COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION Attribution — You must give appropriate credit, provide a link to the license, and indicate if o changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial — You may not use the material for commercial purposes. o ShareAlike — If you remix, transform, or build upon the material, you must distribute your o contributions under the same license as the original. How to cite this thesis Surname, Initial(s). (2012) Title of the thesis or dissertation. PhD. (Chemistry)/ M.Sc. (Physics)/ M.A. (Philosophy)/M.Com. (Finance) etc. [Unpublished]: University of Johannesburg. Retrieved from: https://ujcontent.uj.ac.za/vital/access/manager/Index?site_name=Research%20Output (Accessed: Date). Effective Allocation of Multifunction Radar Resources By Makhabane Molapo A Dissertation Submitted for the Partial Fulfilment of the Requirements for the Degree Master of Engineering (Electronic Engineering) Department of Electrical and Electronics Engineering Science Faculty of Engineering and Built Environment University of Johannesburg Supervisor: Prof Bhekisipho Twala DECLARATION I, Makhabane Molapo, hereby declare that this dissertation submitted for a degree of Master of Engineering (M.Eng) to the University of Johannesburg, apart from the help acknowledged, is my own unaided work and has not previously been submitted to another university for the attainment of a degree. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Submitted By: Makhabane Molapo Date: 14/12/2016 Signature: Page ii |Department of Electrical and Electronic Engineering Science University of Johannesburg ACKNOWLEDGEMENTS Once again glory to God in the highest, the Father of our Lord and Saviour Jesus Christ from whom all Wisdom, Power and Life come. Jesus, I owe you me. To the best Professor ever, Professor Bhekisipho Twala, I could not have asked for more. Thank you for believing in me all the way, thank you for your guidance and support, thank you for making me feel welcomed and good. To the Department of Electrical and Electronics Engineering and the University of Johannesburg, thank you for the opportunity to allow me to pursue a Master of Engineering in this wonderful and dynamic institution. To my loving mother, ‘Me ‘Mapeete Molapo, you know I have always tried to be like my father, but I just can’t be, He was just too great, a good father to us (Peete, Makhabane, Seketso and Qenehelo) and a good husband too, but beyond the blues awaits a new tomorrow, we shall soon meet together again when Christ shall appear for the second time (1 Thessalonians 4:16-17). To all my extended family and friends, thank you as well for the encouragement and support, those words of encouragement “You will pass” have carried me through all the storms I encountered in the process of my research. There are some people I need to mention in this, Ntate Sello, David Koloane, Mookamedi, to say thank you is an understatement, you have been an inspiration and support to me ever since I knew you, words are just not enough to express how I feel about you, Ntate. Mr Amos Shozi, my dear brother- in- Christ, you are more than a friend to me and I thank God for your presence in my life. Mr Christiaan Viljoen, a big hug and thank you very much for fixing all the mess, to Denel and in particular, Denel Land Systems, I always graduate when I am in this company. I graduated in 2006 when doing my national diploma, and I have done it again and now it’s a Master’s degree- it seems like we make a great team. Thank you Denel for the opportunity, thank you for allowing me to see the world’s best military technology, Yes the best! Thank you for allowing me to be part of the great team and the great company. Armscor, Armaments Corporation of South Africa, a great big thank you for allowing me to use Alkantpan test range to do my experiments and tests, special thanks go to Mr. Andre Verhoef for all the assistance he provided during the experiment. Last but not least to Mosa Molapo (Sasa), Thesele Molapo (These) and Seamoha Molapo (Amo), Nthati (Rakhali) Molapo, Qenehelo Jnr, Molapo I dedicate this to you, you must go to school and be as great Page iii |Department of Electrical and Electronic Engineering Science University of Johannesburg as your grandfather, Ntate-moholo Qacha Molapo and Mama (Bo shall come) are coming and will come in the fullness of time, I know you are already asking when is when?. I know it tarried, please, be patient for it will surely come. It will not tarry. Page iv |Department of Electrical and Electronic Engineering Science University of Johannesburg ABSTRACT The effective allocation of radar resources is essential if MFR is to realize its full potential. The MFR, aided by algorithms in electronically steered phased array technology, is capable of performing numerous, differing and potentially conflicting tasks. However, the full potential of the radar system is only realised through the ability of its scheduler to automatically manage and configure the finite resource it has available. The main purpose of this dissertation is to realize the RRM techniques for a MFR and it further investigates the efficiency of several resource management algorithms techniques by empirically comparing their effectiveness and performance. In this dissertation the measures and methods which can be used to allocate radar resource are explored; this choice of objective function is crucial as it determines which attribute is allocated resources and consequently constitutes a description of the problem to be solved. A variety of task specific and information theoretic measures are studied and compared. It is shown that by utilising as wide a variety of measures and methods as possible the radar’s multifunction capability is enhanced. The research investigates the impact of using different algorithms, by studying and observing simulations done by other researchers and finding the best performer algorithm in the uncertain and ever changing environment where MFR normally operates, and using the best possible algorithm for experimental purposes for this research, the mathematical modelling using Matlab Fuzzy logic tool box was done to observe the behaviour of the MFR under different fuzzy rules. It is discovered that fuzzy logic algorithms improves the efficiency in allocation of resources. Fuzzy logic algorithm has proved to produce noteworthy improvements in task performance, resource management and allocation. Thus fuzzy logic algorithms can be declared as the base line on which other algorithms can be compared to and the ideal algorithm to handle uncertainty and adaption to a dynamic environment, where most MFRs normally operate. Page v |Department of Electrical and Electronic Engineering Science University of Johannesburg TABLE of CONTENTS CHAPTER 1 INTRODUCTION .............................................................................................................. 1 1.1. Problem Statement ................................................................................................................. 2 1.2. Research Objectives ................................................................................................................ 3 1.3. Motivation of the Research .................................................................................................... 3 1.4. History of Radar ...................................................................................................................... 4 1.5. Radar Applications .................................................................................................................. 5 1.6. Multifunction Radar ................................................................................................................ 8 1.7. Electronic Warfare .................................................................................................................. 8 1.8. Research Contribution .......................................................................................................... 10 1.9. Summary on Chapter one ..................................................................................................... 10 1.10. Organization of the study ..................................................................................................... 11 CHAPTER 2 BACKGROUND REVIEW ................................................................................................. 12 2.1 Introduction .................................................................................................................................. 12 2.1.1 Multifunction Radar Sub-Systems ........................................................................................ 12 2.1.2 Antenna ................................................................................................................................. 13 2.1.3 Duplexer ................................................................................................................................ 14 2.1.4 Transmitter ............................................................................................................................ 14 2.1.5 Receivers................................................................................................................................ 15 2.1.6 Track Manager ....................................................................................................................... 16 2.1.7 Plan Position Indicator ........................................................................................................... 16 2.1.8 Scheduler ............................................................................................................................... 17 2.1.9 Signal Processor ..................................................................................................................... 18 2.1.10 Radar Resource Management Algorithms ............................................................................ 19 2.2 List of Radar’s Architectural Functionality Managers ......................................................... 20 2.3 Multifunction Radar Functions ............................................................................................. 22 2.3.1 Tracking ................................................................................................................................. 22 2.3.2 Surveillance ........................................................................................................................... 23 2.3.3 Search Function ..................................................................................................................... 23 2.3.4 Functional Flexibility .............................................................................................................. 24 Page vi |Department of Electrical and Electronic Engineering Science University of Johannesburg 2.3.5 Plot Confirmation .................................................................................................................. 25 2.4 Classification of RRM Algorithms .......................................................................................... 25 2.4.1 Artificial Intelligence Algorithms ........................................................................................... 27 2.4.2 Artificial Neural Network Approach ...................................................................................... 27 2.4.3 Task Prioritization Using Artificial Neural Network Algorithms ............................................ 28 2.4.4 Task Scheduling Using Artificial Neural Network Algorithms ................................................ 30 2.4.5 Expert Systems Approach ...................................................................................................... 31 2.4.6 Fuzzy Logic Approach ............................................................................................................ 33 a. Quality of Tracks ................................................................................................................................ 34 b. Hostility ............................................................................................................................................. 34 c. Weapon System Capability of the Platform ...................................................................................... 34 d. Degree of Threat ............................................................................................................................... 35 e. Position of the Targets .............................................................................................................. 35 2.4.7 Dynamic Programming Approach.......................................................................................... 35 2.4.8 QoS Based Resource Allocation Model Approach ................................................................. 37 2.4.9 A Framework of QoS based Resource Allocation Model ....................................................... 38 2.4.10 Resource-Aided Algorithms (Adaptive Update Rate Algorithms) ......................................... 40 2.4.11 Scheduling ............................................................................................................................. 41 2.4.12 Butler vs. Orman Scheduling Comparing and Contrasting their Performance...................... 42 2.4.13 Orman Type of Scheduling .................................................................................................... 43 2.4.14 Butler Type of Scheduling ...................................................................................................... 43 2.4.15 Prioritization .......................................................................................................................... 45 2.4.16 A Comparison of Priorities Fuzzy Logic and Neural Networks .............................................. 