RESEARCHARTICLE Effect of liquid surface area on hydrogen sulfide oxidation during micro-aeration in dairy manure digesters WalterMulbry1*,KaitlynSelmer1,StephanieLansing2 1 AgriculturalResearchService,UnitedStatesDepartmentofAgriculture,Beltsville,Maryland,UnitedStates ofAmerica,2 DepartmentofEnvironmentalScienceandTechnology,UniversityofMaryland,CollegePark, Maryland,UnitedStatesofAmerica *[email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Althoughthereareavarietyofcommerciallyavailablebiologicalandchemicaltreatments forremovalofhydrogensulfide(H S)frombiogas,managingbiogasH Sremainsasignifi- 2 2 cantchallengeforagriculturaldigesterswherelaborandoperationalfundsareverylimited comparedtomunicipalandindustrialdigesters.Theobjectivesofthisstudyweretoevaluate OPENACCESS headspaceaerationforreducingH Slevelsinlowcostplugflowdigestersandtocharacter- 2 Citation:MulbryW,SelmerK,LansingS(2017) izetherelationshipbetweentheliquidsurfaceareaandH2Soxidationrates.Experiments Effectofliquidsurfaceareaonhydrogensulfide withreplicatefieldscaleplugflowdigestersshowedthatH Slevelsdecreasedfrom 2 oxidationduringmicro-aerationindairymanure 3500ppmvto<100ppmvwhenheadspaceoxygenlevelswere0.5to1%.Methaneproduc- digesters.PLoSONE12(10):e0185738.https:// tionwasnotaffectedbyaerationratesthatresultedinheadspaceoxygenlevelsofupto1%. doi.org/10.1371/journal.pone.0185738 Pilotscaleexperimentsusing65to104LdesulfurizationunitsshowedthatH Soxidation 2 Editor:JohnM.Senko,TheUniversityofAkron, ratesincreasedwithincreasesinliquidsurfacearea.Theseresultssupportthehypothesis UNITEDSTATES thatH Soxidationratesarelimited,inpart,bythesurfaceareaavailableforoxygentransfer, 2 Received:August2,2017 andcanbeincreasedbygrowthofbiofilmscontainingH Soxidizingbacteria.Maximum 2 Accepted:September18,2017 removalratescorrespondedto40to100gSm-2d-1ofliquidsurfaceareaatbiogasretention Published:October4,2017 timesof30to40min. Copyright:Thisisanopenaccessarticle,freeofall copyright,andmaybefreelyreproduced, distributed,transmitted,modified,builtupon,or otherwiseusedbyanyoneforanylawfulpurpose. TheworkismadeavailableundertheCreative Introduction CommonsCC0publicdomaindedication. Untreatedmanurefromanimaloperationscanresultinnoxiousodorsandtheunintentional DataAvailabilityStatement:Allrelevantdataare releaseofthegreenhousegasmethane(CH ).However,whenproperlytreatedinananaerobic withinthepaperanditsSupportingInformation 4 digester,animalwastecanbetransformedintoenvironmentalandeconomicbenefits:1)the files. capturedmethanebecomesasourceofrenewableenergy,2)emissionsofmethaneandnox- Funding:ThisworkwasfundedbytheUSDA iousodorsaresharplyreduced,and3)thefertilizervalueofthemanureincreasesasaportion AgriculturalResearchService.Thefunderhadno oforganicNisconvertedtoplantavailableammonia-Nincreases[1]. roleinstudydesign,datacollectionandanalysis, decisiontopublish,orpreparationofthe Biogasfrommanuredigestersusuallycontains55to65%CH4,35to45%CO2,and0.1to manuscript. 0.4%ofhydrogensulfide(H S)[2].Inadditiontoitstoxicityandreactivitywithmetalsand 2 cement,H SisreadilyconvertedintoSO andH SO ,whicharealsohighlycorrosive. Competinginterests:Theauthorshavedeclared 2 2 2 4 thatnocompetinginterestsexist. Althoughthereareavarietyofcommerciallyavailablebiologicalandchemicaltreatmentsfor PLOSONE|https://doi.org/10.1371/journal.pone.0185738 October4,2017 1/12 Effectofliquidsurfaceareaonmicro-aeration removalofH Sfrombiogas(recentlyreviewedby[2,3],allrequiresomelevelofchemicalor 2 waterinputsandmaintenance.Inpractice,managingbiogasH Sremainsasignificantchal- 2 lengeforagriculturaldigesterswherelaborandoperationalfundsareverylimitedcompared tomunicipalandindustrialdigesters.Asanalternativetotreatbiogas,relativelylowvolumes ofair(oroxygen)canbeinjectedintothedigesterheadspace.Thebasisofthismethodliesin thepresenceofsulfide-oxidizingbacteriainthemanurefeedstock[4]thatconvertdissolved sulfideintoSoandSO 2-[5].ThefeasibilityofH Soxidationundermicro-aerobicconditions 4 2 hasbeendemonstratedinpilot-scaleexperiments(recentlyreviewedby[2,3])andbymoni- toringoflargescalesewagesludgedigesters[6].However,furtherresearchisneededtotrans- ferthesefindingstopracticeonplug-flowagriculturaldigesterswherebiogascompositionand aerationsystemsaremonitoredinfrequently,ifatall. Thereweretwospecificobjectivesofthisstudy.Thefirstobjectivewastoevaluatehead- spaceaerationforreducinghydrogensulfide(H S)levelsinlowcostplugflowmanuredigest- 2 ers.Sixfield-scaleTaiwanese-modeldigesterswereusedtodeterminetheeffectofaeration rateonH Sconcentrationsandmethaneproductionunderfieldconditions.Thesecondobjec- 2 tivewastodeterminetherelationshipbetweentheliquidsurfaceareaindigestersandH Soxi- 2 dationratesduringheadspaceaeration.WehypothesizedthatH Soxidationrateswere 2 limited,inpart,bythesurfaceareaavailableforgrowthofbiofilmscontainingH Soxidizing 2 bacteria.Inthispartofthestudy,weusedreplicatepilot-scaledesulfurizationunits[7]that wereoperatedatarangeofH Sloadingrates. 2 Materialsandmethods Substrate DairymanurewasobtainedfromtheUSDA’sDairyResearchUnitwithintheBeltsvilleAgri- culturalResearchCenter(BARC)(Beltsville,Maryland,USA).Thedairy’sfreestallbarn housesapproximately100dairycowsandusessawdustasbeddingontopofrubberpillows. ManureismechanicallyscrapedintoholdingpitsandpumpeddailyfromthepitstoaFAN screw-presssolidseparatorsystem.Thesolidsarecollectedandcomposted,andthesolids-sep- aratedliquidmanure(containingroughly3%TS)ispumpedoverthecourseofadayintothe fullscaleBARCdigester(540m3totalvolume,400m3workingvolume)fortreatment.During thecourseofthisstudy,theBARCdigesteroperatedwithoutmixingattemperaturesranging from30to35˚Cwithbiogaspressureof2000to2500Pa(20–26cmofwater)andtypicallypro- duced65m3d-1ofbiogascontaining63to66%CH ,32to34%CO ,2000to4000partsper 4 2 millionbyvolume(ppmv)H S. 2 Field-scaleanaerobicdigesters AnaerobicdigestionexperimentswerecarriedoutusingsixmodifiedTaiwanese-modelfield- scale(FS)digesters(Fig1)attheBARCdairy[8,9].EachFSdigesteriscomposedofatapered 5.2mlong,0.9mdiameterPVC-baseddigesterbagwitha1.0mmthickmembrane.The digesterbagswereplacedinside1.1mdiametercorrugatedhigh-density-polyethylene (HDPE)drainagepipesforprotectionandinsulation.EachFSdigesterhasatotalcapacityof3 m3andwasoperatedataliquidcapacityof67%(2m3workingvolume),with33%headspace forbiogascollection.TheFSdigestersareplug-flowreactorsandwereoperatedwithoutmix- ing.Digestersweremaintainedat28±2˚Cbycirculatingaheated30%glycolsolutionthrough heatexchangermateriallocatedbetweenthedigesterbagsandfoaminsulation.Pumps,valves andheatignitionwerecontrolledelectronicallythroughaLabview™softwareprogram (NationalInstrumentsCorp.,Austin,TX,USA). PLOSONE|https://doi.org/10.1371/journal.pone.0185738 October4,2017 2/12 Effectofliquidsurfaceareaonmicro-aeration Fig1.Imagesofthesixplug-flowfield-scale(FS)digestersusedinthisstudy.A,Digesterbagpriorto installation.Thebiogasventtube(10cmdiameter)isnotshownbutislocatedinthetopcenterofthebag.B, Fieldsiteoverview,withthedigesterbagsplacedinsideinsulatedHDPEcorrugateddrainagepipes. https://doi.org/10.1371/journal.pone.0185738.g001 Priortothestudy,eachFSdigesterwasfilledwith1m3ofinoculumfromtheBARCfarm digesterand1m3ofseparatedmanure.Eachdigesterwassubsequentlyloadedwith160Ld−1 separatedmanure,correspondingtoanorganicloadingrateof1.5kgVSm−3d−1)andhydrau- licretentiontime(HRT)of17days.Correspondingly,eachdigesterproduced160Ld−1of digestedeffluentthatwascollectedinacentralsumppriortotransferbacktothefarm’s manurelagoon.Theamountofthemanuresolidswaschosentokeepthedigesterorganic loadingrate(OLR)withinthesuggestedrangeof1to3kgVSm−3d−1[10].Steadystatecondi- tions,definedasstablemethaneproductionandmethanecontent,wasreachedinthedigesters aftertheywereoperatedfortwohydraulicretentiontimes(HRT)(datanotshown). Afterachievingsteadystateconditions,randomlychosenpairsofdigesterswereassigned foroneofthreetreatments(noaeration,lowrateaeration(1to5%ofairtobiogas(v/v),or highrateaeration(5to10%ofairtobiogas(v/v),andoperatedfor18weeks(7.4HRTs).For digesterschosenforheadspaceaeration,airwaspulsed20timesperdayintotheheadspaceof eachdigesterusinganelectronictimer(model50015,Woods/ColemanCable,Waukegan,IL) PLOSONE|https://doi.org/10.1371/journal.pone.0185738 October4,2017 3/12 Effectofliquidsurfaceareaonmicro-aeration andanaquariumpump(model9902,Petco,SanDiego,CA)thatdeliveredairtotwooutlets thatfloatedonthesurfaceofthedigestate. Pilot-scaledesulfurizationexperiments Polypropylenebarrels(Uline,PleasantPrairie,WI)containingdigestatefromthefarmscale BARCdigesterwereusedaspilot-scaledesulfurizationunitstoremoveH SfromBARC 2 digesterbiogas.Inthefirstsetofexperiments,sealed65Lbarrels(35cmdiameter,60cm height)containing6Lofdigestate(59Lheadspace)wereusedtodeterminetherelationship betweenliquidsurfaceareaandH Soxidationrates.Pairsofbarrelswereoperatedvertically 2 orhorizontallywithliquidsurfaceareasof0.099and0.150m2,respectively.Inthesecondset ofexperiments,pairsofopentop104Lbarrels(43cmdiameter,71cmheight,104L)with removablegastightlidsandcontaining30Lofdigestate(74Lheadspace)wereusedinexperi- mentsinwhichweattemptedtoincreaseH Soxidationcapacitybyincreasingthewettedsur- 2 faceareaforbiofilmgrowth.Inonepairofbarrels,averticalpieceofcottonterryclothfabric (29X29cm)wassuspendedverticallyintoandabovethedigestatesurfaceineachbarrel.The fabricwassaturatedwithdigestateatthebeginningoftheexperiment.Anotherpairofbarrels wasoperatedwithouttheadditionoffabric.Inbothexperiments,biogasfromtheBARC digesterwascontinuouslyintroducedintotheheadspaceofeachbarrel(approximately5cm abovethedigestatesurface)atratesrangingfrom0.1to3Lmin-1.Ambientairwascontinu- ouslypumpedintotheheadspaceofthebarrelsusingsmallaquariumpumps(described above)atratescorrespondingto5%(v/v)ofthebiogasflowrate(rangingfrom5to150ml min-1). Barrelswereinsulatedusing2"closedfoaminsulationboard(R-10)underneaththebarrels and2"fiberglassinsulation(R-13)wrappedaroundthesides.Barrelsweremaintainedattem- peraturesbetween20to25˚Cusing50Wheatingpadstapedtothesidesofthebarrels(model 756–500,Sunbeam,BocaRaton,FL).Flowratesofbiogasandairweredetermineddailyusing amassflowmeter(modelGFM17,AalborgInstruments)androtameter(DwyerInstruments), respectively. Analyticalmethods BiogasproducedbytheFSdigesterswasmonitoredusinglow-pressurecumulativegasmeters (modelPGM.75,EKMMetering,SantaCruz,CA,USA).Althoughbiogasreadingswere recordeddaily,biogasproductionvalueswerecalculatedusingweeklyaverages.Gascomposi- tion(CH ,CO ,O ,H S)ofbiogasfromFSdigesters,biogastheBARCdigester,andtreated 4 2 2 2 biogasfromeachdesulfurizationunitweredetermineddailyusingaportablegasanalyzer (Biogas5000,LandtecInstruments,Dexter,MI).Theinstrumentwascalibratedusinggasstan- dardsprovidedbythemanufacturer. InfluentandeffluentsamplesfromtheFSdigesterswerecollectedweeklyandanalyzedfor totalsolids(TS),volatilesolids(VS),pH,andalkalinityaccordingtoStandardMethods[11]. Digestatesamplesfromdesulfurizationunitswerecollectedonlyatthebeginningandendof theexperiments. Statisticalmethods Analysisofvariance(ANOVA)wasperformedtotestthesignificanceamongtreatmentsfor maximumH Soxidationrate(gSd-1m-2).Post-hocpairwisecomparisonsoftreatmentswere 2 conductedusingTukey’sHonestSignificantDifferencetest(R3.1.2;95%confidencelevel) [12]. PLOSONE|https://doi.org/10.1371/journal.pone.0185738 October4,2017 4/12 Effectofliquidsurfaceareaonmicro-aeration Resultsanddiscussion Useoffield-scaledigesterstodeterminetheeffectofaerationrateon biogasH SconcentrationsandCH production 2 4 Sixfield-scaledigesterswereusedtodeterminetheeffectofaerationrateonhydrogensulfide concentrationsandmethaneproductionunderfieldconditions(Fig1).Aftersteadystatecon- ditionswereachieved,theFSdigesterswereoperatedat28˚Cusingsolidsseparateddairy manure.TheHRTandOLRwere17daysand1.5±0.1kgVSm3d-1,respectively,duringthe studyforalldigesters.Thetwonon-aerateddigestersproduced0.9to1.7m3biogasperday, correspondingtobiogasretentiontimesof14to26hours.Themeanmethaneproductionrate fromthenon-aerateddigesterswas0.45±0.02m3d-1m-3andspecificmethaneproduction valuewas0.32±0.01m3CH d-1kg-1VS.Biogasproducedfromthenon-aerateddigesters 4 containedCH concentrationsof62%to68%,CO concentrationsof32%to37%,andH S 4 2 2 concentrationsof2900to4500ppmvoverthe18weekstudyperiod(notshown). Resultsshowedthatincreasedlevelsofaerationofdigesterheadspaceresultedindecreased levelsofH S.Twopairsofdigesterswerechosentoreceiveaerationatdifferentratesoveran 2 18-weekperiod.Anotherpairofdigestersdidnotreceiveaeration.Airwaspulsedintothe headspace(20pulsesperday)asitwasdifficulttoaccuratelymaintainthelowairflowrates neededforcontinuousaeration.Ataerationratescorrespondingto2%to10%ofairpervol- umeofbiogas,residualoxygenlevelsinthebiogasrangedfrom0.1to3%.Althoughwepre- dictedthatanyamountofexcessoxygenwouldindicatecompleteoxidationofH S,H Slevels 2 2 inthebiogaswereconsistentlylessthan500ppmvonlywhenresidualoxygenlevelswithinthe biogaswere(cid:21)0.3%(v/v)(Fig2,panelA).H Slevelsinthebiogaswereconsistentlylessthan 2 100ppmvonlywhenresidualoxygenlevelswithinthebiogaswere(cid:21)0.5%(v/v).Theseresults areconsistentwiththosefromotherstudiesusingsewagesludgedigesters.Hydrogensulfide removalefficienciesof<99%havebeenreportedfromdigesterswithbiogasretention times>5hr(recentlyreviewedby[2,3]). AerationofdigesterheadspacedidnotsignificantlyaffectCH production.Asexpected, 4 CH andCO concentrationsinthebiogasdecreasedwithincreasinglevelsofaerationbecause 4 2 ofdilutionwithair(primarilynitrogen).However,meanmethaneproductionvaluesfromaer- ateddigesters(0.43±0.01m3CH d-1)werenotsignificantlydifferent(p=0.277)thanvalues 4 fromdigestersoperatedwithoutaeration(0.45±0.02m3CH d-1).Therewasnoapparent 4 trendwithregardtotheeffectofaerationonCH productionuptolevelsyieldingbiogasoxy- 4 genconcentrationsupto1%(Fig2,panelB).Withrespecttotheeffectofbiogasoxygencon- centrationsabove1%,theresultsarelessclearbecauseofrelativelyfew(andvariable)results undertheseconditions.TherewerenodifferencesinthepHoralkalinityvaluesofeffluents fromdigestersreceivingaerationcomparedthosenotreceivingaeration(resultsnotshown). Wedidnotmeasuresulfurconcentrationsindigestereffluentsbecauseweexpectedthatmuch oftheelementalsulfurprecipitatewouldberetainedwithsolidsintheseunmixeddigesters [9].Therearefewresultsfromotherstudieswithwhichtocompareourresultsbecausemost studieshaveusedsingledigestersoperatedunderdifferentconditionsthroughtimerather thanreplicatedigestersoperatedsimultaneously.However,effectsofmicro-aerationonCH 4 productionhavebeenconsideredtobeminimalorslightlypositive[3,6]. Useofpilot-scaledesulfurizationunitstodeterminetheeffectofwetted surfaceareaonH Soxidationratesduringmicro-aeration 2 AlthoughH SlevelsintheFSdigesters(withrelativelylongbiogasretentiontimesof14to26 2 hours)weresignificantlyreducedbyaeration,wesoughttodeterminetheeffectivenessof PLOSONE|https://doi.org/10.1371/journal.pone.0185738 October4,2017 5/12 Effectofliquidsurfaceareaonmicro-aeration Fig2.Hydrogensulfideconcentrationandmethaneproductionasafunctionofresidualoxygen concentrationsinmicro-aeratedFSdigesters.A,InfluenceofaerationonH Sconcentrationsinbiogas. 2 Valuesaremeansof2to12dailymeasurementsfromduplicateaeratedfieldscaledigestersoperatedfor18 weeks.Duringthisperiod,H Sconcentrationsfromduplicatenon-aerateddigestersrangedfrom3000to 2 4000ppmvwithameanvalueof3570ppmv.Verticalbarsshowstandarderrorvalues(threeerrorbarsare clippedattheaxislimit).B,EffectofaerationonCH production.Valuesarecalculatedfromweeklymeans 4 fromduplicateaeratedfielddigestersoperatedwithandwithoutaeration.Verticalbarsshowstandarderror values. https://doi.org/10.1371/journal.pone.0185738.g002 aerationunderarangeofbiogasflowratesandmuchlowerretentiontimes.Inaddition,since themajorityofH Soxidationwithindigestersislikelyduetomicrobialbiofilmslocatedonthe 2 digestatesurface,wealsosoughttodeterminetheeffectofvaryingtheavailableliquidorwet- tedsurfaceareaonsulfuroxidationratesduringheadspaceaeration.Fortheseexperiments, wemademinormodificationstoa10LdesulfurizationunitdescribedbyRamosandcowork- ers[7].Inthefirstsetofexperiments,wedeterminedH SoxidationratesasafunctionofH S 2 2 loadingrateusingpolypropylenebarrelswithtwodifferentliquidsurfaceareas.Pairsof65L barrelscontainingdigestatewereoperatedvertically(0.099m2liquidsurfacearea)orhorizon- tally(0.150m2liquidsurfacearea)andsubjectedtomicro-aerationunderdifferentflowrates ofbiogasfromtheBARCdigester. PLOSONE|https://doi.org/10.1371/journal.pone.0185738 October4,2017 6/12 Effectofliquidsurfaceareaonmicro-aeration Resultsshowthatthehorizontaltanks(containing50%moreliquidsurfaceareacompared totheverticaltanks)oxidizedH Satmaximumratesthatwereapproximately3-foldhigher 2 thantheverticalbarrels(Fig3,Table1).Whennormalizedforsurfacearea,maximumH S 2 oxidationratesfromhorizontalunitsareapproximately2-foldhigherthanthosefromthever- ticalunits(Table1).Sincethebarrelswereotherwiseidentical,webelievethatthelikelyexpla- nationforthedifferentratesisthatincreasedliquid/gassurfacearealeadstomoresurface biofilmcontainingH SoxidizingbacteriaandhigherratesofH Soxidation.Therearefew 2 2 resultsfromotherstudieswithwhichtocompareourresultsbecausemoststudieshavenot beendesignedtodeterminemaximumH Soxidationratesandfewprovideinformation 2 neededtodeterminedigesterliquidsurfacearea.ThedesulfurizationunitdescribedbyRamos andcoworkersreducedtheeffluentbiogasH Scontentfromapproximately3000ppmvto 2 between100and200ppmv[7].Undertheirconditions,thecalculatedH Soxidationratewas 2 25gSd-1m-2.Thisvalueiswithintherangeofvaluesdeterminedinourstudy(Table1). Nghiemandcoworkersconductedastudyinwhichmicro-aerationwascontrolledbyoxida- tionreductionvaluesinthedigestate[13].Undertheirconditions,effluentbiogasH Sconcen- 2 trationsdecreasedfromapproximately6000ppmvto30ppmvandthecalculatedH S 2 oxidationratewas2.6gSd-1m-2(Table1).Thisvalueislowerthanvaluesdeterminedinthis studybutislikelyanunderestimateofthemaximumratebecausetheirstudywasnotdesigned forthispurpose. Inthesecondsetofexperiments,wedeterminedtheeffectofincreasingthewettedareafor biofilmgrowthontheH Soxidationrate.Intheseexperiments,wedeterminedH Soxidation 2 2 ratesusing104Lbarrelscontainingdigestate(Fig4,panelA).Averticalpieceofcottonterry- clothfabric(29X29cm)wassuspendedverticallyintoandabovethedigestatesurfaceineach ofapairofbarrels(Fig4,panelC).Thefabricwassaturatedwithdigestateatthebeginningof theexperiment.Asecondpairofbarrelswasoperatedwithoutfabric(Fig4,panelB).Barrels weresubjectedtodifferentflowratesofbiogasandaeratedat5%v/vofbiogasflowas describedabovefor30days. Resultsshowthattheunitscontainingfabric(withapproximately50%morewettedsurface areacomparedtotheunitswithoutfabric)oxidizedH Satmaximumratesthatwereapproxi- 2 mately50%higherthanunitswithoutfabric(Fig5,Table1).Whennormalizedforwettedsur- facearea,maximumH Soxidationratesfromunitswithandwithoutfabricwerenearly 2 identical(Table1).Useoftallerpiecesofsaturatedfabric(29cmwidex59cmhigh)insubse- quentexperimentsdidnotresultinincreasedratesofH Soxidation(resultsnotshown).Itis 2 possiblethatadditionofwettedfabricabove29cmdidnotleadtoincreasedoxidationrates becausefabricabovethisheightdidnotmaintainadequatemoisturelevels.Indeed,we observedthatthefabricremainedvisiblywetonlyabout12cmabovethedigestatesurface. Althoughthemaximumoxidationratesmeasuredintheseexperimentsareusefulindeter- mininglimitingfactorsinthemicro-aerationprocess,digesteroperatorsarefocusedonthe maximumH SloadingratesthatachievespecificH Stargetconcentrations.Ourresultssug- 2 2 gestthatbiogasH Sconcentrationswerereducedfromapproximately3500ppmvtolessthan 2 500ppmvatH Sloadingratescorrespondingtoapproximately25to40%ofthemaximum 2 oxidationrates(Table1).BiogasH Sconcentrationswerereducedtobelow100ppmvatH S 2 2 loadingratescorrespondingto8to18%ofthemaximumoxidationrates. Althoughdigestatesfromdesulfurizationunitsturnedyellowandcontainedvisibleflocsof sulfur-containingsolids,wedidnotcharacterizesulfurrecoveryintheseunits.Alkalinityand pHvalueswerelowerindigestatesfromunitsreceivingaerationcomparedtothosenotreceiv- ingaeration.However,wedidnotcollectsamplesneededfordeterminingarelationship betweenpH,alkalinity,andoxidizedsulfur(sampleswerecollectedonlyatthebeginningand endofexperiments).Ramosandcoworkerscollectedsulfur-containingsolidsintheirstudyof PLOSONE|https://doi.org/10.1371/journal.pone.0185738 October4,2017 7/12 Effectofliquidsurfaceareaonmicro-aeration Fig3.HydrogensulfideoxidationratesasafunctionofH Sloadingrateinverticalandhorizontal65 2 Lbarrels.Valuesaremeansofdailymeasurementsfromduplicateaeratedbarrels.Redcircles,horizontal barrels.Bluetriangles,verticalbarrels.Verticalbarsshowstandarderrorvalues.Dottedlinesshowestimated maximumremovalratescorrespondingtovaluesshowninTable1. https://doi.org/10.1371/journal.pone.0185738.g003 Table1. ComparisonofH Soxidationratesusingpilot-scaledesulfurizationunits. 2 65Lvertical 65Lhorizontal 104Lbarrelno 104Lbarrelwith 10Ldesulfur- 50Ldigester barrel barrel fabric fabric izationunit[7]1 [13]2 Headspacevolume(L) 59 59 74 74 9 20 Liquid/wettedsurfacearea(m2) 0.099 0.150 0.146 0.224 0.049 0.126 BiogasH S(ppmv) 3500 3500 3500 3500 3000 6000 2 BiogasH S(gm-3) 4.88 4.88 4.88 4.88 4.18 8.38 2 BiogasflowrateatmaximumH S 1.5 1.5 2.0 2.5 0.15 0.027 2 oxidationrate2(LPM) Biogasretentiontime(min) 39 39 37 30 60 740 MaximumH Soxidationrate3(gSd-1) 4.3±0.3 12.4±1.3 15.3±0.5 22.4±0.3 n.d.4 n.d.4 2 MaximumH Soxidationrate3(gSd-1m-2) 43±3a 83±7b 104±5c 101±2bc n.d.4 n.d.4 2 MaximumH Sinputrateforeffluent n.d. 24(29%)5 27(26%) 44(43%) 25 n.d.4 2 content<500ppmvH S(gSd-1m-2) 2 MaximumH Sinputrateforeffluent n.d. 6.6(8%)4 9.3(9%) 18(18%) n.d. 2.6 2 content<100ppmvH S(gSd-1m-2) 2 1Experimentsuseda10L(25cmdiameter)plasticcontainerandachievedeffluentbiogasH Svaluesof100to200ppmv.MaximumH Soxidationrates 2 2 werenotdetermined. 2Experimentsuseda50L(40cmdiameter)digesterandachievedeffluentbiogasH Svaluesof30ppmv.MaximumH Soxidationrateswerenot 2 2 determined. 3Valuesaremeans±SEof6or7dailymeasurementsfromduplicatebarrels.Treatmentmeanswithdifferentlettersarestatisticallysignificantatthe0.05 significancelevel. 4n.d.:notdetermined. 5ValuesinparenthesesindicatetheoreticalH Sinputratewitheffluentcontent<500ppmvor<100ppmvH Sasapercentageofthemaximumoxidation 2 2 rate. https://doi.org/10.1371/journal.pone.0185738.t001 PLOSONE|https://doi.org/10.1371/journal.pone.0185738 October4,2017 8/12 Effectofliquidsurfaceareaonmicro-aeration Fig4.Imagesof104Lmicro-aerationunits.A,Viewofinsulatedbarrels.B,Viewofsulfurdepositionon digestatesurfaceinbarrelreceivingaeration.C,Viewofsaturatedfabric(29x29cm)inbarrelsreceiving aeration. https://doi.org/10.1371/journal.pone.0185738.g004 PLOSONE|https://doi.org/10.1371/journal.pone.0185738 October4,2017 9/12 Effectofliquidsurfaceareaonmicro-aeration Fig5.Hydrogensulfideoxidationratesasafunctionofloadingratein104Lbarrelswithandwithout verticalstripsofcottonfabric.Bluetriangles,barrelswithoutfabric.Redcircles,barrelswithsaturated cottonfabricinheadspaceabovedigestate.Valuesaremeansofdailymeasurementsfromduplicateaerated barrels.Verticalbarsshowstandarderrorvalues.Dottedlinesshowestimatedmaximumremovalrates correspondingtovaluesshowninTable1. https://doi.org/10.1371/journal.pone.0185738.g005 adesulfurizationunitandestimatedthattherecoveredsolidscontained60%ofinputH S-S 2 (assumingthatallH S-SwasconvertedtoS0)[7]. 2 OurresultssuggestthatmaximumH Soxidationratesduringheadspaceaerationarelim- 2 ited,inpart,bythewettedareaavailableforbiofilmgrowthand/oractivity.Verticalsaturated fabricabovethedigestatesurfaceprovidesasuitablehabitatforthebiofilmactivity.Although itmaybepossibletomaximizeoxidationefficiencyfurtherbyreducingfabricheightbelow29 cm,resultsfromexperimentsusingshorterlengthsoffabricwereinconclusive(notshown).It islikelythatH Soxidationratescouldbeincreasedbyadditionofmultiplestripsofadurable 2 absorbentmaterialpositionedverticallyinthedigesterheadspace(orinanexternaldesulfuri- zationunit). Althoughtheefficiencyofmicro-aerationisinfluencedbyotherfactors(suchasH Scon- 2 centration,biogasretentiontime,digestatetemperature,andadequatemixingofoxygenatthe digestatesurface),thesulfuroxidationvaluesbasedonliquidsurfaceareamaybeusefulfor estimatingH Soxidizationcapacitiesofdigestersanddesulfurizationunits.Using10gSm-2 2 d-1fortheH Soxidationrateneededtoachievebiogaseffluentcontaining<100ppmvH S, 2 2 thefield-scalehorizontalplug-flowdigesters(withasurfaceareaofapproximately3.3m2) couldbeoperatedtoproduceupto33gH Sd-1.Thisratecorrespondstoadailybiogaspro- 2 ductionvalueofabout6m3d-1(assumingacontentof3500ppmvH S(5gSm-3))thatis 2 3-foldhigherthanourtypicalproductionratesof1–2m3d-1[9].Thesulfuroxidationvalues canalsobeusedtoestimatethesizeofanexternaldesulfurizationunitneededtotreatdigester biogas.Forthefarm-scaleBARCdigester,theestimatedH S-Soutputisapproximately325g 2 Sd-1(assuming65m3d-1biogascontaining3500ppmvH S).Usingvaluesof25or10gSm-2 2 d-1,externaldesulfurizationunitsofapproximately13m2or33m2wouldberequiredto achievebiogasH Sconcentrationsbelow500ppmvorbelow100ppmv,respectively. 2 PLOSONE|https://doi.org/10.1371/journal.pone.0185738 October4,2017 10/12
Description: