ebook img

Effect of rotation on the tachoclinic transport PDF

0.09 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Effect of rotation on the tachoclinic transport

Astronomy&Astrophysicsmanuscriptno.6864text (cid:13)c ESO2008 February5,2008 Effect of rotation on the tachoclinic transport NicolasLeprovostandEun-jinKim 7 0 DepartmentofAppliedMathematics,UniversityofSheffield,SheffieldS37RH,UK 0 2 Received/Accepted n a ABSTRACT J 9 Aims.Westudytheeffectofrotationonshearedturbulenceduetodifferentialrotationinthesolartachocline. Methods.By solving quasi-linear equations for the fluctuating fields, we derive turbulence amplitude and turbulent transport coefficients 2 (turbulent viscosity and diffusivity), taking into account the effects of shear and rotation on turbulence. We focus on the regions of the v tachoclineneartheequatorandthepoleswhererotationandshearareperpendicularandparallel,respectively. 4 Results.For parameter values typical of the tachocline, we show that the shear reduces both turbulence amplitude and transport, more 8 strongly in the radial direction (parallel to the shear) than in the horizontal one, resulting in anisotropic turbulence. Rotation further 0 2 reduces turbulence amplitude and transport at the equator whereas it does not have much effect near the pole. The interaction between 1 shear and rotation is shown to give rise to a novel non-diffusive flux of angular momentum (known as the Λ-effect), possibly offering a 6 mechanismfortheoccurrenceofastrongshearregioninthesolarinterior.Furtherimplicationsforthetransportinthetachoclinearediscussed. 0 / h p Keywords.Turbulence–Sun:interior–Sun:rotation - o r t 1. Introduction The purpose of this Letter is to investigate the effect of s a (global) rotation on the tachocline transport. In our previous Solarrotation,bothglobalanddifferential,playsacrucialrole : works,wehavestudiedtheturbulenttransportinthetachocline v inthedynamicalprocessestakingplaceintheSun.Forexam- by taking into account the crucial effect of shearing, the so- i X ple,mean-fielddynamotheory(Moffatt1978;Krause&Ra¨dler called shear stabilisation, due to a strong radial differential 1980) uses these two ingredients to explain the presence of r rotation (Kim 2005; Leprovost&Kim 2006). We have also a thesolarmagneticfield.Firstly,thedifferentialrotationinthe incorporated the interaction of this sheared turbulence with tachocline is responsible for the in-situ generationof toroidal different types of waves that can be excited in the Sun due fieldviatheΩeffect.Secondly,convectionundertheinfluence to magnetic fields (Leprovost&Kim 2007) or stratification of (global) rotation leads to helical motion in the convection (Kim&Leprovost2006).InthisLetter,weelucidatetheeffect zonewhichpermitsthecreationofpoloidalfieldsviatheαef- of globalrotation on sheared turbulenceby studyinga (local) fect. Cartesianmodelvalidneartheequatorandthepoles.Wecon- To understand the differential rotation in the convective sideraturbulencedrivenbyanexternalforcingsuchasplumes zone,manyauthorsinvestigatedthe structureof turbulencein fromtheconvectionzoneandperformaquasi-linearanalysisto rotatingbodies.Themain featureof thistypeofturbulenceis derivethedependenceofturbulenceamplitudeandtransporton the appearance of non-diffusive term in the transport of an- rotation and shear. Compared to two-dimensional turbulence gular momentum which prevents a solid body rotation from studied in Leprovost&Kim (2007), global rotation supports being a solution of the Reynoldsequation (Lebedinsky1941; the propagation of inertial waves in three dimensions (3D), Kippenhahn1963).StartingfromNavier-Stokesequation,itis whichinteractwiththeshearflow,playinganimportantrolein possible to show that these fluxes arise when there is a cause theoverallturbulenttransport.Inparticular,wereportanovel ofanisotropyinthesystem,eitherduetoananisotropicback- resultthatthemomentumtransportcanbenotonlyduetoeddy groundturbulence (see Ru¨diger 1989, and referencestherein) viscosity but also to non-diffusive Λ-effect in the tachocline. or due to inhomogeneity such as an underlying stratification Non trivial Λ-effect here results from an anisotropy induced (Kichatinov 1987). To explain the observed internal differen- byshearflowontheturbulenceevenwhenthedrivingforceis tialrotationandthedepletionoflightelementsonthesurface isotropic,incontrasttothecasewithoutshearflowwherethis oftheSun,itisalsoofprimeimportancetounderstandthein- effectexistsonlyforanisotropicturbulence(Kichatinov1987). fluence of rotation on turbulent transport coefficients such as theturbulentheatconductivityandthe turbulentdiffusivityof particles. 2 NicolasLeprovostandEun-jinKim:Effectofrotationonthetachoclinictransport z Reynolds stress. One can formally Taylor expand R with re- specttothegradientofthelarge-scaleflow: Ω˜ Ri =ΛiU0−νT∂xU0δi1+...=ΛiU0+νTAδi1+... . (3) whereweintroducedtwocoefficientsΛ andν .Theeffectof i T theturbulentviscosityν issimplytochangetheviscosityfrom T θ themolecularvalueνtotheeffectivevalueν+νT.Incompari- son,thefirsttermΛU inEq.(3)isproportionaltotheveloc- i 0 ity ratherthan its gradient.Thismeansthatit doesnotvanish y for a constant velocity field and can thus lead to the creation x ofgradientin thevelocityfield.Thistermisequivalenttothe α-effect in dynamotheory (Parker 1955; Steenbeck&Krause 1966),andhasbeenknownastheΛ-effect(Krause&Ru¨diger A = −dUy 1974) or anisotropic kinetic alpha (AKA)-effect (Frischetal. dx 1987). Similarly,the transportofspeciesinthe largescales is governedbyanadvectiondiffusionequationwherethemolec- Fig.1. The configuration in our model: A, Ω˜ and θ are the ular diffusivity is supplemented by a turbulentdiffusivity, de- shearingrate,therotationrateandtheco-latitude,respectively. finedashvni=−Dij∂ N . i T j 0 Tocalculatetheturbulenceamplitudeandtransportcoeffi- 2. Model cients(Reynoldsstressandturbulentdiffusivity),weprescribe theforcinginEq.(1)tobeincompressible,isotropicandshort To elucidate the effect of rotation on sheared turbulence, correlated in time (modelled by a δ-function) with a power we model the tachocline by an incompressible fluid in local spectrumF.Specifically,weassume: Cartesian coordinates (x,y,z) in a rotating frame (see Fig. 1) with average rotation rate Ω˜ making an angle θ with a mean hf˜i(k1,t1)f˜j(k2,t2)i = τf (2π)3δ(k1+k2)δ(t1−t2)× (4) shear flow in the azimuthal direction:U = −xAˆj. We study F(k)(δ −kk /k2). 0 ij i j the effect of this large-scale shear on the transport properties Theangularbracketsstandforan averageoverrealisationsof of turbulence by assuming the velocity as a sum of a radial theforcing,andτ isthe(short)correlationtimeoftheforcing. shear (i.e. in the x-direction) and fluctuations: u = U +v = f 0 We solve Eqs. (1) and (2) in the case of unit Prandtl number U (x)ˆj+v = −xAˆj+v.Weresorttothequasi-linearapprox- 0 (ν = D)forsimplicity,andusetheresultsoftheseandEq.(4) imation(Townsend1976;Moffatt1978),alsocalledfirst-order to computethe turbulenttransport.InthisLetter,wefocuson smoothing(FOSA)orsecond-ordercorrelationapproximation thecaserelevanttotheSunanddiscusstheimplicationsofour (SOCA),wheretheproductoffluctuationsisneglectedtoob- findings for the dynamics of the tachocline. Note that in the tainthefollowingequationsfortheevolutionofthefluctuating tachocline,|A| ∼ 3×10−6s−1 byusingtheupperlimitonthe velocityfield: tachoclinethickness(5%ofthesolarradius)whiletheaverage ∂v+U ·∇v+v·∇U = −∇p+ν∇2v+f−Ω×v, (1) rotation rate of the interior is Ω˜ ∼ 2.6×10−6s−1. Therefore, t 0 0 the ratio of rotation to shear is very close to unity. However, ∇·v = 0, ifthetachoclineisfoundtobethinner,thevalueoftheshear- where p and f are respectivelythe small-scale componentsof ingrateAbecomeslarger,with|Ω/A|< 1.Furthermore,with thepressureandforcing,andΩ≡2Ω˜. molecularviscosityofν ∼ 102cm2s−1,ξ = νk2/|A|isasmall y To study the influence of rotation and shear on the parti- parameterforabroadrangeofreasonablelengthscalesinthe cle andheattransport,we havetosupplementEq.(1) withan azimuthaldirection,L > 104cm.Thus,thepresentresultsare y advection-diffusionequation for these quantities. We here fo- validforslowrotation(Ω≪|A|)andstrongshear(ξ ≪1). cusonthetransportofparticlessinceasimilarresultalsoholds fortheheattransport.Thedensityofparticlesisalsowrittenas 3. Neartheequator(θ = π/2) asumofalarge-scalecomponentN andfluctuationsn.Using 0 thequasi-linearapproximation,thefluctuatingconcentrationof Neartheequator,therotationandthedirectionoftheshearare particlesisgovernedbythefollowingequation: orthogonal.ExpandingthevelocityinpowersofΩ¯ =Ω/A,we computetheturbulenceamplitudeandtransportcoefficientsup ∂tn+U0·∇n+v·∇N0 = D∇2n, (2) tosecondorderin|Ω¯|≪1. whereDisthemoleculardiffusivityofparticle.Notethat,inthe case of heat equation, D should be replaced by the molecular 3.1.Turbulenceintensity heatconductivityχ. In the strong shear limit (ξ ≪ 1), using similar algebra as in Asthelarge-scalevelocityisinthey(azimuthal)direction, Kim (2005),we obtainthe turbulentintensityin theradialdi- wearemostlyinterestedinthemomentumtransportinthatdi- rectionasfollows: rection. The equation for the (large-scale) azimuthal velocity U0 isthengivenbyNavier-Stokesequationwiththecontribu- hv2i= τf d3k F(k) L (k)+Ω¯ kz2L (k) . (5) tion fromfluctuationsgivenby ∇·R, whereR = hvvyi is the x A Z (2π)3  0 ky2 1  NicolasLeprovostandEun-jinKim:Effectofrotationonthetachoclinictransport 3 Here,k2 =k2+k2isthe(squared)amplitudeofthewavenum- contrasted to the case withoutshear flow where non-diffusive H y z berinthehorizontalplane,andL andL aretwopositivedefi- fluxes emerge only for anisotropic forcing (Ru¨diger 1980; 0 1 niteintegralsdependingonlyonthewavenumberk.Notethat Kichatinov 1986). In our case, the anisotropy in the velocity thedetailsof L and L arenotimportantforourdiscussions. field is not artificially introduced in the system but is created 0 1 Therefore,theturbulenceintensityhv2iinEq.(5)increasesfor bytheshearandcalculatedself-consistently. x Ω¯ > 0whereasitdecreasesforΩ¯ < 0.Thisisbecauseaweak rotation destabilises sheared turbulence for Ω¯ > 0 whereas it 3.3.Transportofparticles stabilisesforΩ¯ <0(Bradshaw1969;Salhi&Cambon1997). Fortheothercomponentsoftheturbulenceamplitude,we Inthestrongshearlimit(ξ ≪1),thecomputationofhnvigives: obtain: τ d3k k2 −lnξ Hhve2zrie,∼ΓτAisf tZheΓ((G2d1π3a/k)m33)mF+a(Ωk¯f)uLkknzy222c(Γkt(i)o4 n/233aξ)n(!−d1/l3Ln×ξ)is.a positive defin(i6te) wDDhTxzTxzer∼∼e LAAτff22anZZd L((22dππ3ka))33reFFp((kko))sLLit65i(v(kke)) d21e3fiξ+n!i23Ω¯tek1yz2f+un2c3Ωt¯iokknyz22s.−,El3nqsξ.(9,(-11(900))) 2 5 6 function of k. Here again, the turbulence amplitude can in- showthattheeffectofrotationonthetransportofparticlesde- creaseordecreasedependingonthesignofΩ¯.Furthermore,the pends on the sign of Ω¯: for Ω¯ > 0, the transport is increased correctionduetorotationhasalogarithmicdependenceonthe whereasitisreducedwhenΩ¯ <0.Thisisagainbecauseaweak shear,contrarytothecaseoftheradialamplitude.Notethatthe rotation destabilises sheared turbulence for Ω¯ > 0 whereas it anisotropyinthefirstcorrectionislesspronouncedthaninthe stabilises for Ω¯ < 0. Note that a similar behaviour was also leadingorderterm.Asaresult,theturbulenceduetoshearing found in turbulence intensity, given in Eqs. (5) and (6). The becomeslessanisotropic.Thisillustratesthetendencyofrota- correctiontermduetorotationinDxxandDzzinEq.(9-10)de- T T tiontoleadtoalmostisotropicturbulence.Anequationsimilar pendsweaklyontheshearbyalogarithmicfactor|lnξ|,which to (6) is also found for hv2i with a slightly different function cannotbetoolargeevenforξ ≪1,andisofthesameorderfor y L . However,performingthe angularintegration,we find that transportindifferentdirections.Thus,thescalingoftheturbu- 2 hv2i is larger than hv2i, in agreement with numerical simula- lentdiffusivityisroughlythe sameasthatinthecase without y z tions(Leeetal. 1990). Thiseffectis presentforΩ¯ = 0andis rotation:theradialtransport(∝ A−2)ismorereducedthanthe thuscausedbytheshearonly. horizontal one (∝ A−4/3). This result should be contrasted to therapidrotationlimitwherethetransportintheradialdirec- tionwaslarger(butonlybyafactor2)thantheoneinthehor- 3.2.Transportofangularmomentum izontal direction (Ru¨diger 1989). These results thus highlight In the strong shear limit (ξ ≪ 1), the transport of angular thecrucialroleofshearintransport,inparticular,byintroduc- momentum can be found as a sum of two terms hv v i = inganisotropy. x y ν A+Λ Ω,thefirstandsecondbeingevenandoddwiththero- T x tationrate,respectively.Thefirstterm,theturbulentviscosity, 4. Nearthepoles(θ = 0) takesthefollowingform: Nearthepoles,thedirectionsofrotationandshearcanbetaken τ d3k 1 f ν ∼ F(k) − +L (k) , (7) tobeparallel.Contrarytothecaseattheequator,wefindthat T A2 Z (2π)3 " 2 3 # theleadingordercorrection(proportionaltoΩ¯)vanishesinthe whereL isapositivedefinitefunctionofk.ForΩ¯ = 0were- case of an isotropic forcing (due to the fact that these terms 3 covertheresultofKim(2005)showingthattheturbulentvis- areoddinoneofthecomponentsofthewavenumber)forall cosity is reduced proportionallyto A−2 for strong shear. The the previously calculated quantities. Consequently, the turbu- turbulentviscositycanbeeitherpositiveornegativedepending lent amplitude, viscosity and diffusivity are givenby Eqs. (5- ontherelativemagnitudeofthetwotermsinsidethe integral. 6), (7) and (9-10) with Ω¯ = 0, respectively. Similarly, the Inthe2Dlimit(whereL = 0),wecaneasilyseethatthetur- Reynolds stress involving the radial component (hv v i) van- 3 x y bulentviscosityisnegative.Onthe contrary,inthecase ofan ishes. However the componentof the Reynolds stress involv- isotropicforcingin3D,theturbulentviscosityispositive. ingthelatitudinalvelocity(hv v i)doesnotvanishandisodd y z ThecorrectionduetotherotationisproportionaltoΩand inΩ.Thus,theΛ-effectappearshereinhv v i(recallthatatthe y z isthusoddintherotation.Thisistheso-calledΛ-effect,anon- equator,theΛ-effectwaspresentonlyinhv v i),andtakesthe x y diffusivecontributiontoReynoldsstress,whichcanbeshown followingform: tobe: τf d3k Λ ∼−τf d3k F(k) 3 2/3[L (k)−L (k)] . (11) Λx ∼ A2 Z (2π)3 F(k)L4(k)(−lnξ). (8) z A2 Z (2π)3 2ξ! 7 8 It is important to emphasise that this non trivial Λ-effect re- Eq. (11) shows that Λ is of indefinite sign, as L and L are z 7 8 sults from an anisotropy induced by shear flow on the turbu- twopositivedefinitefunctionsbutappearwithdifferentsigns. lenceevenwhenthedrivingforceisisotropic.Thisshouldbe However,asforEq.(8),inthecaseofanisotropicforcing,the 4 NicolasLeprovostandEun-jinKim:Effectofrotationonthetachoclinictransport function L dominatesover L , leadingto a negativeΛ . This As both ν and Λ are positive, A must be negative. 7 8 z T Λ-effect arises even in the case of an isotropic forcing as the Interestingly, this is exactly what the observation indicates (a shearfavoursfluctuationsinthey-directioncomparedtothatin rotationratedecreasingtowardstheinteriorattheequator).We the z-direction(see §3.1), leadingto anisotropicturbulencein cannot use such a simple equation to predict the sign of the theplaneperpendiculartotherotation.Eq.(11)alsoshowsthat shearatthepoleastheΛ-effectnowappearsinthehv v icom- y z Λ islarger(scalingasA−4/3)thanΛ intheequatorialcase. ponentof the Reynolds stress and is found to scale as A−4/3, z x whichislargerthanΛ (∝A−2)neartheequator. x 5. Implicationsforthetachocline Furthermore,wefindthatthetransportofchemicalspecies is reducedby shear and moreseverely in the the radialdirec- Table 1 summarises the scaling of our results with the shear tionthanthehorizontalone(byafactorA−2andA−4/3respec- AandrotationΩinthelimitofweakrotation(Ω ≪ |A|)and tively), with a further, but weak reduction due to rotation at strongshear(ξ =νk2/|A|≪1). y theequatoronly.Asaresult,theradialmixing(inthe xdirec- tion)ofchemicalsisslightlymoreefficientatthepolethanat theequator.Theseresultsthussuggestthatturbulentmixingof Equator Pole lightelementsis weak(dueto shearing)in the tachoclineand hv2i A−1 1+cΩ¯ A−1 alsothatthedepletionoflightelementsonthesolartachocline x hv2i∼hv2i A−2/3 1h+cΩ¯|lniξ| A−2/3 depends on latitude. However, this latitudinal dependency is y z h i unlikelytobeobservedonthesurfaceduetotherapidmixing ν A−2 A−2 T intheconvectionzone(Spruit1977).Sinceasimilarresultap- Λ A−2|lnξ| 0 pliestoheattransport,afasterheattransportatthepolecould x contributetomakinghotterpolesthanequatoratthesolarsur- Λ 0 −A−4/3 z face. Finally, we note that all our results here are valid in the Dxx A−2 1+cΩ¯|lnξ| A−2 absenceofstratificationandmagneticfields(Kim&Leprovost T Dyy∼Dzz A−4/3h1+cΩ¯|lnξi| A−4/3 2006)andwillextendourstudytoincludetheseinfuturepub- T T h i lications.OfparticularinterestwouldbethesignofνT andΛ, Table 1. Scaling of turbulenceamplitude,turbulentviscosity andthustheresultingsignofA. (ν ), Λ-effect and turbulent diffusivity with the shear A and T rotationΩ¯ =Ω/A.cisapositiveconstantoforderunity. Acknowledgements. ThisworkwassupportedbyU.K.PPARCGrant No.PP/B501512/1. The first two rows show that, both near the equator and References poles,theturbulenceamplitudeinthe radialdirectionismore Bradshaw,P.1969,J.FluidMech.,36,177 reducedbytheshearthaninthehorizontalone,byafactorof Frisch,U.,She,Z.S.,&Sulem,P.L.1987,PhysicaD,28,382 A−1 and A−2/3, respectively. These results thus imply an ef- Kichatinov, L. L. 1986, Geophys. Astrophys. Fluid Dyn., 35, fectivelystrongerturbulenceinthehorizontal(y-z)planethan 93 theoneintheradial(x)direction.Furthermore,attheequator, Kichatinov, L. L. 1987, Geophys. Astrophys. Fluid Dyn., 38, Ω¯ <0astheshearincreasesfromtheinteriortowardsthecon- 273 vectivezone.Thus,theturbulenceamplitudeisfurtherreduced Kim,E.2005,A&A,441,763 by the rotation in all directions, but the turbulence in the ra- Kim,E.&Leprovost,N.2006,submittedtoA&A dialdirectionismoresuppressedthantheoneinthehorizontal Kippenhahn,R.1963,ApJ,137,664 directionbyafactorlnξ. Krause,F.&Ra¨dler,K.-H.1980,MeanfieldMHDanddynamo AnovelresultisalsofoundfortheReynoldsstress,which theory(Pergamonpress) involvestwo contributions:the turbulentviscosity and the Λ- Krause,F.&Ru¨diger,G.1974,Astron.Nachr.,295,93 effect. The latter, a source of non-diffusive flux, is present Lebedinsky,A.I.1941,AZh,18,10 evenwithisotropicforcingduetotheshear-inducedanisotropy Lee,J.M.,Kim,J.,&Moin,P.1990,J.FluidMech.,216,561 (Kim 2005). Note that for an isotropic forcing, the turbulent Leprovost,N.&Kim,E.2006,A&A,456,617 viscosity is found to be positive and therefore cannot act on Leprovost,N.&Kim,E.2007,ApJ,654,1166 its own as a source of differential rotation in the tachocline. Moffatt,H.K.1978,Magneticfieldgenerationinfluids(CUP) Theradialdifferentialrotationcan,however,becreatedbythe Parker,E.N.1955,ApJ,122,293 Λ-effect:since it does notdependonly on the gradientof an- Ru¨diger,G.1980,Geophys.Astrophys.FluidDyn.,16,239 gular velocity, it does not vanish for a uniform rotation and Ru¨diger, G. 1989, Differential rotation and stellar convection thuspreventstheuniformrotationfrombeingasolutionofthe (GordonandBreach) large-scale momentum equation. To determine the sign of A Salhi,A.&Cambon,C.1997,J.FluidMech.,347,171 asaresultoftheΛ-effect,weseekasolutionofthelarge-scale Spruit,H.C.1977,A&A,55,151 turbulentequationsbydemandingtheReynoldsstresstovanish Steenbeck,M.&Krause,F.1966,Z.Naturforsch.,TeilA,21, (e.g. Kichatinov1987). In the equatorialcase, we then obtain 1285 thefollowingequationfortheshear: Townsend, A. A. 1976, The structure of turbulent shear flow, ν (A)A+Λ(A)Ω=0. (12) 2ndedn.(CUP) T

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.