ebook img

Effect of Localizing Fruit and Vegetable Consumption on Greenhouse Gas Emissions and Nutrition ... PDF

26 Pages·2011·0.29 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Effect of Localizing Fruit and Vegetable Consumption on Greenhouse Gas Emissions and Nutrition ...

ARTICLE pubs.acs.org/est Effect of Localizing Fruit and Vegetable Consumption on Greenhouse Gas Emissions and Nutrition, Santa Barbara County David A. Cleveland,*,† Corie N. Radka,||,‡ Nora M. M€uller,§,‡ Tyler D. Watson,^,‡ Nicole J. Rekstein,||,‡ Hannah Van M. Wright,3,‡ and Sydney E. Hollingshead‡ †EnvironmentalStudiesProgram,UniversityofCalifornia,SantaBarbara,California93106-4160,UnitedStates ‡Currentorformerundergraduatestudent,UniversityofCalifornia,SantaBarbara,California93106-4160,UnitedStates b S SupportingInformation ABSTRACT:TheUSagrifoodsystemisveryproductive,but highly centralizedandresource intensive with very weaklinks betweenproductionandconsumption.Thiscontributestohigh levelsofmalnutritionandgreenhousegasemissions(GHGE). Apopularapproachtoimprovementislocalization—reducing direct transport (farm to retail distance, or “food miles”). We examined Santa Barbara County (SBC) California, which mirrors the high production, nutritional and environmental problems, and growing localization movement of California. SBCranksinthetop1%ofUScountiesinvalueofagricultural products, and >80% of this value is produce (fruits and vegetables).WecalculatedtheamountofproducegrowninandconsumedinSBCandestimatedthat>99%ofproducegrown inSBCisexportedfromthecounty,and>95%ofproduceconsumedinSBCisimported.IfallproduceconsumedinSBCwasgrown inthecounty(100%localization),itwouldreduceGHGEfromtheagrifoodsystem<1%,andnotnecessarilyaffectnutrition.While foodmilescaptureonlyaportionoftheenvironmentalimpactofagrifoodsystems,localizationcouldbedoneinwaysthatpromote synergiesbetweenimprovingnutritionandreducingGHGE,andmanysucheffortsexistinSBC. ’INTRODUCTION vegetables;2manySBCresidentshavelownutritionalstatusand foodsecurity.3,4 It is widely recognized that the conventional U.S. agrifood WeanalyzedtheSBCagrifoodsystemforproduceintermsof system, whilehighly productive,isunsustainable—ithasmajor (a)theamountofproducegrowninandconsumedinSBC,and negativeenvironmentalandsocialimpacts,includinglargecon- exportedfromandimportedtoSBC,(b)theeffectsofthecur- tributionstogreenhousegasemissions(GHGE)andhighlevels rent system on GHGE and on nutrition, and (c) the potential ofmalnutrition.Therehasbeenincreasinginterestinlocalizing effect of complete localization—all produce consumed in SBC agrifoodsystems,basedontheassumptionthatthespatial,eco- also grown in SBC. Our goal is to stimulate discussion of how nomic, and structural centralization of this system is a major localizationasanindicatorofagrifoodsystemsustainabilitycan causeofthesenegativeimpacts,.Twoquestionsneedtobean- be rigorously related to two commonly stated goals of sustain- swered about localization in each instance: “How local is this ability—improvementinnutritionandreductioninGHGE.This agrifoodsystem?”,and“Howwouldincreasinglocalizationhelp isimportantnotonlyatthelocallevel,butatthenationallevel, achievegoalsofdecreasingnegativeeffectsofthecurrentsystem?” e.g.,inoverhaulingtheUSFarmBill.5 WeaddressedthesequestionsforSantaBarbaraCounty(SBC) asacasestudyoftheCaliforniaandU.S.agrifoodsystemsandthe potentialeffectoflocalization.SBCischaracterizedbythesame ’THEU.S.AGRIFOODSYSTEMANDTHEMOVETO highproductionandenvironmentalandsocialproblemsevident LOCALIZATION atthestatelevel,andmoregenerallyatthenationallevel.Wefo- Conventionalindustrialagriculturehasbeenverysuccessfulin cusedonproduce(fruitandvegetables)becauseproduce(1)dom- increasingfoodproductiontokeeppacewithpopulationgrowth inatesSBCagricultureeconomically,with82%oftotalvaluein andrisingpercapitaconsumptionbothglobally6andintheU. 2009 (calculated from ref 1); (2) dominates direct sales of S.7,8 It has also been very successful economically in terms of agriculturalproductsinSBC;e.g.,salesofproduceattheSanta BarbaraCertifiedFarmersMarketmarketsforNovember2008 Received: December1,2010 toSeptember2009were79%oftotalagriculturalsales(calculated Accepted: April13,2011 fromsalesdata);and(3)containsnutrientswidelybelievedtobe Revised: March25,2011 lackinginU.S.dietsduetounderconsumptionoffreshfruitand Published: April22,2011 r2011AmericanChemicalSociety 4555 dx.doi.org/10.1021/es1040317|Environ.Sci.Technol.2011,45,4555–4562 EnvironmentalScience&Technology ARTICLE generating large sales of inputs, crops, and processed foods. A Thecentralizedagrifoodsystemalsopromotesdietscontributing majorfactorhasincreasedlaborefficiencyfromuseofmachinery tomalnutritionandrelatedchronicdiseasessuchasobesityand andfossilfuels,sothatagricultureinhighlyindustrialcountries diabetes. Average food energy consumption in the U.S. has in- liketheUSisveryenergyintensiveandcentralized,withavery creasedby533caloriesperson(cid:1)1day(cid:1)1since1970,8comprising smallproportionofthepopulationworkingonfarms;largerfarms mostlyfatsandoils,refinedgrains,andsweeteners19whichpro- whichcancaptureeconomiesofscaledominateproductionand videdmorecaloriesday(cid:1)1thananyotherfoodgroupin2007.8 receivemostgovernmentsubsidies.9 There is lower consumption of more nutritious foods such as However, as the world continues to experience what many fruitsandvegetables.7Low-incomeandfoodinsecurepeopleare perceiveasamajorfoodcrisis,10thereisincreasingevidencethat especiallyvulnerabletopoornutritionandhealthproblemsdue the conventional agrifood system is unsustainable because of toriskfactorssuchaslackofaccesstohealthyfood.20 negative environmental, social, and economic impacts.7,11 It is Localization As a Solution. One increasingly popular re- often assumed that a major cause is its spatial, economic and sponsetotheseperceivedproblemsisdecreasingthespatial,eco- structural centralization, with two major effects frequently em- nomic,andstructuralcentralizationofagrifoodsystems,i.e.,in- phasizedinresearchandpopularmediabeingitscontributionto creasing their “localness”, emphasizing “foodsheds”, i.e., where GHGEandmalnutrition. thefoodconsumedbyapopulationisproduceddefinedprimar- Greenhouse Gas Emissions. Centralization of the agrifood ilyintermsoffoodmiles(e.g.,refs21and22).Amongthemost systemresultsinincreasingdistancebetweeninputsandproduc- frequently mentioned potential benefits are reducing GHGE tion,andbetweenproductionandconsumption,increasingnot fromburningfossilfuelsintransportation,andimprovingnutrition onlyGHGEfromgreatertransportation,packaging,andstorage by increasing the availability and therefore the consumption of requirements, but from potentially greater production require- freshfruitsandvegetables.23 mentsduetoincreasingproportionofwaste.“Foodmiles”(distance Thefocusisoftenonthepotentialforspatiallydefinedpopula- fromfarmtoretail,or“directtransport”)isanespeciallypopular tions to be fed from within arbitrarily defined foodsheds, for measure of environmental impact in terms of contribution to example,SanFranciscowithina100-mileradiusoftheGolden GHGE. Weber and Matthews estimated that in 2004 the aver- Gate,22 and population centers within New York State “in the agedistancemovedbyfoodconsumedintheUSwas2050km minimumdistancepossible”withinthestate.24Thespatialextent (1250 mi) farm to retail, and 8240 km (5120 mi) in total, an of production and consumption captures only a portion of the increaseof25%since1997,mainlyduetoincreasedimportfrom environmental impact of agrifood systems, however, and more outsideoftheU.S.12IntermsofGHGE,foodmilesaccountedfor comprehensivelifecycleassessment(LCA)isincreasinglyseen ∼40%ofagrifoodsystemGHGEfromtransport,butonly∼4% asamorevalid method,12thoughmorechallenging,withmost oftotalagrifoodsystemGHGE.12 worktodatedoneinEurope.13 Research on the climate impact of agrifood systems is a rel- ativelynewfieldwithmanymethodologicalchallengesforgathering ’METHODS andanalyzingdata,13andrequiresdrawingarbitraryboundaries Assessing the sustainability of an agrifood system is challen- inspace,time,andfoodsystemsstructure,basedonassumptions ging. While the positive direct economic effects (amount and aboutwhichthereismuchdisagreement.Forexample,theU.S. value of production) and positive economic externalities (e.g., EPAestimateofGHGEfromagricultureisbasedonspatialand nonagriculturalemploymentgenerated)aretracked,therelation- systemboundariesthatresultinestimatingthatagriculturedirectly shipbetweenagrifoodsystemsandthenegativeexternalities(e.g., accounted for 6.1% of U.S. anthropogenic GHGE,14 and the GHGEs, lowered water quality, decreased biodiversity, unjust IPCC estimated 10(cid:1)12% globally.15 Weber and Matthews12 laborpractices,increasedcostoffood,malnutrition)areinvisible used an input(cid:1)output life cycle assessment (IO-LCA) metho- becausenodataaresystematicallycollected.5Inaddition,there dologywhichextendedtheboundariesspatiallyandsystemically has been little interest until lately in tracing the often complex totheagrifoodsystem,butdidnotincludelanduseorpostretail trajectories connecting the locations where food is grown and components, resulting in an estimate of 8.1 MT CO e (metric 2 whereitisconsumed. tons carbon dioxide equivalents) U.S. household(cid:1)1 in 1997, Therefore,formanyoftheimportantcomponentsoftheSBC 12.7% of total GHGE household(cid:1)1 in that year (calculations agrifoodsystem,wemadeestimatesbasedonourownresearch, based on ref 14). Goodland and Anhang draw boundaries more extrapolationfromexistingdata,andonconversionfactorsdevel- broadly,forexampleattributingGHGEtolossofvegetationwith opedbyotherresearchers.OurdataforproducegrowninSBC original conversion natural vegetation to pasture, rather than and produce consumed in SBC are for 2008; our annualized crediting existing pasture with carbon sequestration, and esti- estimatesforSBCgrownproduceconsumedinSBCarebasedon mate that globally the animal portion of the agrifood system datawecollectedfordifferentperiodsbetween2008and2009. aloneaccountsfor51%ofallanthropogenicGHGE.16 Weusetheword“local”tomeanwithinSBC,unlessotherwise Malnutrition.Inpoornationsgloballyhungerandmalnutri- indicated.Detailsofmethodsaregivenintherelevantsections tionhavebeenincreasingprimarilyduetolackoffood,andthe below,intheSupportingInformation(SI)andinthetables. absolutenumberofhungrygloballyreachedmorethanonebillion in2009,thehighestnumbersince1970,thoughithasdeclined ’THESBCAGRIFOODSYSTEM duringthelastyear.10Hungerisalsopresentinthericherindustrial nationsliketheU.S.17AmongallhouseholdsintheU.S.in2008, Ourfirstquestionwas“HowlocalistheSBCagrifoodsystem?” theprevalenceoffoodinsecurity(14.6%)andverylowfoodsecurity SBCisanagriculturalcountyintermsofresourceuse,employ- (5.7%)wasthehighest“sincethefirstnationallyrepresentative ment,andproduction.Accordingtothe2007censusofagricul- food security survey in 1995”.17 (Food insecurity is broadly ture,41%ofalllandinthecountyisinagriculture,mostofwhich defined as households which have had uncertainty and/or (87%)isusedforgrazingorpasturewhiletheremainderiscrop difficultyinsupplyingadequatefoodforallfamilymembers.18) land.25 About 77% of water use in SBC is from groundwater26 4556 dx.doi.org/10.1021/es1040317|Environ.Sci.Technol.2011,45,4555–4562 EnvironmentalScience&Technology ARTICLE andtheremaindersurfacewater(localorimportedviatheState buyers involved for the other transaction points. We assumed WaterProject),withmostofthisusedbyagriculture,26estimated that all produce going through CSAs, farm stands and Upick at74%oftotalwaterusein2000.27 operationswasSBCgrown.Wemadegenerousestimateswhere SBC agricultural production in 2008 was valued at $1.14 datawereespeciallydifficulttoobtain—farmstands,U-pickop- billion,whichplaceditinthetop1%ofallcountiesintheU.S. erations, the public school system and restaurants. Our results and14thof58countiesinCalifornia;fruits,vegetables,andnuts were3871MT(8.53millionlbs.)ofproducegrowninandcon- rankedfirstinvalue(80%),withnurseryproductssecond(16%), sumedinSBCyear(cid:1)1(TableS-3oftheSI). and livestock, poultry, and their products (along with apiary Whiledifficulttoquantify,itseemscertainthatsomeproduce products) accounting for only 2% of the county’s agricultural that is exported to distribution centers outside of SBC is subse- productionvalue.28 quentlyimportedtogrocerystoresandothertransactionpoints ProduceGrowninandConsumedinSBC.TablesS-1and in SBC, and several farmers told us of such occurrences. SBC S-2oftheSIshowthevegetablesandfruitsproducedinSBCin grownproducethatisexportedandthenimportedisinimportant 2008,totaling1.07millionMT(metrictons;2.36billionpounds). ways (e.g., freshness, packaging, GHGE) similar to produce WhileproducedominatesSBCagriculturalproductioneconom- grownoutsidethecountyandimported,andwedidnotinclude ically,itoccupiesasmallproportionofagriculturalland.In2007 estimatesforthisinLcp. landharvestedforfruitandvegetableswas94000acres,or13% ProduceExportandImportintheSBCAgrifoodSystem. of all agricultural land in SBC (the remainder being almost all WeusedUSDAdataonfooddisappearanceforfruitsandvegetables rangeland,calculatedfromdatainref25). (fresh and processed) in the US for 20088 and the 2008 pop- InordertoestimatehowmuchproduceisexportedfromSBC, ulation of SBC (405 296)29 to estimate the total amount of and how much is imported for consumption, we first had to produceconsumedyear(cid:1)1inSBC,andconvertedthistoprimary estimatetheamountofproducegrowninSBCthatisconsumed weight. Together withour estimates ofproducegrown inSBC inthecounty.Wegatheredorestimateddataonthedollarvalue (TablesS-1andS-2oftheSI)andproducegrownandconsumed ofsales(bywholesalersorretailers)orpurchases(byretailersor in SBC (Table S-3 of the SI) we were able to calculate the consumers)ofSBCgrownproducebythefollowingentitiesin amountsexportedandimported:<1%ofproducegrowninSBC SBC: farmers’ markets, community supported agriculture pro- isconsumedinSBC,and<4%ofproduceconsumedinSBCis grams(CSAs),U-pickoperations,grocerystores,farm-to-school grown in SBC (Table 1). The amount of SBC grown produce programs, institutional sales/purchases, and food assistance pro- consumed directly in SBC is so small, that even if the actual grams (see SI). We assumed that the food sold, purchased, or amount was 3 times our estimate, it would be <10% of total donatedwithinSBCthroughthesemeanswasconsumedinSBC. estimatedproduceconsumptioninSBC,and<2%ofSBCgrown Wedidnotincludehomeorcommunitygardens,exceptasthey produce. contributedto foodassistanceprograms(this amountwasalso addedtothetotalproducedinSBC). ’THEPOTENTIALEFFECTSOFLOCALIZATIONONTHE Toestimatethecurrentextentoflocalizationforproducefor SBCAGRIFOODSYSTEM SBC(Lcp),definedasthequantityofproducegrowninSBCthat isconsumeddirectlyinSBC,weusedeq1, Oursecondquestionwas“Howwouldincreasinglocalization of the SBC agrifood system help achieve goals of decreasing ∑T ∑n negative effects of thecurrent system—reduce GHGE andim- Lcp ¼ ½ðSi=W(cid:1)$Þ=A(cid:3)(cid:4)Pi ð1Þ provenutrition?”SBCcurrentlyproduces∼9timesthefruitsand t¼1i¼1 vegetables consumed in the county (Table 1), so there are no whichsumsforallsalesorpurchasetransactionpoints(t,where physical limits to completely localizing the produce agrifood Tisthetotalnumberoftransactionpoints,listedintherowsin system.Inaddition,productionforSBCconsumptionwouldnot TableS-3oftheSI),forallindividualentities(i)ineachtransaction require large export-oriented farms to change their operation. point,theamountofsalesorpurchasesindollars(S)dividedby Farms <50 acres account for 13 744 acres, equal to 1.8% of i unitweightdollar(cid:1)1(W-$)toobtainweightofproducetransac- agricultural land and 14.7% of harvested cropland in SBC in tions.Weconvertedthistoprimary(farmgate)weightbydividing 2007.Ifthesefarmsproducedfruitsandvegetableswiththeaver- by proportion available (A), and multiplied by the proportion ageyieldoffruitsandvegetablesinSBCin2008,thentheycould growninSBC(P). produce114%oftheestimatedconsumptionofproduceinSBC i For making the conversions we used the following: (1) To in2008 (118 348MT,Table1) (calculations based on data in obtainweightofproducesold/purchased(S/W-$)weconverted refs25and28). i dollaramountofsalesorpurchasesusingestimatedaveragepounds GHGEandFoodTransport.Thereispotentialforlocalization dollar(cid:1)1 for transactions for each transaction point, using data to contribute significantly to reducing GHGE from SBC. The availableforarepresentativememberatthatpoint,sincewewere IO-LCAestimateof8.1MTGHGECO ehousehold(cid:1)1yr(cid:1)1for 2 notabletoobtaindataforallmembers.(2)Toobtainprimary theUSagrifoodsystemin199712is∼12.7%ofthetotalGHGE weight(amounttransactedatfarmgate),wedividedtheweight that year.14 The EPA estimated that total US GHGE CO e 2 ofproducesold/purchased(S/W-$)bytheproportionavailable person(cid:1)1 in 2008 was 22.8 MT, with 1.40 MT from the pro- i (A,afterfoodlosttowastewassubtracted) ateachtransaction ductionportionoftheagrifoodsystemalone.14 point, based on USDA estimates for different stages of the To estimate the GHGE CO e for direct transport (farm to 2 agrifoodsystemforproduce.8(3)Finally,toobtainthecurrent retail)ofproduceimportedintoSBC,wesummedGHGECO e 2 extentoflocalizationforproduceforSBC(Lcp),wemultiplied for all three categories of produce from Weber and Matthews the primary weight of produce sold by the proportion of that IO-LCAoftheUSagrifoodsystem12(themostrecentfortheUS), produce grown in SBC (Pi), using estimates based on farm calculated the GHGE CO2e household(cid:1)1 yr(cid:1)1, and multiplied locationforfarmers’markets, andinformationfromsellers and thatquantitybythenumberofhouseholdsinSBCin2008.29 4557 dx.doi.org/10.1021/es1040317|Environ.Sci.Technol.2011,45,4555–4562 EnvironmentalScience&Technology ARTICLE Table1. SBCProduceExportandImporta weightMT(pounds) with100%localization(allconsumedinSBCgrowninSBC) 1 grownSBCb(MT) 1068957 1068957 (lbs) 2356646728 2356646728 2 consumedinSBCc(MT) 118348 118348 (lbs) 260912866 260912866 3 consumedinSBCas%growninSBC 11.07% 11.07% 4 grownandconsumedSBCd(MT) 3871 118348 (lbs) 8534708 260912866 5 grownandconsumedSBCas%grown 0.36% 11.07% 6 exportedfromSBCe(MT) 1065086 950609 (lbs) 2348112020 2095733862 7 exportedas%grown 99.64% 88.93% 8 importedtoSBCf(MT) 114477 0 (lbs) 252378158 0 9 importedas%consumed 96.73% 0.00% 10 grownandconsumedSBCas%consumed 3.27% 100.00% aAnnualestimatesarearebasedondatafor2008and2009.Allweightswereconvertedtoprimary(farmgate)weights.bDatafromref28withamountfor BackyardHarvestadded.cCalculatedas:[populationofSBC200829](cid:4)[averageannualconsumptionfruitsandvegetablesconvertedtoprimaryweight8]. dFromTableS-3oftheSI.e=(row1)(cid:1)(row4).f=(row2)(cid:1)(row4). Table2. GHGECO eyr(cid:1)1fromImportandExportofProduceintheSBCAFS 2 GHGECOetotalforproduceinU.S.1997a,c(MTCOe) 68555632 2 2 GHGECOetotalfordirecttransportationofproduceinU.S.,1997a,b,c(MTCOe) 7521442 2 2 householdsinU.S.199712 101000000 GHGEMTCOehh-1totalforproduceinU.S.1997a(MTCOehh-1) 0.679 2 2 GHGEMTCOehh-1fordirecttransportationoffruitandveginU.S.1997a(MTCOehh-1) 0.074 2 2 households(“housingunits”)inSBC,200829 151763 proportionproduceimportedtoSBC,2008 96.7% totalGHGEMTCOetotalforproduceconsumedinSBCthatisimportedintoSBC(forproportionimported2008)(MTCOe) 99642 2 2 totalGHGEMTCOefordirecttransportationofproduceconsumedinSBCthatisimportedinto 10932 2 SBC(forproportionimported2008)(MTCOe) 2 totalproduceimportedintoSBCforconsumption,2008(MT)(1MT=2204.623lbs)(Table1) 114477 averagekmtraveled(roundtrip)fromfarmtoretailforproducegrownandconsumeddirectlyinSBCd 65 directtransportofproduce(MT)withinSBC(km)(assume1MTaverageload) 7440991 MTCO km(cid:1)1fordirecttransportationofproduceinSBC,assuminglightdutytrucks(below6000poundsor2.72MT), 0.00028118 2 averagedformodelyears1995(cid:1)2008;N.B.,CO,notCOe.47 2 2 CO fordirecttransportationwhenallproducegrownandconsumedinSB(MT)(assumemostGHGEfromlighttrucktransportisCO) 2092 2 2 potentialnetsavingsCOeformaximumlocalizationofSBC(MTCOeyr(cid:1)1)forreducedimports 8840 2 2 potentialsavingshousehold(cid:1)1(MTCOeyr(cid:1)1)formaximumlocalizationofSBC(importsonly) 0.058 2 potentialsavingshousehold(cid:1)1asproportionofU.S.averagetotalhouseholdagrifoodsystemGHGEin1997,importsonly12 0.0072 potentialsavingshousehold(cid:1)1asproportionoftotalhouseholdGHGEforallproduce 0.0858 potentialsavingsperson(cid:1)1yr(cid:1)1asproportionofU.S.averagetotalGHGECOeperson-1in1997,24.2MT14,29 0.0009 2 potentialsavingsperson(cid:1)1yr(cid:1)1asproportionofU.S.averagetotalGHGECO2eperson-1in2008,22.9MT14,29 0.0010 aOnthebasisofthelifecycleassessmentofGHGEforfoodconsumedbyU.S.householdsin1997,12inCO equivalents(CO e).WeberandMathews 2 2 estimatedthatGHGEfromdirecttransportincreasedby5%between1997and2004.12bDirecttransportation=finaldeliverytransportationordelivery fromfarmtoretailstore,andisonecomponentofthesupplychainwhichalsoincludedindirecttransportation,wholesalingandretailing,passenger transportation,andproduction.cWeberandMatthews12usedU.S.DepartmentofCommercecommodityflowdataforthreecommoditygroups: vegetableandmelonfarming,fruitfarming,andcanned/driedfruitsandvegetables.dRoundtripestimatebasedondataforfarmersmarketvendorsin WesternU.S.,30seetext. Wefoundthatunderthecurrentexport-importagrifoodsystem, CO emissionsforthedirecttransportwithinSBCofthequantityof 2 produceimportedintoSBCaccountsfor∼100000MTCO e,with producecurrentlyimported.Weestimatedtheaveragedistance 2 ∼11000MTofthisfordirecttransport(Table2). foraroundtripbetweenfarmanddeliverypointas60km,based To estimate the effect of complete localization by produce on data for the Far West region (Alaska, California, Hawaii, import substitution of SBC grown produce, we calculated the Nevada, Oregon, and Washington): 57.4% of farmers’ market 4558 dx.doi.org/10.1021/es1040317|Environ.Sci.Technol.2011,45,4555–4562 EnvironmentalScience&Technology ARTICLE vendors traveled 5 miles (8.0 km) or less, and 89.3% 20 miles Nutrition. There is also ample potential for localization to (32.2km)orless(comparedwith58.0%and92.9%fortheU.S., contributetoreducingmalnutritioninSBC.WhileSBCisgenerally respectively).30 consideredtobeanaffluentcountyandhasamedianhousehold WethenusedEPAestimatesofCO emissionsforlighttrucks, incomeof$60645,slightlybelowtheCAaverageand17thhighest 2 assumedanaverageloadof1MTtruck(cid:1)1andcalculatedthenet of58CAcounties,36italsohashighlevelsoffoodinsecurityand emissionssavingsof8925MTCO eyr(cid:1)1fromlocalization.We malnutrition. 2 didnotmakeanyassumptionsabouthowthisimportsubstitu- SBC ranks 11th of 58 CA counties (1 = best) in terms of tion might affect exports. If an equivalent amount of produce number of overweight or obese adults and children.3 In 2007 werenolongerexported,andthoselocationsnolongerimport- 53%ofSBCadultswereoverweightorobese,22%obese,and7% ingthisSBC-grownproducereplaceditwithlocalproduce,the diagnosed with diabetes;37 in 2004 25.8% of children were net reduction in GHGE would be doubled (assuming other overweight.38 Obesity prevalence is 21% higher among the factorsareequaltotheirvalueinSBC). Hispanic/Latino population (∼40% of SBC residents29).39 This amounts to a savings household(cid:1)1 of only 0.058 MT, Healthconsequencesofobesityincludeincreasedriskforchronic ∼0.7%oftheaverageUShousehold’sagrifoodsystemGHGEin conditionssuchasdiabetes,heartdisease,cancer,arthritis,stroke, 1997(8.1MT,percalculationsofref12),and∼9%ofproduce andhypertension;ratesofobesityanddiabetesarehighestand GHGE.Wealsocalculatedthesavingsperson(cid:1)1asaproportion rising the fastest among low-income residents and people of oftotalUSGHGECO2eperson(cid:1)1(MT)forboth1997(24.2) color.40 and2008(22.9)basedonEPAdataandfoundsavingsfortotal Insurveysoflow-incomeadults(thoseresidinginhouseholds localization of produce in SBC to be e0.1% (calculated using withincomeslessthan200%ofthefederalpovertylevel),SBC data from refs 14 and 29). However, our calculations would ranks 47th highest of the 58 California counties (1 = best) in overestimatethereductioninGHGEduetolocalizationtothe prevalenceoffoodinsecurity.SBChasafoodinsecurityrateof extentthattheenergyintensityoffreshmarketedvegetableshas 39.5%orapproximately37000residents.3Inaddition,17.6%or also been increasing, as it did 1997(cid:1)2002 (i.e., total agrifood 15000oftheseresidentsareaffectedby“verylowfoodsecurity,” systemenergyinthissectorincreased17.2%annually1997(cid:1)2002, meaning a condition of severe food insecuritycharacterized by amuchhigherratethanpercapitaexpenditures).31 disruptionofeatingpatternsandreductioninfoodintake.41Low Wealsomadethesecalculationsusingestimatesoftranspor- incomeandfoodinsecureresidentsareespeciallyatriskforpoor tation GHGE for 2008, based on Weber and Mathews,1 who nutrition and health problems because they have unique risk estimatedthatfrom1997to2004theincreaseinGHGEofthe factorsthatmakehealthyeatingmorechallenging.20Statewidein agrifoodsystemduetoincreasedtransportdistanceswas0.91to 2005,40.1%oflow-incomeadultswithfairorpoorhealthstatus 0.96 (5.5%), and for direct transport only 0.35 to 0.36 (2.9%) livedinfood-insecurehouseholdscomparedto24.8%ofadults MTCO ehousehold(cid:1)1yr(cid:1)1.Wedoubledthoseincreases(11.0% withgood,verygoodorexcellenthealth.41 2 and 5.7% respectively) to conservatively estimate the increase Foodinsecurityandpoornutritioncanbepartlyattributedto from1997to2008(notshowninTable2).Theseadjustments obstaclesinobtaininghealthyfood.SBChasthreetimesasmany madeaninsignificantdifferenceinproportionsavingsdueto100% fast-foodrestaurantsandconveniencestoresassupermarketsand localization. produce vendors.4 Neighborhoods without access to healthy Itisnotsurprisingthattotallocalizationresultsinsuchasmall foodfromsupermarketsorgrocerystoresarebecomingknown reductioninGHGEforSBC.Lifecycleanalysesshowthatfood as “food deserts”, where residents may have more health pro- transportaccountsforarelativelysmallproportionofGHGEin blems and higher mortality rates than residents in areas with a theU.S.Anestimatefor1997is83%oflifecycleGHGECO ein higherproportionofgrocerystores.42Inlow-incomeneighbor- 2 theagrifoodsystemwascontributedbyproductionandproces- hoods,onestudyestimatedthateachadditionalsupermarketin- sing,withonly11%bytransport,including4%fordirectdelivery creasedthelikelihoodofresidentsmeetingnutritionalguidelines (farm gate to retail).12 Direct delivery accounted for a higher byone-third.42However,measurementoffooddesertsandtheir proportionofGHGECO eforproduce—11%,whichwas39% relationshipstodietandnutritionarecomplex,andcausalrelation- 2 of total transport for this commodity group. However, direct shipsremaincontroversialandappeartobehighlycontextspecific.43 deliveryofproducewasonly2.5%oftotalfoodsystemGHGE Low-incomeresidentsalsospendagreaterproportionoftheir CO e(calculatedbasedondatainref12),andonly0.3%oftotal incomeonfood(upto25%forthelowestincomebracket)com- 2 net GHGE CO e in the U.S., using the 1995 total, which over- paredtotheU.S.averageofjustbelow10%.44Healthy,nutritious 2 estimatesthisproportion.14 foodsarebecomingmoredifficultfortheAmericanconsumerto Inaddition,itisalsoimportantto note that“local”isacon- obtain,withthepriceoffruitsandvegetablesincreasingby40% troversialterm,andthatthecommonassumptionthatdecreasing inthelast25years.Atthesametime,thepriceofsweets,fatsand foodmileswillalways,orevenusually,resultinlowerGHGEhas oils,andsoftdrinkshasdeclined,leavingmanyAmericans,especially beenincreasinglychallengedinfavoramoreholisticassessment low-incomeandfoodinsecurecitizens,morelikelytopurchase of the agrifood system.32,33 For example, a study in the U.K. calorie-densefoodsthataretypicallyhighinfat,sugar,andsalt.45 foundthatifconsumersdrivemorethan7.4km(4.6miles)to Therefore,thereisgreatpotentialforlocalizationtoimprove purchaseorganic produce directfrom thefarm,theGHGE are nutritioninSBC.However,simplysubstitutingSBCgrownfor greaterthan“theemissionsfromthesystemofcoldstorage,packing, imported produce will not automatically have a positive effect, transport to a regional hub and final transport to customer’s because there are many intervening cultural, social, economic, doorstepusedbylarge-scalevegetableboxsuppliers”.34Acom- and geographic obstacles, including national agrifood policy.5 parison between locally produced food in the U.K. vs imports Forlocalizationtoimprovenutritionanumberofotherchanges fromNewZealandfoundthatapplesandonionsproducedinand wouldbeneededtoovercometheseobstacles. shipped from New Zealand to the U.K. were more energy ThePotentialforSynergy.Localizationinitsmostpopular efficientthanthosegrownintheU.K.35 form, reduction in food miles, will not necessarily advance the 4559 dx.doi.org/10.1021/es1040317|Environ.Sci.Technol.2011,45,4555–4562 EnvironmentalScience&Technology ARTICLE goals of reduced GHGE and improved nutrition. However, are intertwined with many other important variables.5,12 For localization could be designed and carried out in ways that in- example, it is important not to overlook the extent to which creased consumption of fresh fruits and vegetables among all “local”agricultureisdependentonimportedlabor.Agriculturein residents of SBC to recommended levels, and therefore im- SBCandCaliforniahashistoricallybeendependentonnoncom- provednutrition,whileatthesametimereducingGHGE.5(See petitivemigrantlabor,recentlysuppliedprimarilybyimmigrants SIformoredetails.) fromMexicoandCentralAmerica.Therefore,localizationofthe SBC agrifood system may be at the price of delocalization of communities in Mexico and Central America. A complete life- ’DISCUSSION cycleassessmentwouldrequireinclusionoftheeffectsofmigrant Theglobalized,centralized,industrialagrifoodsystemishighly labor on both the communities people migrate from as well as productive but has created a major disconnect between food thoseinSBCwheretheyhelpproducefood. productionandconsumptionassociatedwithanumberofmajor Thereareofcoursemanyadditionalpossiblecultural,social, socialandenvironmental costs, including high levelsof malnu- health,economic,andenvironmentalbenefitsoflocalization.There tritionandGHGE.Localizationoftheagrifoodsystemisoften arealsomanyfinancial,logistic,andinfrastructuralobstaclesto suggested as a remedy for these negative effects, and there is a effective localization—it would require changes in consumer surgeofinterestinandmovementtowardlocalizingagrifoodsys- shoppingandeatinghabits,farmers’productionandmarketing temsinSBC,acrosstheU.S.andaroundtheworld.Twoquestions strategies,andcommunityandgovernmentactiontochangere- thatneedtobeansweredaboutlocalizationineachinstanceare gulationsforland,water,farmlabor,marketing,andfoodsafety. “How local is this agrifood system now?”, and “How would Those who control and profit from the currently dominant increasing localization help achieve the goals of decreasing centralizedagrifoodsystemmayseelocalizationasathreatand negativeeffectsofcurrentsystem—viz.malnutritionandGHGE?” resist it, e.g., by using food safety regulations in ways that dis- OurresearchaddressedthesequestionfortheSBCagrifood criminateagainstsmall-scalefarmers,directmarketing,andlocal system for produce. Our answer to the first question was “not distributionhubs.46 very”—theSBCagrifoodsystemproduces∼9timestheamount Theoverarchingobjectiveofourresearchistocontributeto ofproduceconsumedinthecounty,yetalmostallofthefruits achievingthegoalsofthethrivinglocalizationmovementinSBC andvegetablesgrowninSBCareexported,andalmostallofthe andelsewhere,byprovidinginformationabouttheagrifoodsystem fruitsandvegetablesconsumedinthecountyareimported.Our andthepotentialforlocalizationtoproducepositiveeffects.By answers to the second question were that totally localizing the scientificallyanalyzingtheconnectionsbetweentheindicatorof producesystemwouldreduceGHGEveryminimallyasaresult localizationandthegoalsforimprovingtheagrifoodsystem(viz. ofreducingfarm-retailtransportbyeliminatingproduceimports decreasingGHGEandimprovingnutrition),ourresultscanhelp tothecounty,andwouldnotnecessarilyimprovenutrition. inrefiningbothindicatorsandstrategiesforreachinggoals. However,answeringthesetwoquestionscanprovidethebasis formakingprogresstowardthegoalswhichlocalizationismeant ’ASSOCIATEDCONTENT tofurtherandofwhichisfrequentlyassumedtobeanindicator. Mostsignificantly,therearepotentialpositivesynergiesbetween b S Supporting Information. Data on produce grown in improvingnutritionanddecreasingGHGE—theextenttowhich SBC, additionalmethods for calculating produce growninand localizationincreasesaccesstolocal,freshproduceforallcounty consumed in SBC, and details of potential synergies between residentsinwaysthatoptimizenutritioncanbedoneinwaysthat improved nutrition and reduced GHGE. This material is avail- alsoreduceGHGE. ablefreeofchargeviatheInternetathttp://pubs.acs.org. InSBC,therearemanyeffortstoincreaselocallygrownpro- duceinsalesatgrocerystores,farmers’markets,andCSAs,farm- ’AUTHORINFORMATION to-schoolprograms,backyardharvestprograms,andthecreation oflocaldistributionhubs.Althoughtheselocalalternativestothe CorrespondingAuthor predominant export(cid:1)importagrifood system of SBC currently *E-mail:[email protected]. accountforonlyatinyfractionofthetotalproduceconsumedin PresentAddresses thecounty,theyhavethepotentialtolocalizetheSBCagrifood §CurrentlyGraduatestudent,L’EcoledesAffairesInternationales systeminwaysthatcouldpromotesynergiesbetweenimproved deSciencesPo,27,rueSaintGuillaume,75337Paris,France nutritionandreductionsinGHGE. )CurrentlyResearchAssistant,EnvironmentalStudiesProgram, However, to achieve this result, it will be important to con- UniversityofCalifornia,SantaBarbara. tinuallycheckthecausalconnectionsbetweenlocalizationperse ^Currently, Santa Barbara County Public Health Department, (“foodmiles”)andthegoalsitismeanttoserve—atheoretically, and Campus Learning Assistance Services, University of Cali- methodologically,andempiricallychallengingandcontroversial fornia,SantaBarbara,CA. task. Data are often difficult to find or generate, and decisions 3Currently,OutreachCoordinator,IslaVistaFoodCooperative. aboutwhattoincludeorexcludearecontroversial.Othergoalsof localization often considered as important as reducing GHGE and malnutrition include nurturing local communities, conser- ’ACKNOWLEDGMENT ving historically important activities and landscapes, and redu- cing security risks of long supply chains—and these are even Thankstothefollowing:Forgenerouslysharinginformation moredifficulttomeasure and insights about the SBC AFS: David Montano, Melissa LCAisanimportanttoolandisbeginningtomakeimportant Cohen,andDylanKuenzi,IslaVistaFoodCo-op;SamEdelman, contributions to our understanding of agrifood systems. Yet, Santa Barbara Certified Farmers’ Market; Wesley Sleight and whileLCAfocusesonenergyandmaterialsinput/output,these AnnaBreaux,FarmerDirectProduce;BonnieCrouseandTerry 4560 dx.doi.org/10.1021/es1040317|Environ.Sci.Technol.2011,45,4555–4562 EnvironmentalScience&Technology ARTICLE Thomas, UCSB Residential Dining Services; Doug Hagensen, Issues and Research Methods; UC Davis Agricultural Sustainability BackyardHarvestSantaBarbara;JaneLindsey,SBCFoodbank; Institute:Davis,CA,October8(cid:1)10,2007,2008. Eric Cardenas and Judy Sims, s’Cool Food Initiative; Chris (14) EPA (US Environmental Protection Agency). 2010 U.S. Thompson; Tom Shepherd, Shepherd Farms; Pam Plesons, Greenhouse Gas Inventory Report. http://www.epa.gov/climate- PlowtoPorch;LauraLyle,PeabodyCharterSchool;andmany change/emissions/usinventoryreport.html;accessed2010April25. (15) Smith,P.;Martino,D.;Cai,Z.;Gwary,D.;Janzen,H.;Kumar, othermembersoftheSBCagrifoodsystem.Forhelpwithdata P.;McCarl,B.;Ogle,S.;O’Mara,F.;Rice,C.;Scholes,B;;Sirotenko,O., collectionand/orthelargerproject,formerundergraduateRAs: Agriculture.InClimateChange2007:Mitigation.ContributionofWorking Ingrid Avison, Katie Brimm, Julian de Rubiera, Heidi Diaz, GroupIIItotheFourthAssessmentReportoftheIntergovernmentalPanelon Anthony Hearst, Dominique Liuzzi, Sarah Roth, and Jonathan ClimateChange;Metz,B.,Davidson,O.R.,Bosch,P.R.,Dave,R.,Meyer, Weber. For many helpful insights and comments on drafts: L. A., Eds.; Cambridge University Press: Cambridge, U.K. and New Daniela Soleri, Geography Deparment, UCSB; for comments York,2007;pp497(cid:1)540. onadraft:StephanieM.Gaffney,EnvironmentalStudies,UCSB; (16) Goodland,R.;Anhang,J.Livestockandclimatechange.World- andforusefulcommentsforrevision,twoanonymousreviewers Watch2009,Nov-Dec,10-19 forES&TandGidonEshel,PhysicsDepartment,BardCollege. (17) Nord,M.;Andrews,M.;Carlson,S.HouseholdFoodSecurity For explanations of their data analyses: Christopher L. Weber, intheUnitedStates,200866pp,November2009.http://www.ers.usda. gov/publications/err83/;accessed2009November26. Department of Civil & Environmental Engneering, Carnegie (18) Buzby, J. C.; Farah Wells, H.; Axtman, B.; Mickey, J. Super- Mellon U., Hodan Farah Wells, Economic Research Service, marketLossEstimatesforFreshFruit,Vegetables,Meat,Poultry,and USDA.FordiscussionofLCAandagrifoodsystemlocalization: SeafoodandTheirUseintheERSLoss-AdjustedFoodAvailabilityData. Sonja Brodt and Gail Feenstra, Agricultural Sustainability In- http://www.ers.usda.gov/Publications/EIB44/EIB44.pdf; accessed 2010 stitute, UC Davis. For funding: UCSB Academic Senate for a March7. faculty research grant; UCSB Academic Senate Sustainability (19) Putnam,J.;Allshouse,J.;Scott,K.U.S.percapitafoodsupply WorkingGroup(withfundsfromTheGreenInitiativeFundand trends:Morecalories,refinedcarbohydrates,andfats.FoodRev.2002, theOfficeoftheExecutiveViceChancellor)fortheSustainability 25,2–15. Championaward. (20) FRAC(FoodResearchandActionCenter).WorkingDocument: Hunger and Obesity? Making the Connections. http://frac.org/pdf/ proceedings05.pdf;accessed2010May31. ’REFERENCES (21) Zajfen,V.,FreshFoodDistributionModelsfortheGreaterLos (1) SBCACO(SantaBarbaraCountyAgriculturalCommissioner’s AngelesRegion.BarriersandOpportunitiestoFacilitateandScaleUp Office). 2009 Crop Report. http://www.countyofsb.org/agcomm/; theDistributionofFreshFruitsandVegetables.FindingsfromanAction accessed2010May26. Research Project of the Center for Food & Justice, a division of the (2) Buzby,J.C.;Wells,H.F.;Vocke,G.PossibleImplicationsforU.S. Urban&EnvironmentalPolicyInstitute,OccidentalCollege,December Agriculture From Adoption of Select Dietary Guidelines; United States 2006-March2008.InMarch2008ed.;CFJ:2008. DepartmentofAgricultureEconomicResearchService:2006. (22) Thompson,E.,Jr;Harper,A.M.;Kraus,S.,ThinkGlobally— (3) CFPA (California Food Policy Advocates). Santa Barbara EatLocally:SanFranciscoFoodshedAssessment.In2008. County Nutrition and Food Insecurity Profile. http://www.cfpa.net/ (23) Martinez, S.; Hand, M.; Da Pra, M.; Pollack, S.; Ralston, K.; 2010CountyProfiles/SantaBarbara.pdf;accessed2010April07. Smith,T.;Vogel,S.;Clark,S.;Lohr,L.;Low,S.;Newman,C.LocalFood (4) CCPHA(CaliforniaCenterforPublicHealthAdvocacy).The Systems: Concepts, Impacts, and Issues; United States Department of foodlandscapeinSantaBarbaraCounty.http://www.publichealthad- Agriculture,EconomicResearchService:2010. vocacy.org/RFEI/Santa_Barbara_County_Fact_Sheet.pdf; accessed (24) Peters,C.J.;Bills,N.L.;Lembo,A.J.;Wilkins,J.L.;Fick,G.W. 2009November10. MappingpotentialfoodshedsinNewYorkState:Aspatialmodelfor (5) Eshel,G.Ageophysicalfoundationforalternativefarmpolicy. evaluatingthecapacitytolocalizefoodproduction.Ren.Agric.FoodSys. Environ.Sci.Technol.2010,44,3651–3655. 2009,24,72–84. (6) Evans, L. T. Feeding the Ten Billion: Plants and Population (25) USDANASS(USDA-NationalAgriculturalStatisticsService). Growth;CambridgeUniversityPress:Cambridge,UK,1998. Volume1.GeographicAreaSeries.Part5,CaliforniaStateandCounty (7) Wells,H.F.;Buzby,J.C.DietaryAssessmentofMajorTrendsinU. Data.http://www.agcensus.usda.gov/Publications/2007/Full_Report/ S.FoodConsumption,1970(cid:1)2005.EconomicInformationBulletinNo.33; Volume_1,_Chapter_2_County_Level/California/index.asp; accessed USDA Economic Research Service: Washington, D.C., March 2008, 2009August20. 2008. (26) Gibbs,D.;Ahlroth,J.;Lopez,C.;Almy,R.2008SantaBarbara (8) USDAERS(USDepartmentofAgriculture,EconomicResearch CountyGroundwaterReport;SantaBarbaraCountyPublicWorks,Water Service). Data sets, food availability. http://www.ers.usda.gov/Data/ ResourcesDepartment,WaterAgencyDivision:SantaBarbara,2009. FoodConsumption/FoodAvailIndex.htm;accessed2010March07. (27) Rodriguez, L.; Lang, R. Water Resources of Santa Barbara (9) Hoppe, R. A.; MacDonald, J. M.; Korb, P. Small Farms in the County.InSantaBarbaraCountyWaterAgency:2000. United States: Persistence under Pressure; United States Department of (28) SBCACO(SantaBarbaraCountyAgriculturalCommissioner’s Agriculture,EconomicResearchService:2010. Office). 2008 Crop Report. http://www.countyofsb.org/agcomm/; (10) FAO (UN Food and Agriculture Organization). The State accessed2009November10. of Food Insecurity in the World: Addressing food insecurity in pro- (29) USCensusBureauUSACounties.http://censtats.census.gov/ tractedcrises.http://www.fao.org/docrep/013/i1683e/i1683e00.htm; usa/usa.shtml;accessed2010March07. accessed20101020. (30) Ragland,E.;Tropp,D.USDANationalFarmersMarketMan- (11) Khan,S.;Hanjra,M.A.Footprintsofwaterandenergyinputsin agerSurvey,2006;Washington,D.C.,2009. foodproduction—Globalperspectives.FoodPol.2009,34,130–140. (31) Canning,P.;Charles,A.;Huang,S.;Polenske,K.R.W.,Arnold (12) Weber, C. L.; Matthews, H. S. Food-miles and the relative Energy Use in the U.S. Food System. Economic Research Report No. climateimpactsoffoodchoicesintheunitedstates.Environ.Sci.Technol. (ERR-94);USDAEconomicResearchService:2010 2008,42,3508–3513. (32) Edwards-Jones,G.;Canals,L.M.I.;Hounsome,N.;Truninger, (13) Brodt, S.; Feenstra, G.; Tomich, T. The Low-Carbon Diet M.; Koerber,G.;Hounsome,B.;Cross,P.;York, E.H.;Hospido, A.; Initiative:ReducingEnergyUseandGreenhouseGasEmissionsintheFood Plassmann,K.;Harris,I.M.;Edwards,R.T.;Day,G.A.S.;Tomos,A.D.; SystemusingLifeCycleAssessment.SummaryofaSymposiumonCritical Cowell,S.J.;Jones,D.L.Testingtheassertionthat“localfoodisbest”: 4561 dx.doi.org/10.1021/es1040317|Environ.Sci.Technol.2011,45,4555–4562 EnvironmentalScience&Technology ARTICLE thechallengesofanevidence-basedapproach.TrendsFoodSci.Technol. 2008,19,265–274. (33) Weber,C.L.;Matthews,H.S.ResponsetocommentonFood- milesandtherelativeclimateimpactsoffoodchoicesintheunitedstates. Environ.Sci.Technol.2009,43,3984–3984. (34) Coley,D.;Howard,M.;Winter,M.Localfood,foodmilesand carbon emissions: A comparison of farm shop and mass distribution approaches.FoodPol.2009,34,150–155. (35) Saunders,C.;Barber,A.Carbonfootprints,lifecycleanalysis, foodmiles:globaltradetrendsandmarketissues.Polit.Sci.2008,60, 73–88. (36) USDA ERS (US Department of Agriculture, Economic ResearchService).County-LevelUnemploymentandMedianHouse- holdIncomeforCalifornia.accessed (37) CDC(CentersforDiseaseControlandPrevention).Dataand Trends. County Level Estimates of Obesity: 2007 Age-Adjusted Esti- mates of the Percentage of Adults who are Obese in California. http://apps.nccd.cdc.gov/DDT_STRS2/CountyPrevalenceData.aspx? StateId=6;accessed2010January15. (38) CCPHA(CaliforniaCenterforPublicHealthAdvocacy).The Growing Epidemic: Child Overweight Rates in California Counties. http://www.publichealthadvocacy.org/PDFs/research_pdfs/countyo- verweight.pdf;accessed2010April07. (39) CDC (Centers for Disease Control and Prevention). Differ- ences in Prevalence of Obesity Among Black, White, and Hispanic Adults United States, 2006(cid:1)2008. http://www.cdc.gov/mmwr/pre- view/mmwrhtml/mm5827a2.htm;accessed2010May31. (40) CCPHA (California Center for Public Health Advocacy, PolicyLink, and the UCLA Center for Health Policy Research). De- signedforDisease:TheLinkBetweenLocalFoodEnvironmentsand Obesity and Diabetes. http://www.healthpolicy.ucla.edu/pubs/files/ Designed_for_Disease_050108.pdf;accessed2010January15. (41) Harrison,G.G.;Sharp,M.;Manalo-LeClair,G.;Ramirez,A.; McGarvey, N.FoodSecurityAmongCalifornia’sLow-IncomeAdults Improves,ButMostSeverelyAffectedDoNotShareinImprovement. <http://www.healthpolicy.ucla.edu/pubs/files/Food_Securi- ty_PB_082207.pdf>;accessed2010January15. (42) SBCPHD(SantaBarbaraCountyPublicHealthDepartment). CX3:Ahealthsnapshotofourcommunities.http://www.sbcphd.org/ documents/nutrition/SBCountyCX3CommunityBriefSH6-1-09.pdf; accessed2009November06. (43) Walker,R.E.;Keane,C.R.;Burke,J.G.Disparitiesandaccess tohealthyfoodintheUnitedStates:Areviewoffooddesertsliterature. HealthPlace2010,16,876–884. (44) USDA ERS (US Department of Agriculture, Economic ResearchService),FoodCPIandExpenditures.2010. (45) Schoonover,H.;Muller,M.FoodwithoutThought:HowU.S. FarmPolicyContributestoObesity.http://www.iatp.org/iatp/publica- tions.cfm?accountID=258&refID=80627;accessed2010April07. (46) DeLind,L.B.;Howard,P.H.Safeatanyscale?Foodscares, food regulation, and scaled alternatives. Agric. Human Values 2008, 25,301–317. (47) EPA (Environmental Protection Agency). Cars and Light Trucks. Light-duty automotive technology, carbon dioxide emissions, and fuel economy trends: 1975 through 2009. http://www.epa.gov/ otaq/fetrends.htm#report;accessed2010March15. 4562 dx.doi.org/10.1021/es1040317|Environ.Sci.Technol.2011,45,4555–4562 Supplemental information [Containing 18 pages, 3 tables] The effect of localizing fruit and vegetable consumption on greenhouse gas emissions and nutrition, Santa Barbara County DAVID A. CLEVELAND*,1 CORIE N. RADKA2,4 NORA M. MÜLLER2,3 TYLER D. WATSON2,5 NICOLE J. REKSTEIN2,4 HANNAH VAN M. WRIGHT2,6 SYDNEY E. HOLLINGSHEAD2 1 Environmental Studies Program, University of California, Santa Barbara, CA 93106-4160 2 Current or former undergraduate student, University of California, Santa Barbara. 3 Currently Graduate student, L’Ecole des Affaires Internationales de Sciences Po, 27, rue Saint Guillaume, 75337 Paris, France 4 Currently Research Assistant, Environmental Studies Program, University of California, Santa Barbara. 5 Currently, Santa Barbara County Public Health Department, and Campus Learning Assistance Services, University of California, Santa Barbara, CA. 6 Currently, Outreach Coordinator, Isla Vista Food Cooperative. SBC AFS localization, Supplemental Information, p. S2 * Corresponding author email: [email protected]. Mailing address: Environmental Studies Program, U. of California, Santa Barbara, CA 93106-4160. 1. Produce Grown in Santa Barbara County..............................................................................3 2. Produce Grown in and Consumed in Santa Barbara County...............................................6 3. The Potential for Synergies.....................................................................................................12 4. References.................................................................................................................................15

Description:
in the county (100% localization), it would reduce GHGE from the agrifood system
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.