determined (cid:4) w z(cid:7)E¼(cid:4) ; (11) from the Nernst-Planck equation, which is written, in ab- L senceofmacroscopicconcentrationgradients,as where(cid:4) ¼ ðLÞ(cid:4) ð0Þdenotesthedifferenceofelec- (cid:9) (cid:9) trical potential between the two reservoirs (Figure 1a). In N j ¼X(cid:3)q2bC(cid:4)e : (6) the pore water phase, the fundamental Laplace problem is w i i i w i¼1 definedby 308 REVIL:ELECTRICALPROPERTIESOFPOROUSMATERIALS r2G ¼0; inV ; (12) wheref denotesthevolumetricfractionofphase(cid:9)(f ¼(cid:7), w w (cid:9) f (cid:7)denotes theconnected porosity,and f ¼1(cid:4)(cid:7)is the so- s n (cid:7)rG ¼0;onS ; (13) s w sw lidity, f ¼s (cid:7)¼(cid:10) is the volume fraction of water, also w w na(cid:7)rGw ¼0;onSaw; (14) called the water content in hydrogeology, and fa ¼ ð1(cid:4)s Þ(cid:7) denotes the volume fraction of the nonwetting w (cid:5) L;onz¼L phase).Therefore,wehave, G ¼ (15) w 0; onz¼0; A¼ð1(cid:4)(cid:7)Þa þs (cid:7)a þð1(cid:4)s Þ(cid:7)a : (26) s w w w a where S and S denote the solid-water and air-water sw aw interfaces, respectively (Figure 1c), and Vw denotes the [11] We first define the electrical conductivity of the water phase volume. The electrical potential in the water porewater,whichisgivenby, phase can be written as ¼G (cid:4) =L and the local elec- w w tricalfieldbye ¼(cid:4)rG (cid:4) =L.Asimilarboundary-value N N w w X X problem of the normalized effective potential Ga can be (cid:5)w ¼ q2ibiCi¼ jqij(cid:2)iCi: (27) definedinthenonwettingphase(V denotestheairphase), i¼1 i¼1 a [12] From equation (26), the average conduction current r2G ¼0; inV ; (16) densityisgivenby a a na(cid:7)rGa¼0;in Saw; (17) 1 Z 1 Z J¼ (cid:5) edV þ (cid:5) e dV; (28) (cid:5)L; onz¼L V s s V w w Ga¼ 0; onz¼0: (18) Vs Vw J¼ð1(cid:4)(cid:7)Þ(cid:5) e þs (cid:7)(cid:5) e : (29) s s w w w [10] The volume average of a quantity a(cid:9) (a(cid:9) is a scalar, avector,orpossiblyatensor)is [13] Thetortuosityofthewaterphase(cid:4)wisdefinedby 1Z 1 ha(cid:9)i¼V a(cid:9)dV; (19) ew ¼(cid:4) E; (30) w V(cid:9) 1 1 Z 1 Z (cid:8)1þ z(cid:7)nG dSþ z(cid:7)n G dS; (31) whereV(cid:9) isthevolumeofthe(cid:9)phasewithintheREV.Slat- (cid:4)w Vw s w Vw a w tery’sclassicaltheoremstates[Slattery,1967], Ssw Saw where E ¼(cid:4)z(cid:4) =H denotes the macroscopic electrical 1Z hra i¼rha iþ n a dS; (20) field. From equations (25) and (26), the macroscopic elec- (cid:9) (cid:9) V (cid:9)(cid:5) (cid:9) tricalfieldisalsogivenby S(cid:9)(cid:5) (no summation on the indices) where n(cid:9)(cid:5) represents the E ¼hesiþhewiþheai; (32) unit outwardly directed normal vector for the (cid:9) phase and E¼ð1(cid:4)(cid:7)Þe þ(cid:7)s e þ(cid:7)ð1(cid:4)s Þe : (33) S represents the interfacial area contained within the s w w w a (cid:9)(cid:5) averagingvolume.Applyingthistothewater,solid,andair The phase average of the electrical field e can be also phases and using the unit vectors defined in Figure 1c, I a related tothemacroscopicelectrical fieldvia thetortuosity obtain, ofthenonwettingphase(cid:4) , a 1Z 1Z hra i¼rha iþ na dSþ n a dS; (21) 1 w w V s w V a w ea¼(cid:4) E; (34) Ss Sw a 1Z 1 1 Z hrasi¼rhasi(cid:4)V nsasdS; (22) (cid:4)a (cid:8)1(cid:4)Va z(cid:7)naGadS: (35) Ss Ssa 1Z I need now to find a relationship between the tortuosity of hra i¼rha i(cid:4) n a dS; (23) a a V a a the pore space (cid:4) (related to the definition of the electrical Sa formation factor F at saturation by F ¼(cid:4)=(cid:7)) and the tor- tuosities of the wetting and nonwetting phases. If we note where dS is an infinitesimal surface volume element. The e the local electrical field of the fluid phase (comprising volumetric phase average a and the total volumetric aver- f (cid:9) the wetting plus nonwetting fluid phases), the phase aver- ageA arererelatedtoeachotherby, age of e is related to the phase average of the electrical f field in the wetting phase e and to the phase average of w a(cid:9) ¼ha(cid:9)i=f(cid:9); (24) theelectricalfieldinthenonwettingphasee by a X X A¼ ha i¼ f a ; (25) (cid:9) (cid:9) (cid:9) (cid:9) (cid:9) ef ¼swewþð1(cid:4)swÞea: (36) 309 REVIL:ELECTRICALPROPERTIESOFPOROUSMATERIALS Theelectricfielde isrelatedtothemacroscopicfieldEby, expression of the electrical conductivity is introduced by f usingthefollowingchangeofvariables, 1 e ¼ E: (37) f (cid:4) (cid:7)sw () 1sn: (47) (cid:4) F w w Combining equations (30), (34), (A36), and (37), I obtain after few algebraic manipulations the following relation- From equation (39), Icanalsouse thefollowingchangeof ship between the tortuosity of the pore space, the tortuosiy variables, ofthewaterphase,andthetortuosityoftheairphase, 1 ¼ sw þ1(cid:4)sw: (38) (cid:7)ð1(cid:4)(cid:4)aswÞ () F1(cid:3)1(cid:4)snw(cid:4): (48) (cid:4) (cid:4) (cid:4) w a Usingequations(47)and(48)intoequation(45),Iobtained Therefore, the tortuosity of the pore space is equal to the the following expression for the electrical conductivity of harmonicaverageofthetortuositiesofeachphaseweighted theporousmedium, by their relative saturation. If we multiply equation(38) by theporosity,weobtainarelationshipbetweenthetortuosity of the air phase, the formation factor, and the tortuosity of h(cid:5)i¼(cid:5)sþF1snwð(cid:5)w(cid:4)(cid:5)sÞ(cid:4)F1(cid:3)1(cid:4)snw(cid:4)(cid:5)s; (49) thewaterphase, 1 1 h(cid:5)i¼ sn(cid:5) þ(cid:5) (cid:4) (cid:5) ; (50) (cid:7)ð1(cid:4)s Þ 1 (cid:7)s F w w s F s w ¼ (cid:4) w: (39) (cid:4)a F (cid:4)w h(cid:5)i¼ 1(cid:6)sn(cid:5) þðF(cid:4)1Þ(cid:5) (cid:7): (51) F w w s Theelectricalformationfactorcaninturnberelatedtothe porositybyapower-lawfunction[Archie,1942], In the following, I remove the bar on the pore water and surfaceconductivitytermsanddroptheaveragesymbolfor F¼(cid:7)(cid:4)m; (40) the electrical conductivity to keep the notations as simple as possible. The same chain of algebraic manipulations calledthefirstArchie’slaw,wheremiscalledthecementa- could be applied also to complex conductivity and there- tion exponent (m (cid:6) 1 is a strict bound and (1 (cid:5) m (cid:5) 3 for fore I can write the following expression of the complex sandstones and sands according to experimental data, see conductivityoftheclayeymaterial,(cid:5)(cid:3),asafunctionofthe Revil et al. [1998, Figure 5]). The conduction current den- conductivityoftheporewater(cid:5)w andthecomplexconduc- sitycanbewrittenas tivity of the solid phase (cid:5)(cid:3) ¼(cid:5)0 þi(cid:5)00 (complex because S S S of the polarization the electrical double-layer coating the (cid:6) (cid:7) grains), J¼(cid:5) E(cid:4)(cid:7)s e (cid:4)(cid:7)ð1(cid:4)s Þe þs (cid:7)(cid:5) e ; (41) s w w w a w w w J¼(cid:5)sEþ(cid:7)swð(cid:5)w(cid:4)(cid:5)sÞew(cid:4)ð1(cid:4)swÞ(cid:7)(cid:5)sea; (42) (cid:5)(cid:3)¼ 1(cid:6)sn(cid:5) þðF(cid:4)1Þ(cid:5)(cid:3)(cid:7): (52) F w w S (cid:8) (cid:7)s ð1(cid:4)s Þ(cid:7) (cid:9) J¼ (cid:5) þ wð(cid:5) (cid:4)(cid:5) Þ(cid:4) w (cid:5) E: (43) s (cid:4)w w s (cid:4)a s [14] Notethattheporefluidconductionandsurfacecon- ductionaddinparallelinthismodel,andthereforetheelec- Theeffectiveelectrical conductivityofthematerialh(cid:5)i(in trical conductivity of the porous material is a linear Sm(cid:4)1)isdefinedbythemacroscopicOhm’slaw, function of the conductivity of the pore fluid. This is expectedasthevolume-averagingapproachtreatsthesolid and fluidphases symmetrically,and they are bothassumed J ¼h(cid:5)iE: (44) c tobecontinuousthroughtheREV.AsdiscussedinAppen- dixA,thesituationisdifferentwhenadifferentialeffective Combiningequations(43)and(44)yields mediumapproachisused.Whenwearedealingwithgran- ular media, the solid phase is discontinuous and grains are h(cid:5)i¼(cid:5) þ(cid:7)swð(cid:5) (cid:4)(cid:5) Þ(cid:4)ð1(cid:4)swÞ(cid:7)(cid:5) : (45) immersed in the background pore water. In this case, the s (cid:4)w w s (cid:4)a s differential effective medium theory yields a nonlinear relationship between the electrical conductivity of the po- Note that in the case where there is no surface conductiv- rousmaterialandtheconductivityoftheporefluid(seefor ity, we can connect equation (45) to the second Archie’s instance, Revil et al. [1998] and Revil [1999]). Sands and law by sandstones are somewhere in between these two types of modelsasthediffuselayeriscontinuous(overlappingfrom grain-to-grain) while the Stern layer is discontinuous. In (cid:7)s 1 limh(cid:5)i¼ w(cid:5) ¼ sn(cid:5) ; (46) addition, it follows that the diffuse layer does not polarize (cid:5)s!0 (cid:4)w w F w w whiletheSternlayerpolarizesandthattheSternlayercan- notcontributetotheDCelectricalconductivity. whereniscalledthesecondArchie’sexponentinthelitera- [15] Using the displacement current density rather than ture.Inthefollowing,thissecondArchie’sexponentinthe the electromigration current density, an equation similar to 310 REVIL:ELECTRICALPROPERTIESOFPOROUSMATERIALS equation (52) can be obtained for the high-frequency dielec- where equation (55) has been used. Therefore, the real (in tricconstantusingthesamechainofalgebraicmanipulations, phase) low-frequency component of the solid phase con- ductivityisgivenby, "0¼ 1(cid:6)sn" þ(cid:3)1(cid:4)sn(cid:4)" þðF(cid:4)1Þ" (cid:7): (53) F w w w a S (cid:5)0 ¼ð1=F(cid:7)Þsn(cid:4)1(cid:2) (cid:11) ð1(cid:4)f ÞCEC; (59) S w ðþÞ S M [16] Now coming back to equation (52), I need to where I used the following change of variables express the low-frequency conductivity of the solid phase ð1=(cid:4) Þ()ð1=F(cid:7)Þsn(cid:4)1 resulting from equation (47). I correspondingtoaninsulatingsolidphasecoatedbyacon- w w replacebelowtheexponent(n(cid:4)1)intheexpressionofthe ductiveandpolarizableelectricaldoublelayerasafunction complex surface conductivity by the exponent p because of the surface charge density, the mobility of the counter- thetruetortuositythatshouldbeusedistheoneassociated ions, and the tortuosity of the electromigration pathways with pathways along the grains, not strictly speaking, the along the surface of the grains. I assume that at low fre- tortosity of the water phase adjacent to the grains (I will quency, only the conduction of the electrical diffuse layer showhoweverinsection7thattheapproximationp(cid:9)n(cid:4) participates to the surface conductivity. Indeed, the grains 1 is a good one). This approach is consistent with the one are in contact to each other (a very important distinction derived by Vinegar and Waxman [1984] and Slater and with colloidal suspensions) and the diffuse layer is always Glaser [2003]. The low-frequency (in phase) conductivity above a percolation threshold. This assumption has been isgivenby checkedexperimentallybyVaudeletetal.[2011a,2011b]. [17] The electrical conductivity of the grains is given by the mobility of the counterions (corrected by the tortuosity (cid:5) ¼ 1(cid:8)sn(cid:5) þsp(cid:10)F(cid:4)1(cid:11)(cid:2) (cid:11) ð1(cid:4)f ÞCEC(cid:9): (60) around the grains) times the concentration of the charge 0 F w w w F(cid:7) ðþÞ S M carrierstimestheircharge.Thisyields, [18] Asimilarapproachcanbefollowedforthehigh-fre- quency electrical conductivity, for which now both the (cid:2) S (cid:5)0S ¼ (cid:4)ðþÞQdV ; (54) Stern and diffuse layers contribute to the overall surface w S conductivity [Revil, 2012; Revil et al., 2012a]. Following where Sdenotesthe surface areaof the grains (inm2),Q is the same approach as used to derive equation (60), this the surface charge density of the diffuse layer (in C m(cid:4)d2), yields andV isthevolumeofthegrains(inm3).Notethatthemo- bilitySof the charge carriers is corrected for the tortuosity of (cid:5) ¼ 1(cid:5)sn(cid:5) þsp(cid:10)F(cid:4)1(cid:11)(cid:11) h(cid:2) ð1(cid:4)f Þþ(cid:2)S f iCEC(cid:12): the electromigration of the counterions along the surface of 1 F w w w F(cid:7) S ðþÞ M ðþÞ M thegrainsinthewaterphase(thecounterionsarenotallowed (61) topassthroughthegrainsthatareinsulating).Thefractionof the volumetric charge density associated with the diffuse where (cid:2)S denotes the mobility of the counterions in the ðþÞ layeriswrittenas Stern layer (as expected (cid:2)S (cid:10) (cid:2) , see Revil [2012] for ðþÞ ðþÞ claysandReviletal.[2012a]arguedfor(cid:2)S ¼(cid:2) insilica). ðþÞ ðþÞ (cid:10)1(cid:4)(cid:7)(cid:11) [19] An important parameter in the description of fre- ð1(cid:4)fMÞQV ¼(cid:11)S s (cid:7) ð1(cid:4)fMÞCEC; (55) quency-domain inducedpolarization,but moreimportantly w in the description of time domain induced polarization, is where f (dimensionless) denotes the fraction of counter- the normalized chargeability. In a time-domain induced M ions in the Stern layer (the counterions compensating the polarization experiment, the chargeability M characterizes negative charge of the mineral surface are distributed howthedecayofthesecondary voltageswhentheprimary between the diffuse layer and the Stern later, see Revil current is shut down. This chargeability can be normalized [2012] and references therein). Consequently, ð1(cid:4)fMÞ to obtain the normalized chargeability Mn ¼M(cid:5)1 ¼(cid:5)1 denotesthefractionofcounterionsinthediffuselayer.The (cid:4)(cid:5)0, and therefore from equations (60) and (61), the nor- volumetric charge density Q (in C m(cid:4)3) denotes the total malizedchargeabilityisgivenby V charge density of the double-layer per unit volume of the porewater(includingtheSternanddiffuselayerstakento- (cid:10)F(cid:4)1(cid:11)(cid:10) 1 (cid:11) M ¼sp (cid:11) (cid:2)S f CEC: (62) gether). The relationship between QV and its value at satu- n w F F(cid:7) S ðþÞ M ration(QS ats ¼1)isQ ¼QS=s .Wealsohave V w V V w We can express also the conductivity terms in term of the S ð1(cid:4)fMÞQV ¼QdV : (56) volumetricchargedensityQV,whichyields, p 1 Therefore, the surface charge density can be expressed in (cid:5)0 ¼Fsnw(cid:5)wþ(cid:5)0s; (63) termsoftheCECby 1 (cid:5) ¼ sn(cid:5) þ(cid:5)1: (64) Q S¼ð1(cid:4)f ÞQ V ; (57) 1 F w w s d M V w S Q ¼(cid:11) ð1(cid:4)f ÞCEC; (58) in which we have entered the term ðF(cid:4)1Þ=F (cid:9)1 in dVS S M the expressions of the surface conductivities. In these 311 REVIL:ELECTRICALPROPERTIESOFPOROUSMATERIALS in the literature. The expression for Að(cid:7);mÞ contrasts with the highsalinity conductivity model developed recently by Revil[2012],whichyields, 2(cid:10) (cid:7) (cid:11) Að(cid:7);mÞ¼mðF(cid:4)1Þ : (68) 3 1(cid:4)(cid:7) For spherical grains, F(cid:7)(cid:9)3=2(more precisely (cid:6)/2 for the ionstomovearoundaperfectsphericalgrain)andtherefore thepresentlyderivedexpressionofAð(cid:7);mÞis 2 (cid:10) (cid:7) (cid:11) Að(cid:7);mÞ(cid:9) ðF(cid:4)1Þ : (69) 3 1(cid:4)(cid:7) Thedifferencebetweenequations(67)and(68)istherefore really in the factor m in the expression derived from the effective medium theory. Note for spherical grain (F(cid:7)(cid:9)3=2) and at high porosity, the formation factor is givenby 3(cid:10)1(cid:4)(cid:7)(cid:11) F ¼(cid:7)(cid:4)3=2(cid:9)1þ : (70) 2 (cid:7) Equations(69)and(70)yields Að(cid:7);mÞ(cid:9)1: (71) With this approximation and using p ¼ n (cid:4) 1, the high- frequencyandlow-frequencyconductivitiesaregivenexactly bytheWaxmanandSmits[1968]equation(seealsoWaxman andThomas[1974]forthequadratureconductivity): 1 (cid:8) QS(cid:9) Figure 3. Effective quadrature conductivity versus fre- (cid:5) ¼ sn (cid:5) þ(cid:2) ð1(cid:4)f Þ V ; (72) 0 F w w ðþÞ M s quency. (a) Type A. Berea sandstone (data from Lesmes w and Frye [2001], pH 8, 10(cid:4)1 M NaCl solution). The data 1 (cid:5) h iQS(cid:12) arecharacterizedbythreecomponents: aminimumcritical (cid:5)1 ¼Fsnw (cid:5)wþ (cid:2)ðþÞð1(cid:4)fMÞþ(cid:2)SðþÞfM sV : (73) w frequencyfromwhichthemagnitudeofthequadraturecon- ductivity is going down when the frequency decreases, a The present analysis therefore provides a theoretical foun- plateau (over at least four decades in frequency), and a dation to the Waxman and Smits [1968] model in which high-frequencydomaininwhichthereisanincrease ofthe magnitude of the apparent quadrature conductivity. Filled circles: measurements with four electrodes, filled squares, Table1. PropertiesoftheBereaSandstone(ClayType:Kaolinite measurements with two electrodes. (b) Type B. shaly con- glomerate(thisstudy,pH7,10(cid:4)1MNaClsolution). andIllite) Property Value Archieexponentm(–) 1.78,a1.69,b1.8560.05e Saturationexponentn(–) 1.83,a1.9860.23,e2.11–2.17i relationships, the low-frequency and high-frequency sur- SpecificsurfaceareaS (m2g(cid:4)1) 0.74c–0.93d sp faceconductivitytermsareexpressedas Porosity(cid:7)(–) 0.2060.03c FormationfactorF(–) 18to26b Graindensity(cid:11) (kgm(cid:4)3) 2660i (cid:5)0¼sp Að(cid:7);mÞ(cid:2) ð1(cid:4)f ÞQS; (65) CEC(Ckg(cid:4)3) S 256Ckg(cid:4)1h s w F ðþÞ M V ExcesschargedensityQ (Cm(cid:4)3) 2.7(cid:2)106j–5.8(cid:2)106i v Að(cid:7);mÞh i aJun-ZhiandLile[1990]. (cid:5)1s ¼spw F (cid:2)ðþÞð1(cid:4)fÞþ(cid:2)SðþÞfM QSV; (66) bFrom the raw data of Lesmes and Frye [2001], corrected for surface conductivity. cLesmesandFrye[2001](onesample). andtheparameterAð(cid:7);mÞisgivenby dZhanetal.[2010]. eAttia[2005](eightsamples). 1 (cid:10) (cid:7) (cid:11) fAggouretal.[1994]. Að(cid:7);mÞ¼ ðF(cid:4)1Þ : (67) gZhuandToksöz[2012] F(cid:7) 1(cid:4)(cid:7) hUsingCEC¼Q S withQ ¼0.32Cm(cid:4)2andS ¼0.8m2g(cid:4)1. s sp s sp iVinegar and Waxman [1984, Tables 7 and 10] (porosity 0.19, four Note that the ratio of the surface conductivity to the pore samples). water conductivity is often called the Dukhin number (Du) jUsingQV¼(cid:11)S[(1(cid:4)(cid:7))/(cid:7)]CEC. 312 REVIL:ELECTRICALPROPERTIESOFPOROUSMATERIALS Table2. PropertiesoftheBereaSandstone (cid:2)2 (cid:12) ¼ s2; (75) p 2DS w Permeability PoreThroat ðþÞ Porosity¼(cid:7)(–) k (mD) Sizea(cid:2)(inmm)(1) 0 ! 0.206b 498b 7.9 (cid:12) ¼ 4kF s2; (76) 0.205b 496b 7.9 p DS w 0.207b 477b 7.7 ðþÞ 0.180c 228c 6.0 0.230d 450d 6.8 whereDS denotesthediffusioncoefficientofthecounterions ðþÞ aFrom(cid:2)¼pffi8ffiffiFffiffiffikffiffi0ffiffi¼pffi8ffiffi(cid:7)ffiffiffi(cid:4)ffiffimffiffiffikffiffi0ffiffiwithm¼1.74. (in m2 s(cid:4)1), k denotes the permeability (in m2), and (cid:2) is a bFromAggouretal.[1994]. characteristicporethroatsizethatcanbederivedfromtheper- cFromLesmesandFrye[2001]. meability and the formation factor (see for instance, Table 2 dFromZhuandToksöz[2012]. for the Berea sandstone and a definition of this parameter in AppendixB).Thediffusioncoefficientisrelatedtothemobil- their mobility B is related to the mobility (cid:2) by B¼ ity of the counterions in the Stern layer, (cid:2)S , by the Nernst- ðþÞ ðþÞ (cid:2)ðþÞð1(cid:4)fMÞ. Einstein relationship DS ¼k T(cid:2)S =jq j, where k is the [20] In the high-porosity limit discussed previously, the ðþÞ b ðþÞ ðþÞ b normalizedchargeabilityisgivenas (cid:10)2(cid:11) M ¼sn(cid:4)1 (cid:11) (cid:2)S f CEC; (74) n w 3 S ðþÞ M whichisexactlyequation(43)ofRevil[2012]forthequad- rature conductivity obtained through the differential effec- tive medium approach. Up to this point, I have not discussed the frequency dependence of the electrical con- ductivity.Thiswillbedoneinthenextsection.Also,rather than writing the surface conductivity and the normalized chargeabilityasafunctionoftheCEC,wecanusetherela- tionship developed by Revil [2012] to express the parame- ters as a function of the specific surface area. The relationship between the CEC (in C kg(cid:4)1) and the specific surface area S (in m2 kg(cid:4)1) is CEC ¼Q S , where Q Sp S Sp S denotes the mean charge density for clay minerals (typi- cally, two elementary charges per nm2, i.e., Q ¼ 0.32 C S m(cid:4)2, see Revil [2012]). Note that Q and Q are related to S d eachotherbyð1(cid:4)f ÞQ ¼Q . M S d 2.3. FrequencyDependenceoftheEffective ConductivityandPermittivity [21] Figure3showstheeffectivequadratureconductivity spectrum for a Berea sandstone (data from Lesmes and Frye[2001]),whichisaclayeysandstonewithaverysmall amountofclayminerals.ThepropertiesoftheBereasand- stone are summarized in Tables 1 and 2. I call Type A, clayeymaterialsshowingthetypeofquadratureconductivity spectrashowninFigure3a.Thistypeofquadratureconduc- tivitydistributionexhibitsthreedistinctregions: (i)Domain Iisdefinedbyfrequenciessuchasf <f ((cid:9)0.03Hzforthe p BereasandstonedatashowninFigure3a).Inthisregion,the effective quadrature conductivity decreases with the fre- quency(with(cid:5)00ð!¼0Þ¼0).DomainIIisdefinedbyf (cid:5) p f (cid:5)f ((cid:9)0.3MHzinFigure3a).Inthisdomain,thequadra- Figure 4. Relationship between the normalized charge- d tureconductivityreachesaplateau.DomainIIIisdefinedby ability and the quadrature conductivity. (a) Eight bentonite f >f .Inthisdomain,theeffectivequadratureconductivity sand mixtures (R ¼ 0.97). Data from Slater and Lesmes d increaseswiththefrequencyandiscontrolledbythepermit- [2002].(b)Onesaprolitecoresample(S16,seeReviletal. tivityofthematerial.Ifirstprovidesomeexpressionsforthe [2012b]). The normalized chargeability is determined from two critical frequencies and then I will provide expressions thehighandlowasymptoticvaluesofthe(in-phase)electri- foreachdomain. calconductivity.Thediscrepancyatlowquadratureconduc- [22] In Appendix B, I show that a characteristic relaxa- tivity may be dueto the higher uncertainty in extrapolating tiontimeofaclayeymaterialcanbedeterminedbythefol- thehigh-frequencyandlow-frequencylimitsfortheelectri- lowingequations calconductivity. 313 REVIL:ELECTRICALPROPERTIESOFPOROUSMATERIALS Table3. PropertiesoftheSandstonesFromtheVinegarandWaxman[1984]DatabaseAnalyzedWiththeLinearConductivityModel (ShalySands,NaCl) Sample Mineralogya F(–)b (cid:5) c(10(cid:4)4Sm(cid:4)1) (cid:7)((cid:4))d CECd(Ckg(cid:4)1) logQ e(Cm(cid:4)3) ff(–) S V 3477 K,C 15.1 30.6 0.201 237.74 6.40 0.85 3336A K 23.0 23.6 0.205 393.65 6.61 0.93 3478 K,C 18.9 21.9 0.181 417.70 6.70 0.94 101 K,I 16.4 43.0 0.210 531.40 6.72 0.91 102 K,I 16.2 13.1 0.205 599.84 6.79 0.97 CZ10 C 17.8 72.6 0.233 772.91 6.83 0.89 3833A C 13.9 60.7 0.224 1154.1 7.03 0.94 3126B I,S 11.8 96.2 0.249 1446.1 7.06 0.92 3847A I,C 47.7 29.6 0.126 754.56 7.14 0.96 3283A K,C,I 19.4 44.0 0.186 1245.8 7.16 0.96 3885B I,C 28.9 50.4 0.204 1676.7 7.24 0.97 3972E S,M,I 21.7 44.8 0.187 1546.7 7.25 0.97 3258A I 49.9 86.0 0.128 2022.1 7.56 0.95 3891A C,I 39.3 222.4 0.192 3325.2 7.57 0.93 3308A S,C 12.9 381. 0.270 5498.4 7.59 0.91 3323F S,C 14.4 1065 0.288 10145 7.82 0.89 3324A S,C 29.9 932 0.220 6622.6 7.79 0.84 3323E S,C 15.1 1124 0.281 9801.6 7.82 0.87 3324B S,C 29.6 907 0.204 7843.3 7.91 0.87 3306F S,C 47.8 853 0.171 7122.6 7.96 0.87 aFromVinegarandWaxman[1984,Table1],K:kaolinite,C:chlorite,I:illite,andS:smectite. bFromthefitofthein-phaseconductivitydatausingthelinearconductivitymodel. cFromthefitofthein-phaseconductivitydatausingthelinearconductivitymodel. dFromVinegarandWaxman[1984]. eFromQ andporosityassumingamassdensityforthegrainsof2650kgm(cid:4)3. V fUsingf¼1(cid:4)Q^ 1/Q . V V Boltzmannconstant(1.3807(cid:2)10(cid:4)23JK(cid:4)1),Tistheabsolute surface of clay minerals is in average Q ¼ 0.32 C m(cid:4)2 S temperature (in K), and jq j is the absolute value of the (see Revil [2012]). So the average distance between the ðþÞ charge of the counterions in the Stern layer. Using the data- charged sites is 1.8 nm. Using this distance, equation (78) base of Vinegar and Waxman [1984], Revil [2012] found yieldsacriticalfrequencyof0.3MHz. (cid:2)S (Naþ, 25(cid:11)C) ¼ 1.5 (cid:2) 10(cid:4)10 m2s(cid:4)1V(cid:4)1. This yields the [24] Thesecondcharacteristicfrequencycomesfromthe ðþÞ transition between the low-frequency polarization of the diffusion coefficient of the counterions DS (Naþ, 25(cid:11)C) ¼ ðþÞ electrical double layer and the high-frequency dielectric 3.8(cid:2)10(cid:4)12m2s(cid:4)1forclays.Forfullywater-saturatedmateri- effectintheoverallpolarizationofthematerial.Itisthere- als,thelowercriticalfrequencyatwhichtheeffectivequadra- foredefinedby tureconductivitybecomesconstantisgivenby (cid:12) ¼(cid:4)"0=(cid:5)00; (80) (cid:2)2 d (cid:12) ¼ : (77) p 2DS where (cid:5)00 and "0 denotes the quadrature conductivity of the ðþÞ plateau and the high-frequency dielectric constant. From Taking (cid:2)¼6mmandDS (Naþ,25(cid:11)C)¼3.8(cid:2)10(cid:4)12m2 equation (53), the high-frequency dielectric constant is ðþÞ s(cid:4)1, the critical frequency associated with the previous given(forsaturatedconditions)by relaxationtimeis 1 f ¼ 1 ¼DSðþÞ; (78) "0¼F½"wþðF(cid:4)1Þ"s(cid:12): (81) p 2(cid:6)(cid:12) (cid:6)(cid:2)2 p Taking " ¼ 80" ," ¼ 5.9 " ,and F¼ 18 for the Berea w 0 s 0 DS sandstone, we get "0 ¼ 10.0 " . The second critical fre- f ¼ ðþÞ ; (79) 0 p 8(cid:6)Fk quencyisthereforegivenby 0 and I obtain f ¼ 0.034 Hertz in excellent agreement with 1 (cid:5)00 p f ¼ ¼(cid:4) : (82) the data shown in Figure 3a. Note the measurement of this d 2(cid:6)(cid:12) 2(cid:6)"0 d relaxation frequency can be used to estimate therefore the permeability of the material using equation (79) (this idea Using the value of the quadrature conductivity for the willbeexploredbelowinsection6). Berea sandstone, (cid:5)00 ¼ (cid:4)1.5(cid:2)10(cid:4)4 S m(cid:4)1 (see Figure 3), [23] I follow here closely Vinegar and Waxman [1984] and "0 ¼ 10.0 "0 yields fd ¼ 0.3 MHz (see Figure 3a). inestimatingthehighestfrequencyatwhichtheSternlayer Above this frequency, the polarization response of the ma- polarization can play a role. The shortest possible spatial terialisdominatedbythedielectricpolarizationofthema- variationbetweenchargedandunchargedzonesistheaver- terial (see Figure 3a). Note also if the quadrature agedistancebetweenthesurfacesitesontheclayminerals. conductivityisontheorderof(cid:4)1(cid:2)10(cid:4)5Sm(cid:4)1,thecriti- I have mentioned that the surface charge density on the calfrequencyf canbeaslowas10kHz. d 314 REVIL:ELECTRICALPROPERTIESOFPOROUSMATERIALS (f < f ), the quadrature conductivity decreases as the p inverse of the root mean square of the frequency. For type Amaterialsexhibitingaplateauforthequadratureconduc- tivity (see Figure 3a), the normalized chargeability is also equaltothequadratureconductivity(M ¼(cid:4)(cid:5)00).Notethat n Lesmes and Frye [2001] and Slater and Lesmes [2002] attemptedasemitheoreticalexplanationfortheequivalence between normalized chargeability and imaginary conduc- tivity. This equivalence is very well illustrated by the data of Slater and Lesmes [2002] and Revil et al. [2012b] (see Figure4). [27] Wethereforeproposethefollowingmodelinwhich thefrequencydependenceisexplicit: (cid:10)f(cid:11)1=2 (cid:5)0¼(cid:5) þM ; f <f ; (83) 0 n f p p (cid:5)0 ¼(cid:5) ; f (cid:6)f ; (84) 1 p (cid:10)f(cid:11)1=2 (cid:5)00¼(cid:4)M ; f <f (85) n f p p (cid:5)00 ¼(cid:4)M ; f (cid:6)f ; (86) n p Figure 5. High-frequency volumetric charge density ver- susthetotalchargedensity.Thehigh-frequencyvolumetric charge density is determined from electrical conductivity measurements at various salinities (from the surface con- ductivity and the formation factor), while the total charge density is determined from the porosity and the cation exchangecapacity. [25] Inowdescribethequadratureconductivityresponse belowthecriticalfrequencyf forTypeAmaterials,which p are exhibiting a clear plateau in their polarization spectra. This plateau is likely resulting froma broaddistributionof polarization length scales and therefore from the self-simi- larity of the pore space for a broad range of scales (this idea was expressed by Vinegar and Waxman [1984] and is consistent with the modeling performed by Cosenza et al. [2008]andobservationsbyHyslipandVallejo[1997]). [26] For clay minerals, the kinetics of sorption/desorp- tionofcationsintheSternlayerisprettyfast(fewseconds according to Pohlmeier and Ilic [1998]). Therefore at low frequencies (typically < 1 Hertz), the kinetics of sorption/ desorption may influence the polarization of the electrical double layer. Wong [1979] provided a general model describing the polarization of metallic particles (grains) exchanging charge carriers with the surrounding pore Figure 6. Pore water conductivity dependence of the con- water. In his case, the charge carriers are redoxactive spe- ductivity of shaly sands (data from Vinegar and Waxman cies (electron donors and electron acceptors) and the parti- [1984]). I use here a collection of five samples with more or cle conductive to electrons. His model is however general lessthesameformationfactorbutdifferentCECandtherefore to work also with insulating grains coated by an electrical surface conductivities. According to the model developed in double layer. Wong [1979] showed that his rather complex the main text, the conductivity data should follow the same model can be represented with a Warburg impedance trend,whichisthecase.TheparameterDudenotestheDukhin model.TheWarburgmodelimpliesthatatlowfrequencies number,i.e.,theratioofsurfacetoporewaterconductivity. 315