47 2.4.17 Prioritisation Using Neural Network ..................................................................................... 48 2.4.18 Prioritisation Using Fuzzy Logic ............................................................................................. 48 2.4.19 Summary of Research done in Radar and Radar Resource Management ........................ 49 2.5 Summary of the Chapter ....................................................................................................... 51 CHAPTER 3 CURRENT METHODS ..................................................................................................... 53 3.1 Introduction ......................................................................................................................... 53 3.2 Related Work ........................................................................................................................ 53 Page vii |Department of Electrical and Electronic Engineering Science University of Johannesburg 3.2.1 Radar Equation ...................................................................................................................... 54 3.2.2 Fuzzy Inference System Modelling ........................................................................................ 55 3.2.3 Prioritisation of Tracking Tasks .................................................................................................. 65 3.2.4 Prioritisation Sectors of Surveillance ........................................................................................... 65 3.2.5 Examination of Fuzzy Logic Algorithm ......................................................................................... 66 3.2.6 Comparison of Different Prioritisation Methods................................................................... 71 3.3 Summary of the Chapter ....................................................................................................... 74 CHAPTER 4 NEW METHODS ............................................................................................................ 75 4.1 Introduction ......................................................................................................................... 75 4.2 Experimental Set-Up and Objectives ............................................................................................ 76 4.3 Priority Assignment ............................................................................................................... 77 4.3.1 Function Ranking ................................................................................................................... 77 4.4 Experimental Results ........................................................................................................... 82 4.5 Summary of the Chapter ............................................................................................................ 89 CHAPTER 5 REMARKS AND CONCLUSION ....................................................................................... 90 REFERENCES .......................................................................................................................................... 92 Page viii |Department of Electrical and Electronic Engineering Science University of Johannesburg LIST of FIGURES Figure 1 : Maritime Air-Defence [3] . ...................................................................................................... 2 Figure 2: Radar block diagram architecture .......................................................................................... 13 Figure 3: Radar Resource Architecture ................................................................................................. 19 Figure 4: Multifunction Radar Sub-Systems [42] .................................................................................. 21 Figure 5: Classification of RRM Algorithms [12] ................................................................................... 26 Figure 6: Multi-layer Neurons [14] ....................................................................................................... 29 Figure 7: Decision Tree Target Priority ................................................................................................. 30 Figure 8: Simple Expert System [21] ..................................................................................................... 32 Figure 9: Radar Expert System [17] ....................................................................................................... 32 Figure 10: Single Layer Decision Tree [26] ............................................................................................ 34 Figure 11: QoS Model Frame-Work [41] ............................................................................................... 39 Figure 12: Orman Scheduling ................................................................................................................ 43 Figure 13: Butler Scheduling [26] .......................................................................................................... 44 Figure 14: Changing Tactical Scenario [19] ........................................................................................... 45 Figure 15: Target Priorities Using an ANN [14] ..................................................................................... 48 Figure 16: Target Priorities Using Fuzzy Logic [14] ............................................................................... 49 Figure 17: Fuzzy Inference Editor.......................................................................................................... 56 Figure 18: Input Variable Tracking ........................................................................................................ 57 Figure 19: Input Variable Surveillance .................................................................................................. 58 Figure 20: Input Variable Horizon Search ............................................................................................. 58 Figure 21: Input Variable Volume Search ............................................................................................. 59 Figure 22: Output variable Priority ....................................................................................................... 59 Figure 23: Membership Editor .............................................................................................................. 60 Figure 24: Rules Editor .......................................................................................................................... 61 Figure 25: Rules Viewer ........................................................................................................................ 62 Figure 26: Surface Viewer ..................................................................................................................... 62 Page ix |Department of Electrical and Electronic Engineering Science University of Johannesburg
Description: