Effect ofPre-Drawing on Formability During Cold Heading by Lianzhong Ma Department of Mechanical Engineering McGiII University Montreal, Canada A thesis submitted to McG ill University in partial fulfillment of the requirements of the degree of Master of Engineering Un der the supervision of: Professor J.A. Nemes McGill University © Lianzhong Ma August, 2005 1+1 Library and Bibliothèque et Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A ON4 Ottawa ON K1A ON4 Canada Canada Your file Votre référence ISBN: 978-0-494-24990-1 Our file Notre référence ISBN: 978-0-494-24990-1 NOTICE: AVIS: The author has granted a non L'auteur a accordé une licence non exclusive exclusive license allowing Library permettant à la Bibliothèque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l'Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans loan, distribute and sell th es es le monde, à des fins commerciales ou autres, worldwide, for commercial or non sur support microforme, papier, électronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriété du droit d'auteur ownership and moral rights in et des droits moraux qui protège cette thèse. this thesis. Neither the thesis Ni la thèse ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent être imprimés ou autrement may be printed or otherwise reproduits sans son autorisation. reproduced without the author's permission. ln compliance with the Canadian Conformément à la loi canadienne Privacy Act some supporting sur la protection de la vie privée, forms may have been removed quelques formulaires secondaires from this thesis. ont été enlevés de cette thèse. While these forms may be included Bien que ces formulaires in the document page count, aient inclus dans la pagination, their removal does not represent il n'y aura aucun contenu manquant. any loss of content from the thesis. •• • Canada ABSTRACT One of the most common indus trial cold forging processes is cold heading of steel wire or rod to produce screws, bolts, nuts and rivets. The process is limited by a complicated interplay of many factors. The cold work (pre-drawing) is one of them. Although several investigations into the effects of pre-drawing ~m the formability of metals during cold heading processes have been conducted, so far no attention has been given to the numerical simulations of this phenomenon. The CUITent work aims at examining effects of pre-drawing on formability during cold heading through numerical simulations. Physieal tests in the literature investigating the effects of pre-drawing on the formability of three metals are simulated using ABAQUS 6.4, with three successive FE models: the drawing model, the cutting model and the upsetting model. A new combined linear kinematic/nonlinear isotropic hardening constitutive model is proposed and derived to aecount for the Bausehinger effect existing in reverse plastic deformation. The new model is implemented into ABAQUS/Explicit v6.4 by a user subroutine VUMAT, which is verified by one-element numerical tests under tension, compression and reverse loading conditions. In addition, for the purpose of comparison, the Johnson-Cook isotropie hardening model is also applied for the materials. The Cockroft and Latham criterion is employed to predict surface fracture. Although considerable discrepancies between the experimental and simulation results are observed, the proposed combined hardening model is more accurate in predicting material behavior in the reverse loading than the Johnson-Cook isotropie hardening model. In addition, the simulation results show that the proposed combined hardening material mode! has the potential to correctly predict the material behavior in the reverse loading process. RÉSUMÉ Un des processus industriels les plus communs de forge à froid est la formation à froid du bout du fil d'acier ou de la tige pour produire des vis, des boulons, des écrous et des rivets. Le processus est limité par des effets compliqués de beaucoup de facteurs. Le travail à froid (pré-drawing) est l'un d'entre eux. Bien que plusieurs recherches sur les effets du pré-drawing sur la formabilité des métaux pendant des processus de la formation à froid du bout aient été conduites, aucune attention n'a été donnée aux simulations numériques de ce phénomène. Le travail présent vise à examiner des effets du pré drawing sur la formabilité pendant la formation à froid du bout par des simulations numériques. Des essais physiques dans la littérature étudiant les effets du pré-drawing sur la formabilité de trois métaux sont simulés en utilisant ABAQUS 6.4, avec trois modèles successifs de FE : le modèle de drawing, le modèle de découpage et le modèle de dérangement. Un nouveau modèle constitutif du durcissement combiné de kinematique linéaire/isotrope nonlinéaire est proposé et formulé pour expliquer l'effet de Bauschinger existant dans la déformation plastique inverse. Le nouveau modèle est mis en application dans ABAQUSlExplicit v6.4 par un sous-programme VUMAT d'utilisateur, qui est vérifié par les essais numériques d'un élément sous une tension, une compression et les conditions de chargement inverse. En outre, pour la comparaison, le modèle du durrcissement isotrope de Johnson-cook est également appliquée pour les matériaux. Le critère de Cockroft et de Latham est utilisé pour prévoir la rupture superficielle. Bien qu'on observe des différences considérables entre les résultats expérimentaux et de simulation, le modèle combiné du durcissement proposé est plus précis en prévoyant le comportement matériel sous le chargement inverse que le modèle du durcissement isotrope de Johnson-cook. En outre, les résultats des simulations montrent que le modèle matériel combiné du durcissement proposé a le potentiel de prévoir correctement le comportement matériel dans le procéssus de chargement inverse. 11 ACKNOWLEDGEMENTS l would like to first thank my supervisor, Professor James A. Nemes, for his guidance, encouragement, patience and support. l gratefully acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada and Ivaco Rolling Mills through the Strategie Grants Program. l would also like to thank aIl the group members under the supervision of Prof. Nemes, specifically Christine EI-Lahham for her initial help with the simulation modeling, Amar Sabih for his help with the documentation, Wael Dabboussi for his proofreading of the thesis, and Desheng Deng for his translation of the abstract. Finally, l thank my family, my wife, and my daughter for their love and support. 111 TABLE OF CONTENTS Abstract ........................................................................................................................................... i Résumé ........................................................................................................................................... ii Acknowledgments ........................................................................................................................ iii Table of Contents .......................................................................................................................... iv List of Figures .............................................................................................................................. vii List of Tables ................................................................................................................................. xi Glossary ...................................................................................................................................... xiii 1 Introduction ......................................................................................................................... 1 1.1 Motivation ................................................................................................................ 1 1.2 Objective .................................................................................................................. 2 1.3 Organization ............................................................................................................. 3 2 Literature Review .............................................................................................................. 4 2.1 Cold Reading ........................................................................................................... 4 2.1.1 Properties and Manufacturing Procedures for Cold Reading Quality (CRQ) Steel Wire ........................................................................................ 5 2.1.2 Pararneters for Cold Reading ...................................................................... 6 2.2 Pre-Draw .................................................................................................................. 7 2.2.1 Pre-Drawing Process ................................................................................... 7 2.2.2 Effect ofPre-Drawing on Forrnability during Cold Reading .................. 10 2.2.3 The Bauschinger Effect ............................................................................. 17 2.3 Cold Readability and Ductile Fracture Criteria .................................................... 22 2.3.1 The Macromechanical Approach to Ductile Fracture .............................. 23 2.3.2 The Micromechanical Approach to Ductile Fracture ............................... 25 2.4 Constitutive Relations ............................................................................................ 26 2.4.1 Isotropie Hardening Material Models ....................................................... 27 2.4.2 Kinematic Rardening Material Models .................................................... 30 2.4.3 Combined Kinematic/Isotropic Rardening Material Models .................. 32 2.4.4 Flow Rules ................................................................................................. 34 2.5 Numerical Simulations of Metal Forrning Processes ........................................... 35 IV 2.5.1 Numerical Simulations of Drawing Processes ......................................... 35 2.5.2 Numerical Simulations of Cold Heading Processes ................................. 37 2.5.3 Numerical Simulations of the Fastener Manufacturing Process .............. 38 3 Model Development ........................................................................................................ 39 3.1 Failure Criterion Determination ............................................................................ 39 3.2 Identification of the Corresponding Material Constants for the Johnson-Cook Hardening Model ................................................................................................... 40 3.2.1 Typical Procedures to Determine the Corresponding Material Constants for the Johnson-Cook Hardening Model ................................ .40 3.2.2 Determination of the Corresponding Material Constants for the Johnson-Cook Hardening Model in this Work ....................................... .42 3.3 A Proposed New Combined Linear KinematiclNonlinear Isotropie Hardening Model ...................................................................................................................... 47 3.4 Implementation of the Proposed Combined Linear KinematiclNonlinear Isotropie Hardening into ABAQUS ...................................................................... 52 3.4.1 Overview of User Subroutine ................................................................... 52 3.4.2 The Goveming Equations ......................................................................... 53 3.4.3 Integration of the Goveming Equations ................................................... 54 3.4.4 Derivation of Temperature Increment for an Adiabatic Analysis ........... 57 3.4.5 Flow Chart and Code ofVUMAT and UMAT ........................................ 58 3.5 Verification of the User Subroutine VUMAT ...................................................... 59 3.5.1 One-Element Tests under Uniaxial Loading Conditions ......................... 60 3.5.2 One-Element Tests under Reverse Loading Conditions .......................... 62 4 Numerical Simulations. .................................................................................................. 64 4.1 Numerical Simulations of Tozawa and Kojima's Tests ....................................... 64 4.1.1 Experimental Procedure ............................................................................ 64 4.1.2 Description of Simulation ......................................................................... 65 4.1.2.1 Description of the Drawing Model .......................................... 65 4.1.2.2 Description of the Cutting Model ............................................ 72 4.1.2.3 Description of the Upsetting Model ........................................ 74 4.2 Numerical Simulations of Gill and Baldwin' s Tests ............................................ 76 4.2.1 Experimental Procedure ............................................................................ 76 4.2.2 Description of Simulations ........................................................................ 77 5 Numerical Results and Discussion ............................................................................ 79 v 5.1 Determination of the Kinematic Hardening Modulus, H ................................... 79 5.1.1 Determination of the Kinematic Hardening Modulus, H, for S45C ...... 79 5.1.2 Determination of the Kinematic Hardening Modulus, H , for Mn steel. 85 5.1.3 Comments .................................................................................................. 89 5.2 Results of Simulations of Tests in Tozawa and Kojima' s Paper ......................... 90 5.2.1 Results of Simulations for S45C ............................................................... 90 5.2.1.1 Contour Plot lllustration .......................................................... 90 5.2.1.2 Results for the Material Point with the Highest Principal Stress on the Exterior Surface of the Upset Rod ..................... 93 5.2.1.3 Calculations of Reduction in Height from Simulation Results .................................................................................... 10 3 5.2.2 Results of Simulations for Mn Steel ....................................................... 110 5.2.2.1 Results for the Material Point with the Highest Principal Stress on the Exterior Surface of the Upset Rod ................... 110 5.2.2.2 Calculations of Reductions in Height from Simulation Results .................................................................................... 114 5.3 Results of Simulations of Tests in Gill and Baldwin's Paper ............................ 117 5.3.1 Contour Plot lllustration .......................................................................... 117 5.3.2 Calculations of Cold Heading Limit from Simulation Results .............. 119 6 Conclusions and Future Work ................................................................................. 123 6.1 Conclusions and Summary ................................................................................. 123 6.2 Future Work ........................................................................................................ 125 References .............................................................................................................................. 126 Appendix A 2-D Subroutine ..................................................................................................... 130 vi LIST OF FIGURES Number Page Tille Figure 2-1 4 Schematics of the cold heading on an unsupported bar in a horizontal machine. (a) Head formed between punch and die. (b) Head formed in punch. (c) Head formed in die. (d) Head formed in punch and die. (adapted from Davis, 1988) Figure 2-2 6 Conventional procedure for the manufacturing of CHQ steel wire (adapted from Sarruf, 2000) Figure 2-3 8 Drawing ofrod or wire (adapted from Davis, 1988) Figure 2-4 8 Cross section of a typical wire die for drawing 5.5mm (0.218 in.) diameter rod to 4.6mm (0.18 in.) diameter wire (adapted from Davis, 1988) Figure 2-5 12 he ad diameter Cold heading limit ( .. ) versus percentage reduction of area by Wlre dzameter drawing by 7°,15° and 30° dies (adapted from Gill and Baldwin, 1964) Figure 2-6 13 Plot of fracture true axial strain versus pre-strain by drawing (adapted from Luntz, 1969/1970) Figure 2-7 14 A -A Effect of the reduction of area in drawing, o Ir, on the upsetting limit, Ao ho - h lr -----""- (adapted from Tozawa and Kojima, 1971) h Figure 2-8 15 Effect of approach die angle at constant reduction on the reduction in height for two steels (adapted from Tozawa and Kojima, 1971) Figure 2-9 16 S45C. Average axial stress versus average axial strain curves for upsetting with different reductions of area (adapted from Tozawa and Kojima, 1971) Figure 2-10 16 Mn steel. Average axial stress versus average axial strain curves for upsetting with 40% reduction of area (adapted from Tozawa and Kojima, 1971) Figure 2-11 17 Schematic Bauschinger effect curve Figure 2-12 18 The effect of pre-drawing on strength in compression. Material K1020. Only the homogeneous drawing strain is shown (adapted from Havranek, 1984) Figure 2-13 19 The effect of pre-drawing on strength in compression. Material K1020. (adapted from Havranek, 1984) Figure 2-14 19 The effect of 29% pre-drawing on strength in compression. Material K1020, spheroidised 700°C/24h (adapted from Havranek, 1984) Figure 2-15 20 The effect of pre-drawing on strength in compression. Material KI040 (adapted from J. Havranek, 1984) Figure 2-16 20 The effect of 29% pre-drawing on strength in compression. Material K1040, spheroidised 700°C/24h (adapted from Havranek, 1984) Figure 2-17 21 Fracture limits in K1020 and K1040 determined in the support upset tests (adapted from Havranek, 1984) Figure 2-18 21 Fracture limits in spheroidised K1020 and K1040 determined in the support upset tests (adapted from Havranek, 1984) VIl Figure 3-1 42 Stress versus strain in simple tension and compression tests (adapted from Tozawa and Kojima, 1971) Figure 3-2 43 Stress versus plastic strain in the simple tension and compression tests Figure 3-3 44 Comparison of the stress versus plastic strain curves calculated from the Johnson-Cook hardening model with the corresponding values of the material parameters obtained from tension curve fitting and those from tension tests in the literature Figure 3-4 45 Comparison of stress versus plastic strain curves calculated from the Johnson Cook hardening model with the corresponding values of the material parameters obtained from tension curve fitting and those from compression tests in the literature Figure 3-5 46 Comparison of stress versus plastic strain results from compression tests in the literature and those calculated from the Johnson-Cook hardening model with the corresponding values of the material parameters obtained from compression curve fitting Figure 3-6 50 Symmetric strain cycle experiment (adapted from HKS Inc., 2004) Figure 3-7 59 Flow chart for VUMAT Figure 3-8 60 S45C. Mises stress versus equivalent plastic strain results from uniaxial tension simulations with H = 100 (MPa) and isotropie hardening Figure 3-9 61 S45C. Mises stress versus equivalent plastic strain results from uniaxial compression simulations with H = 100 (MPa) and isotropie hardening Figure 3-10 62 S45C. Axial stress versus axial plastic strain results from reverse loading testing models with H = 0 (MPa) and isotropie hardening Figure 3-11 63 S45C. Axial stress versus axial plastic strain results from reverse loading testing models with H = 100 (MPa) Figure 4-1 64 The procedure of Tozawa and Kojima's test Figure 4-2 66 Geometry and mesh for FEM drawing model Figure 4-3 69 The end shape ofthe eut rod (a) with adaptive mesh and (b) without adaptive mesh Figure 4-4 72 History of ratio of kinematic energy to internaI energy Figure 4-5 73 (a) Configuration of the drawn rod at the final increment of the drawing simulation and (b) The initial configuration of the rod in cutting model. Figure 4-6 74 Initial configuration of the upsetting model Figure 5-1 80 Force versus displacement curves for the simulations of upsetting after 20% pre-drawing by a 30° die for S45C Figure 5-2 81 Simulation and experimental average axial stress versus average axial strain curves for upsetting after 20% pre-drawing by a 30° die for S45C Figure 5-3 83 Force versus displacement curves for the simulations of upsetting without pre drawing for S45C Figure 5-4 83 Force versus displacement curves for the simulations of upsetting after 40% pre-drawing by a 30° die for S45C Figure 5-5 84 Simulation and experimental average axial stress versus average axial strain curves for upsetting without pre-drawing for S45C viii
Description: