ebook img

Effect of speckle on APSCI method and Mueller Imaging PDF

0.68 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Effect of speckle on APSCI method and Mueller Imaging

Effect of Speckle on APSCI method and Mueller Imaging DebajyotiUpadhyay1,MichaelRichert2,EricLacot3,AntonelloDe Martino2andXavierOrlik1* 1ONERA,TheoreticalandAppliedOpticsDepartment,31055Toulouse,France 4 2LPICM,EcolePolytechnique,CNRS,91128Palaiseau,France 1 3LaboratoiredeSpectrome´triePhysique(UMR5588),Universite´JosephFourier,CNRS, 0 38402StMartind’He`res,France 2 *[email protected] n a J Abstract: The principle of the polarimetric imaging method called 9 APSCI (Adapted Polarization State Contrast Imaging) is to maximize the polarimetric contrast between an object and its background using ] s specific polarizationstates of illumination and detection.We performhere c a comparativestudy of the APSCI methodwith existing Classical Mueller i t Imaging(CMI)associatedwithpolardecompositioninthepresenceoffully p andpartiallypolarizedcircularGaussianspeckle.Theresultsshowanotice- o . able increaseofthe Bhattacharyyadistanceused asourcontrastparameter s c fortheAPSCI method,especiallywhenthe objectandbackgroundexhibit i severalpolarimetricpropertiessimultaneously. s y © 2014 OpticalSocietyofAmerica h p OCIScodes:(120.5410)Polarimetry;(260.5430)Polarization;(110.5405)Polarimetricimag- [ ing;(110.2970)Imagedetectionsystems 1 v 3 Referencesandlinks 3 1. M.Richert,X.Orlik,A.DeMartino,“AdaptedPolarizationstatecontrastimaging,” Opt.Express17,14199- 9 14210(2009). 1 2. S.Y.LuandR.A.Chipman,“InterpretationofMuellermatricesbasedonpolardecomposition,” J.Opt.Soc.Am. . A13,1106–1113(1996). 1 3. H.Poincare´,“The´oriemathe´matiquedelalumie`re”(GABAY,1892). 0 4. A.Bhattacharyya,“Onameasureofdivergencebetweentwostatisticalpopulationsdefinedbyprobabilitydis- 4 tributions,”Bull.CalcuttaMath.Soc.35,99–109(1943). 1 5. J.W.Goodman,“SpecklePhenomenainoptics,”(Roberts&CompanyPub.,Colorado,2007)pp.48-50. : 6. P.Drude,U¨berOberfla¨chenschichten.Ann.derPhysik,36,86597(1889) v 7. I.Jung&al.“CharacterizationofThermallyReducedGrapheneOxidebyImagingEllipsometry,”J.Phys.Chem. i X C,112,23,8499-8506(2008) 8. M.P.Rowe,E.N.Jr.Pugh,,J.S.TyoandN.Engheta“Polarization-difference imaging:abiologically inspired r techniqueforobservationthroughscatteringmedia,” Opt.Lett.20,608–610(1995) a 9. J. S. Tyo, M. P. Rowe, E. N. Pugh, Jr., and N. Engheta, “Target detection in optically scattering media by polarization-differenceimaging,” Appl.Opt.35,1855–1870(1996) 1. Introduction ThepolarimetricimagingmethodAPSCI[1]hasbeenshowntoreachbeyondthelimitofcon- trastachievablefromtheClassicalMuellerImaging(CMI)withpolardecomposition[2].The process utilises a selective polarimetric excitation of the scene in order to provoke a scatte- ringfromthe objectandbackgroundcharacterizedbyStokesvectorsasfaraspossible inthe Poincare´ Sphere [3]. Then along with an optimal polarimetric detection method specifically adaptedtoeachsituation,ithasbeendemonstratedthatthecontrastbetweenanobjectandits backgroundcouldbeincreasedtoahigherorderofmagnitudewithrespecttothecontrastfrom CMIwithpolardecomposition[1]. We propose here to study the performance of the APSCI method taking into account the shot noise of the detector and the speckle noise in the case of a monochromaticillumination givingrise toanadditionalcircularGaussianspecklenoise,wherepartialdepolarizationmay occur. Moreover, we consider the numerical propagation of errors in the calculation of the polarimetricdatafromtheacquiredrawdata.Forvarioussituations,wherethesceneexhibits differentpolarimetricpropertiessuchasdichroism,birefringenceordepolarization,weperform a comparative study of contrast level, which is quantified by the Bhattacharyya distance [4] calculatedfromthesignificantparametersoftheCMI,thepolardecompositionandtheAPSCI method. 2. BriefreviewoftheAPSCImethod Letusassumeascenewithahomogeneouscircularobjectsurroundedbyahomogeneousback- ground.Then,thescenecanbemodeledintotwomutuallyexclusiveregionsO andB having polarimetric propertiescharacterized by their Mueller matrices M and M , respectively for O B the object and the background. As the scene is considered to be a priori unknown, we need aninitialestimationofMuellermatricesoftheobjectM andofthebackgroundM byCMI O B before implementing APSCI method. During the Mueller imaging process, we consider that e e eachpixelofthedetectorindexedby(u,v)receivesanintensityI(u,v)perturbedbyaPoisson distribution in order to take into account the shot noise. The Mueller matrix M(u,v) at each pixelisthencalculatedfromthenoisydetectedintensitiesI(u,v). e LetusassumeatotallypolarizedStokesvector~SisusedtoilluminatethesceneafterCMI. e TheestimationsoftheStokesvectorsofthefieldscatteredbytheobject~S andbackground~S O B canbeexpressedas: e e ~S = S , S , S , S T =M ~S, ~S = S , S , S , S T =M ~S (1) O O0 O1 O2 O3 O B B0 B1 B2 B3 B e (cid:2) (cid:3) e e (cid:2) (cid:3) e We definethe measureof separationof~S and~S in thePoincare´ spherebythe Euclidean O B distanceDbetweentheirlastthreeparameters.Then,wedeterminenumericallyusingasimplex e e searchalgorithmthespecificincidentStokesvector~SinthatmaximizesthisEuclideandistance. ItisworthytoemphasizethattheStokesvectors~S and~S arenotnormalizedandcanexhibit O B differentrateofdepolarization.Asaconsequence,themaximizationoftheEuclideandistance e e mentionedabovetakesintoaccounttwophysicalentities:thepolarizationstateandtheinten- sityofthepolarizedpartofthescatteredfield. Finally, we utilize a Two Channel Imaging (TCI) system that projects the scattered field resultingfromtheselectiveexcitation~Sin,into2statesofpolarization~Sout1 and~Sout2,thatare defined to maximize respectively (I −I ) and (I −I ), where I and I are the evaluations O B B O O B of the mean intensity detected respectively from the object and backgroundscattering. From e e e e e e simplecalculationitcanbeshownthat: T T ~Sout1= 1, D ~ST / D ~S , ~Sout2= 1, −D ~ST / D ~S (2) h (cid:13) (cid:13)i h (cid:13) (cid:13)i (cid:13) (cid:13) (cid:13) (cid:13) where (cid:13) (cid:13) (cid:13) (cid:13) T D ~S= Sout−Sout, Sout−Sout, Sout−Sout , (3) O1 B1 O2 B2 O3 B3 h i e e e e e e with T out T out Sout,Sout,Sout,Sout =~S =M ~Sin, Sout,Sout,Sout,Sout =~S =M ~Sin. (4) O0 O1 O2 O3 O O B0 B1 B2 B3 B B h i h i e e e e e e e e e e e e TheAPSCIparameteristhendefinedforeachpixelofthedetectorindexedbythecoordinates (u,v)as: I (u,v)−I (u,v) 1 2 APSCI(u,v)= , (5) I (u,v)+I (u,v) 1 2 whereI (u,v)andI (u,v)arethedetectedintensityafterprojectionrespectivelyonthe2states 1 2 ofpolarization~Sout1and~Sout2. In this study, we use the Bhattacharyya distance as a contrast parameter for each physical quantityunderinvestigationthatcanbe,forcomparisonpurposes,eithertheAPSCIparameter asdefinedabove,eitherthemorepertinentparametersextractedfromthepolardecomposition of the Mueller matrices of the object and background. A more detailed discussion of the APSCImethodisproposedin[1]. 3. CharacteristicsoftheSpecklenoise Wehavechosentostudyanunfavourablesituationofimagingregardingboththespecklegrain sizeanditscontrast.Thus,weassumeaspecklegrainwithasizesimilartothatofthepixelof thedetector.Ontheexperimentalpointofview,thissituationcorrespondstoacontrastthatis notdecreasedbytheintegrationofseveralgrainsintoasinglepixel. Moreover,wechoosetostudytheeffectofacompletelypolarizedanddevelopedcircularGaus- sian speckle becauseitexhibitsa strongcontrastandso is susceptibleto decreasethe perfor- manceoftheAPSCImethod.Aswillbepointedoutlaterinthisarticle,biologicalapplications of the APSCI method seem very promising. So, in order to take into account some possible movementof the object, we consider a dynamicalspeckle: each intensity acquisition is then submittedtoadifferentspecklepattern. TheeffectofapartiallypolarizedspeckleisalsoofinterestregardingtheAPSCI methodbe- cause it combines 2 antagonist effects : a decrease of the speckle contrast that increases the BhattacharyyadistanceoftheAPSCIparameterandaloweramountofpolarizedlightusable bytheAPSCImethodfortheoptimizationthat,onthecontrary,isexpectedtodecreasesignal tonoiseratioandhencethisdistance.Inoursimulations,thespeckleistakenintoaccountby amodulationofintensityattheimageplanethatisconsideredindependentofthestateofpo- larization scattered by the object and background.This modulationof intensity is performed accordingtotheprobabilitydensityfunctionofintensity pI(I)ofacompletelydevelopedcir- cularGaussianspecklethatdependsonthedegreeofpolarizationP[5]: 1 2 I 2 I pI(I)= PI(cid:20)exp(cid:18)−1+PI(cid:19)−exp(cid:18)−1−PI(cid:19)(cid:21) (6) whereI istheaverageintensity. 4. Resultsandanalysis WehavechosentostudyinFig.1theeffectofacompletelydevelopedcircularGaussianspeckle onthreedifferentsituationswheretheobjectandbackgroundaredefinedtohaveadifference of10%inonepolarimetricproperty:thecases(a)and(b)exhibitthisdifferenceinthescalar birefringence,thecases(c)and(d)inthescalardichroismandthecases(e)and(f)inthede- greeoflinearpolarization.Thesituations(a),(c)and(e)consideronlytheshotnoisewhereas (b),(d)and(f)take intoaccountanadditionalspecklenoise.Foreachofthese situations,we calculate between the object and background region, the Bhattacharyya distance of the AP- SCI parameterand of the other pertinentparametersextractedfromthe polar decomposition. For comparison purposes, the Bhattacharyya distances are plotted versus the signal to noise ratio(SNR)forasamenumberofintensityacquisition.Wewouldliketopointoutthat,dueto theirdifferentdichroism,the energyscatteredbythe objectandbackgroundandfocalizedby imagingelementstowardsthedetectorcanbedifferent,andhencetheircorrespondingclassical SNR’s. Thus,wechoosetodefinehereaglobalSNRbyconsideringtheshotnoisegenerated by the amount of energy received by the detector without the use of any polarizer and after theback-scatteringonavirtualperfectlylambertianandnonabsorbingobject,whosesizeand positionaresimilartothatofthesceneunderinvestigation. In Fig. 1 B(M) is defined to be the selected element between M and M that providesthe O B best Bhattacharyya distance over the 16 possible elements. In a similar way, B(M ), B(M ) R D e e and B(MD ) representrespectivelythe best Bhattacharyyadistance obtained fromthe selected elementofthebirefringence,thedichroismandthedepolarizationmatricesextractedfromM O andM usingtheforwardpolardecomposition. B e The Bhattacharyya distances corresponding to scenes exhibiting a difference of scalar bire- e fringence,scalar dichroismand in their ability to depolarizelinear polarizedlight are plotted respectivelyasB(R),B(D)andB(DOP ).Finally,B representstheBhattacharyyadistance L APSCI oftheAPSCIparameterasdefinedinsection2. Considering the situations (a), (c) and (e) that take into account only the shot noise, we ob- servethatfromaSNRthreshold,thepolardecompositionthatisolatesthepropertyofinterest (redandblackcurves)bringsalwaysbetterBhattacharyyadistancesthanB(M) (greencurve) selectedfromtherawdataofM andM .Belowthisthreshold,thenoiseintroducedbythis O B decompositionworsen the situation (as can be seen in case (a)) because M and M are in- O B e e sufficientlydetermined.Secondly,weobservethattheparameterB (bluecurve)exhibits APSCI e e thehighestBhattacharyyadistancesforalltheSNRstudiedin(a)(c)and(e).However,forthe case(c),wenoticethatitexhibitsalsohigheruncertaintybarsassociatedtolowermeanvalues ofBhattacharyyadistancescomparedtocases(a)and(e).ThislowerperformanceoftheAP- SCI methodinthecase ofdichroismiscomingfrom2phenomena:theabsorptionofenergy due to the dichroismeffectand the cartesian distance between the matrices of the objectand backgrounddefinedhereas the squarerootof the sum of the squareofthe element-wise dif- ferences.Indeed,aspreviouslydiscussedin[1],a10%differenceinonepolarimetricproperty betweentheobjectandbackgroundgivesrisetovariouscartesiandistancesinfunctionofthe scenestudied.Forcases(a),(c)and(e),thecartesiandistancesarerespectively:0.44,0.09and 0.14.Thelowestvaluecorrespondstothedichroismcaseandexplainsthelowerperformance oftheAPSCImethodinthatcase. Whenaddingthespecklenoise,weobservein(b)comparedto(a),astrongdegradationofall theBhattacharyyadistancesunderstudy.APSCI stillremainsthemorepertinentparameterto distinguishtheobjectfromthebackgroundevenifitsstandarddeviationnoticeablyincreases duetothepresenceofspeckle.Theeffectofthesamespecklenoiseonsituation(c)isplottedon (d).WeobservethatB(M )andB(M)falltoverylowvaluesevenforhighSNRandasacon- D sequencebecomeunusableforimaging.Asaresult,fromtherawdataoftheMuellermatrices M andM associatedtothepolardecomposition,onlyB(D)reachesanorderofmagnitude O B similartoB .Moreover,wenoticethatthestandarddeviationofB hasconsiderably APSCI APSCI e e increasedduetothespecklenoise.Afteradeeperanalysis,wehaveobservedthatM andM O B areparticularlypoorlyestimatedforthecaseofdichroism(forthe2reasonsmentionedabove) e e andthattheadditionofspecklenoiseworsennoticeablythissituation.Asaconsequence,se- lective states of excitationSin spread near all overthe Poincare´ sphere, showingonlya weak increaseofdensityofprobabilityinthetheoreticaloptimumregion. We consider now on Fig.1 (e) and (f) the effect of a partially polarized speckle noise with degreesofpolarizationbeingrespectivelyP =0.78andP =0.71fortheobjectandback- obj back groundthatexhibitadifferenceof10%intheirabilitytodepolarizelinearpolarizedlight.We observeonlyaweakdecreaseofalltheBhattacharyyadistancesduetothefactthatthespeckle, onlypartiallypolarized,exhibitsa lowercontrast(C =0.90andC =0.87)thanin pre- obj back vioussituations. Moreover,the APSCI parametergivesrise to Bhattacharyyadistancesmuch higherthanusingtheCMIaloneorassociatedwiththepolardecomposition. Inalltheprevioussituations,wehavestudiedscenesthatexhibitadifferencebetweentheob- ject and background in only one polarimetric property. However, in such pure cases, due to thenumericalpropagationoferrors,theinterestofusingMuellerImagingcanbeinappropriate compared to simpler methods such as ellipsometry [6][7] or polarization difference imaging methods [8][9]. However, Mueller Imaging can be of great interest in the case of scenes ex- hibitingseveralpolarimetricpropertiesatthesametime. Thus,inordertoexaminetheperformanceofAPSCImethodinsuchcase,weconsideramore complexscenewheretheobjectandbackgroundhave10%differenceinscalarbirefringence, scalardichroismandinthelineardegreeofpolarizationsimultaneously.InFig.2,weshowthe BhattacharyyadistancesoftheAPSCIparametercomparedtothebestBhattacharyyadistances obtainedfromtheCMIassociatedtothepolardecompositionthatis,inthisnewsituation,the Bhattacharyya distance corresponding to scalar dichroism. We observe that both parameters show only a weak decrease of performance(around 5%) due to the speckle noise because it is onlypartiallypolarizedand exhibitsa contrastsignificantlyinferiorto 1. Secondly,we see clearlythattheBhattacharyyadistancesofthe APSCI parameterexhibitsmuchhighervalues thantheonesofthescalardichroism.AvisualcomparisonforaSNRof3.2isproposedinFig. 2wheretheobjectcanclearlybeseenonlyusingtheAPSCIparameterbecauseofhaving3.8 timeshigherBhattacharyyadistancescomparedtotheoneofthescalardichroism. We would like to point out that the APSCI parameter of this complex scene exhibits better Bhattacharyyadistancesthanthepurecasesofdichroismanddepolarizationstudiedseparately inFig.1. However,inspiteofthesameamountofbirefringenceinthesituationsofFig.2andFig.1(a) andthatthereareadditionalproperties(dichroismanddepolarization)inthemixedcasewhich couldhelpustodifferentiatetheobjectfromthebackground,theBhattacharyyadistancesob- tainedinthepurecaseofbirefringencearehigherthaninthemixedcaseforagivenSNR,even ifwecorrecttheSNRvaluebytakingintoaccountabsorptionthatoccursinthelattercase.This canbeexplainedbythecartesiandistancesbetweentheobjectandbackgroundmatriceswhich arerespectively0.44and0.13forthepurebirefringentandmixedcase.Itcanappearsurprising that addingsome polarimetricdifferencesbetween the objectandbackgroundcan reducethe cartesiandistancebetweentheirMuellermatricesandsoourabilitytodistinguishthem. Fig.1.BhattacharyyadistancesobtainedfromdifferentSNRlevelswithout(casea,c,e) andwith(caseb,d,f)specklenoise.Theobjectandbackgroundhaveadifferenceof10% onlyinscalarbirefringence,scalardichroismandlineardegreeofpolarizationrespectively for the cases a & b, c & d and e & f. In case a & b, (R, l , e ) represent respectively R R thescalarbirefringence,azimuthandellipticityofthebirefringencevector~R.Similarlyfor casec&d,(D,l D,eD)representrespectivelythescalardichroism,azimuthandellipticity ofthedichroismvector~D.Forthecasee&f,eigenaxesofdepolarizationoftheobjectand backgroundareassumedalignedandD DOPLandD DOPCrepresentrespectivelythediffer- encebetweentheobjectandbackground, intheirabilitytodepolarizelinearandcircular polarizedlight. However,we have to keep in mind that mostof the elements of a Mueller matrix describe severalpropertiessimultaneouslyandthatfromaqualitativepointofview,theeffectsofbire- fringenceanddichroismcanproducecounter-effectsthatwilldecreasethemaximumdistance achievable between the Stokes vectorscattered by the object and background.Such observa- tionistrueforallkindofpolarimetricmeasurements,however,astheAPSCImethoddoesn’t considereachpolarimetricpropertyseparately,andrathertakesintoaccountthewholeMueller matrices,itisexpectedtogivealwaysthebestpolarimetriccontrastachievablefora2channel imagingsystem. Fig. 2. Comparison of Bhattacharyya distances vs. SNR curves for the best performing parameter of CMI(inthiscasethescalardichroism) vsAPSCIparameter with(ws)and withoutspecklenoise(wos).Thesceneiscomposedofanobjectandabackgroundexhibit- ing10%differenceinscalarbirefringenceR,scalardichroismDandinthelineardegree ofpolarisationDOP .AtthesameSNRlevelof3.2,theembeddedimages(i)and(ii)are L obtainedrespectivelyusingtheAPSCIparameterandthebestparameteroftheCMI. 5. Conclusion Wehavestudiedinvarioussituationstheeffectofacompletelyorpartiallypolarizedandfully developedcircularGaussianspeckleinpresenceofshotnoise,ontheAPSCImethodcompared to the Classical Mueller Imaging associated to the polar decomposition.In spite of the addi- tional high contrastspeckle noise, the use of selective polarizationstates of illumination and detectioninthe APSCImethodimprovesnoticeablythepolarimetriccontrastbetweenanob- jectanditsbackgroundwithrespecttotheoneachievablefromtheClassicalMuellerimaging, evenwhenpertinentpolarimetricdataareextractedbythepolardecomposition.Moreover,as APSCIoptimizesthepolarimetriccontrastcombiningdichroism,birefringenceanddepolariz- ationpropertiessimultaneously,itexhibitsremarkablyhighperformancecomparedtoClassical MuellerImagingwhentheobjectandbackgroundexhibitmultiplepolarimetricbehaviour.This previous remark makes this technique very promising for medical applications as biological tissues often exhibit several polarimetric propertiessimultaneously in presence of dynamical specklenoise.Especially,itcanrepresenta powerfulandnoninvasivetechniqueforaccurate detectionofdisplasicareasincaseoftumourablation. 6. Acknowledgement We would like to thank the region Midi-Pyre´ne´e for providing us financial support for this work.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.