ebook img

Effect of liquid surface area on hydrogen sulfide oxidation during micro-aeration in dairy manure PDF

12 Pages·2017·7.55 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Effect of liquid surface area on hydrogen sulfide oxidation during micro-aeration in dairy manure

RESEARCHARTICLE Effect of liquid surface area on hydrogen sulfide oxidation during micro-aeration in dairy manure digesters WalterMulbry1*,KaitlynSelmer1,StephanieLansing2 1 AgriculturalResearchService,UnitedStatesDepartmentofAgriculture,Beltsville,Maryland,UnitedStates ofAmerica,2 DepartmentofEnvironmentalScienceandTechnology,UniversityofMaryland,CollegePark, Maryland,UnitedStatesofAmerica *[email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Althoughthereareavarietyofcommerciallyavailablebiologicalandchemicaltreatments forremovalofhydrogensulfide(H S)frombiogas,managingbiogasH Sremainsasignifi- 2 2 cantchallengeforagriculturaldigesterswherelaborandoperationalfundsareverylimited comparedtomunicipalandindustrialdigesters.Theobjectivesofthisstudyweretoevaluate OPENACCESS headspaceaerationforreducingH Slevelsinlowcostplugflowdigestersandtocharacter- 2 Citation:MulbryW,SelmerK,LansingS(2017) izetherelationshipbetweentheliquidsurfaceareaandH2Soxidationrates.Experiments Effectofliquidsurfaceareaonhydrogensulfide withreplicatefieldscaleplugflowdigestersshowedthatH Slevelsdecreasedfrom 2 oxidationduringmicro-aerationindairymanure 3500ppmvto<100ppmvwhenheadspaceoxygenlevelswere0.5to1%.Methaneproduc- digesters.PLoSONE12(10):e0185738.https:// tionwasnotaffectedbyaerationratesthatresultedinheadspaceoxygenlevelsofupto1%. doi.org/10.1371/journal.pone.0185738 Pilotscaleexperimentsusing65to104LdesulfurizationunitsshowedthatH Soxidation 2 Editor:JohnM.Senko,TheUniversityofAkron, ratesincreasedwithincreasesinliquidsurfacearea.Theseresultssupportthehypothesis UNITEDSTATES thatH Soxidationratesarelimited,inpart,bythesurfaceareaavailableforoxygentransfer, 2 Received:August2,2017 andcanbeincreasedbygrowthofbiofilmscontainingH Soxidizingbacteria.Maximum 2 Accepted:September18,2017 removalratescorrespondedto40to100gSm-2d-1ofliquidsurfaceareaatbiogasretention Published:October4,2017 timesof30to40min. Copyright:Thisisanopenaccessarticle,freeofall copyright,andmaybefreelyreproduced, distributed,transmitted,modified,builtupon,or otherwiseusedbyanyoneforanylawfulpurpose. TheworkismadeavailableundertheCreative Introduction CommonsCC0publicdomaindedication. Untreatedmanurefromanimaloperationscanresultinnoxiousodorsandtheunintentional DataAvailabilityStatement:Allrelevantdataare releaseofthegreenhousegasmethane(CH ).However,whenproperlytreatedinananaerobic withinthepaperanditsSupportingInformation 4 digester,animalwastecanbetransformedintoenvironmentalandeconomicbenefits:1)the files. capturedmethanebecomesasourceofrenewableenergy,2)emissionsofmethaneandnox- Funding:ThisworkwasfundedbytheUSDA iousodorsaresharplyreduced,and3)thefertilizervalueofthemanureincreasesasaportion AgriculturalResearchService.Thefunderhadno oforganicNisconvertedtoplantavailableammonia-Nincreases[1]. roleinstudydesign,datacollectionandanalysis, decisiontopublish,orpreparationofthe Biogasfrommanuredigestersusuallycontains55to65%CH4,35to45%CO2,and0.1to manuscript. 0.4%ofhydrogensulfide(H S)[2].Inadditiontoitstoxicityandreactivitywithmetalsand 2 cement,H SisreadilyconvertedintoSO andH SO ,whicharealsohighlycorrosive. Competinginterests:Theauthorshavedeclared 2 2 2 4 thatnocompetinginterestsexist. Althoughthereareavarietyofcommerciallyavailablebiologicalandchemicaltreatmentsfor PLOSONE|https://doi.org/10.1371/journal.pone.0185738 October4,2017 1/12 Effectofliquidsurfaceareaonmicro-aeration removalofH Sfrombiogas(recentlyreviewedby[2,3],allrequiresomelevelofchemicalor 2 waterinputsandmaintenance.Inpractice,managingbiogasH Sremainsasignificantchal- 2 lengeforagriculturaldigesterswherelaborandoperationalfundsareverylimitedcompared tomunicipalandindustrialdigesters.Asanalternativetotreatbiogas,relativelylowvolumes ofair(oroxygen)canbeinjectedintothedigesterheadspace.Thebasisofthismethodliesin thepresenceofsulfide-oxidizingbacteriainthemanurefeedstock[4]thatconvertdissolved sulfideintoSoandSO 2-[5].ThefeasibilityofH Soxidationundermicro-aerobicconditions 4 2 hasbeendemonstratedinpilot-scaleexperiments(recentlyreviewedby[2,3])andbymoni- toringoflargescalesewagesludgedigesters[6].However,furtherresearchisneededtotrans- ferthesefindingstopracticeonplug-flowagriculturaldigesterswherebiogascompositionand aerationsystemsaremonitoredinfrequently,ifatall. Thereweretwospecificobjectivesofthisstudy.Thefirstobjectivewastoevaluatehead- spaceaerationforreducinghydrogensulfide(H S)levelsinlowcostplugflowmanuredigest- 2 ers.Sixfield-scaleTaiwanese-modeldigesterswereusedtodeterminetheeffectofaeration rateonH Sconcentrationsandmethaneproductionunderfieldconditions.Thesecondobjec- 2 tivewastodeterminetherelationshipbetweentheliquidsurfaceareaindigestersandH Soxi- 2 dationratesduringheadspaceaeration.WehypothesizedthatH Soxidationrateswere 2 limited,inpart,bythesurfaceareaavailableforgrowthofbiofilmscontainingH Soxidizing 2 bacteria.Inthispartofthestudy,weusedreplicatepilot-scaledesulfurizationunits[7]that wereoperatedatarangeofH Sloadingrates. 2 Materialsandmethods Substrate DairymanurewasobtainedfromtheUSDA’sDairyResearchUnitwithintheBeltsvilleAgri- culturalResearchCenter(BARC)(Beltsville,Maryland,USA).Thedairy’sfreestallbarn housesapproximately100dairycowsandusessawdustasbeddingontopofrubberpillows. ManureismechanicallyscrapedintoholdingpitsandpumpeddailyfromthepitstoaFAN screw-presssolidseparatorsystem.Thesolidsarecollectedandcomposted,andthesolids-sep- aratedliquidmanure(containingroughly3%TS)ispumpedoverthecourseofadayintothe fullscaleBARCdigester(540m3totalvolume,400m3workingvolume)fortreatment.During thecourseofthisstudy,theBARCdigesteroperatedwithoutmixingattemperaturesranging from30to35˚Cwithbiogaspressureof2000to2500Pa(20–26cmofwater)andtypicallypro- duced65m3d-1ofbiogascontaining63to66%CH ,32to34%CO ,2000to4000partsper 4 2 millionbyvolume(ppmv)H S. 2 Field-scaleanaerobicdigesters AnaerobicdigestionexperimentswerecarriedoutusingsixmodifiedTaiwanese-modelfield- scale(FS)digesters(Fig1)attheBARCdairy[8,9].EachFSdigesteriscomposedofatapered 5.2mlong,0.9mdiameterPVC-baseddigesterbagwitha1.0mmthickmembrane.The digesterbagswereplacedinside1.1mdiametercorrugatedhigh-density-polyethylene (HDPE)drainagepipesforprotectionandinsulation.EachFSdigesterhasatotalcapacityof3 m3andwasoperatedataliquidcapacityof67%(2m3workingvolume),with33%headspace forbiogascollection.TheFSdigestersareplug-flowreactorsandwereoperatedwithoutmix- ing.Digestersweremaintainedat28±2˚Cbycirculatingaheated30%glycolsolutionthrough heatexchangermateriallocatedbetweenthedigesterbagsandfoaminsulation.Pumps,valves andheatignitionwerecontrolledelectronicallythroughaLabview™softwareprogram (NationalInstrumentsCorp.,Austin,TX,USA). PLOSONE|https://doi.org/10.1371/journal.pone.0185738 October4,2017 2/12 Effectofliquidsurfaceareaonmicro-aeration Fig1.Imagesofthesixplug-flowfield-scale(FS)digestersusedinthisstudy.A,Digesterbagpriorto installation.Thebiogasventtube(10cmdiameter)isnotshownbutislocatedinthetopcenterofthebag.B, Fieldsiteoverview,withthedigesterbagsplacedinsideinsulatedHDPEcorrugateddrainagepipes. https://doi.org/10.1371/journal.pone.0185738.g001 Priortothestudy,eachFSdigesterwasfilledwith1m3ofinoculumfromtheBARCfarm digesterand1m3ofseparatedmanure.Eachdigesterwassubsequentlyloadedwith160Ld−1 separatedmanure,correspondingtoanorganicloadingrateof1.5kgVSm−3d−1)andhydrau- licretentiontime(HRT)of17days.Correspondingly,eachdigesterproduced160Ld−1of digestedeffluentthatwascollectedinacentralsumppriortotransferbacktothefarm’s manurelagoon.Theamountofthemanuresolidswaschosentokeepthedigesterorganic loadingrate(OLR)withinthesuggestedrangeof1to3kgVSm−3d−1[10].Steadystatecondi- tions,definedasstablemethaneproductionandmethanecontent,wasreachedinthedigesters aftertheywereoperatedfortwohydraulicretentiontimes(HRT)(datanotshown). Afterachievingsteadystateconditions,randomlychosenpairsofdigesterswereassigned foroneofthreetreatments(noaeration,lowrateaeration(1to5%ofairtobiogas(v/v),or highrateaeration(5to10%ofairtobiogas(v/v),andoperatedfor18weeks(7.4HRTs).For digesterschosenforheadspaceaeration,airwaspulsed20timesperdayintotheheadspaceof eachdigesterusinganelectronictimer(model50015,Woods/ColemanCable,Waukegan,IL) PLOSONE|https://doi.org/10.1371/journal.pone.0185738 October4,2017 3/12 Effectofliquidsurfaceareaonmicro-aeration andanaquariumpump(model9902,Petco,SanDiego,CA)thatdeliveredairtotwooutlets thatfloatedonthesurfaceofthedigestate. Pilot-scaledesulfurizationexperiments Polypropylenebarrels(Uline,PleasantPrairie,WI)containingdigestatefromthefarmscale BARCdigesterwereusedaspilot-scaledesulfurizationunitstoremoveH SfromBARC 2 digesterbiogas.Inthefirstsetofexperiments,sealed65Lbarrels(35cmdiameter,60cm height)containing6Lofdigestate(59Lheadspace)wereusedtodeterminetherelationship betweenliquidsurfaceareaandH Soxidationrates.Pairsofbarrelswereoperatedvertically 2 orhorizontallywithliquidsurfaceareasof0.099and0.150m2,respectively.Inthesecondset ofexperiments,pairsofopentop104Lbarrels(43cmdiameter,71cmheight,104L)with removablegastightlidsandcontaining30Lofdigestate(74Lheadspace)wereusedinexperi- mentsinwhichweattemptedtoincreaseH Soxidationcapacitybyincreasingthewettedsur- 2 faceareaforbiofilmgrowth.Inonepairofbarrels,averticalpieceofcottonterryclothfabric (29X29cm)wassuspendedverticallyintoandabovethedigestatesurfaceineachbarrel.The fabricwassaturatedwithdigestateatthebeginningoftheexperiment.Anotherpairofbarrels wasoperatedwithouttheadditionoffabric.Inbothexperiments,biogasfromtheBARC digesterwascontinuouslyintroducedintotheheadspaceofeachbarrel(approximately5cm abovethedigestatesurface)atratesrangingfrom0.1to3Lmin-1.Ambientairwascontinu- ouslypumpedintotheheadspaceofthebarrelsusingsmallaquariumpumps(described above)atratescorrespondingto5%(v/v)ofthebiogasflowrate(rangingfrom5to150ml min-1). Barrelswereinsulatedusing2"closedfoaminsulationboard(R-10)underneaththebarrels and2"fiberglassinsulation(R-13)wrappedaroundthesides.Barrelsweremaintainedattem- peraturesbetween20to25˚Cusing50Wheatingpadstapedtothesidesofthebarrels(model 756–500,Sunbeam,BocaRaton,FL).Flowratesofbiogasandairweredetermineddailyusing amassflowmeter(modelGFM17,AalborgInstruments)androtameter(DwyerInstruments), respectively. Analyticalmethods BiogasproducedbytheFSdigesterswasmonitoredusinglow-pressurecumulativegasmeters (modelPGM.75,EKMMetering,SantaCruz,CA,USA).Althoughbiogasreadingswere recordeddaily,biogasproductionvalueswerecalculatedusingweeklyaverages.Gascomposi- tion(CH ,CO ,O ,H S)ofbiogasfromFSdigesters,biogastheBARCdigester,andtreated 4 2 2 2 biogasfromeachdesulfurizationunitweredetermineddailyusingaportablegasanalyzer (Biogas5000,LandtecInstruments,Dexter,MI).Theinstrumentwascalibratedusinggasstan- dardsprovidedbythemanufacturer. InfluentandeffluentsamplesfromtheFSdigesterswerecollectedweeklyandanalyzedfor totalsolids(TS),volatilesolids(VS),pH,andalkalinityaccordingtoStandardMethods[11]. Digestatesamplesfromdesulfurizationunitswerecollectedonlyatthebeginningandendof theexperiments. Statisticalmethods Analysisofvariance(ANOVA)wasperformedtotestthesignificanceamongtreatmentsfor maximumH Soxidationrate(gSd-1m-2).Post-hocpairwisecomparisonsoftreatmentswere 2 conductedusingTukey’sHonestSignificantDifferencetest(R3.1.2;95%confidencelevel) [12]. PLOSONE|https://doi.org/10.1371/journal.pone.0185738 October4,2017 4/12 Effectofliquidsurfaceareaonmicro-aeration Resultsanddiscussion Useoffield-scaledigesterstodeterminetheeffectofaerationrateon biogasH SconcentrationsandCH production 2 4 Sixfield-scaledigesterswereusedtodeterminetheeffectofaerationrateonhydrogensulfide concentrationsandmethaneproductionunderfieldconditions(Fig1).Aftersteadystatecon- ditionswereachieved,theFSdigesterswereoperatedat28˚Cusingsolidsseparateddairy manure.TheHRTandOLRwere17daysand1.5±0.1kgVSm3d-1,respectively,duringthe studyforalldigesters.Thetwonon-aerateddigestersproduced0.9to1.7m3biogasperday, correspondingtobiogasretentiontimesof14to26hours.Themeanmethaneproductionrate fromthenon-aerateddigesterswas0.45±0.02m3d-1m-3andspecificmethaneproduction valuewas0.32±0.01m3CH d-1kg-1VS.Biogasproducedfromthenon-aerateddigesters 4 containedCH concentrationsof62%to68%,CO concentrationsof32%to37%,andH S 4 2 2 concentrationsof2900to4500ppmvoverthe18weekstudyperiod(notshown). Resultsshowedthatincreasedlevelsofaerationofdigesterheadspaceresultedindecreased levelsofH S.Twopairsofdigesterswerechosentoreceiveaerationatdifferentratesoveran 2 18-weekperiod.Anotherpairofdigestersdidnotreceiveaeration.Airwaspulsedintothe headspace(20pulsesperday)asitwasdifficulttoaccuratelymaintainthelowairflowrates neededforcontinuousaeration.Ataerationratescorrespondingto2%to10%ofairpervol- umeofbiogas,residualoxygenlevelsinthebiogasrangedfrom0.1to3%.Althoughwepre- dictedthatanyamountofexcessoxygenwouldindicatecompleteoxidationofH S,H Slevels 2 2 inthebiogaswereconsistentlylessthan500ppmvonlywhenresidualoxygenlevelswithinthe biogaswere(cid:21)0.3%(v/v)(Fig2,panelA).H Slevelsinthebiogaswereconsistentlylessthan 2 100ppmvonlywhenresidualoxygenlevelswithinthebiogaswere(cid:21)0.5%(v/v).Theseresults areconsistentwiththosefromotherstudiesusingsewagesludgedigesters.Hydrogensulfide removalefficienciesof<99%havebeenreportedfromdigesterswithbiogasretention times>5hr(recentlyreviewedby[2,3]). AerationofdigesterheadspacedidnotsignificantlyaffectCH production.Asexpected, 4 CH andCO concentrationsinthebiogasdecreasedwithincreasinglevelsofaerationbecause 4 2 ofdilutionwithair(primarilynitrogen).However,meanmethaneproductionvaluesfromaer- ateddigesters(0.43±0.01m3CH d-1)werenotsignificantlydifferent(p=0.277)thanvalues 4 fromdigestersoperatedwithoutaeration(0.45±0.02m3CH d-1).Therewasnoapparent 4 trendwithregardtotheeffectofaerationonCH productionuptolevelsyieldingbiogasoxy- 4 genconcentrationsupto1%(Fig2,panelB).Withrespecttotheeffectofbiogasoxygencon- centrationsabove1%,theresultsarelessclearbecauseofrelativelyfew(andvariable)results undertheseconditions.TherewerenodifferencesinthepHoralkalinityvaluesofeffluents fromdigestersreceivingaerationcomparedthosenotreceivingaeration(resultsnotshown). Wedidnotmeasuresulfurconcentrationsindigestereffluentsbecauseweexpectedthatmuch oftheelementalsulfurprecipitatewouldberetainedwithsolidsintheseunmixeddigesters [9].Therearefewresultsfromotherstudieswithwhichtocompareourresultsbecausemost studieshaveusedsingledigestersoperatedunderdifferentconditionsthroughtimerather thanreplicatedigestersoperatedsimultaneously.However,effectsofmicro-aerationonCH 4 productionhavebeenconsideredtobeminimalorslightlypositive[3,6]. Useofpilot-scaledesulfurizationunitstodeterminetheeffectofwetted surfaceareaonH Soxidationratesduringmicro-aeration 2 AlthoughH SlevelsintheFSdigesters(withrelativelylongbiogasretentiontimesof14to26 2 hours)weresignificantlyreducedbyaeration,wesoughttodeterminetheeffectivenessof PLOSONE|https://doi.org/10.1371/journal.pone.0185738 October4,2017 5/12 Effectofliquidsurfaceareaonmicro-aeration Fig2.Hydrogensulfideconcentrationandmethaneproductionasafunctionofresidualoxygen concentrationsinmicro-aeratedFSdigesters.A,InfluenceofaerationonH Sconcentrationsinbiogas. 2 Valuesaremeansof2to12dailymeasurementsfromduplicateaeratedfieldscaledigestersoperatedfor18 weeks.Duringthisperiod,H Sconcentrationsfromduplicatenon-aerateddigestersrangedfrom3000to 2 4000ppmvwithameanvalueof3570ppmv.Verticalbarsshowstandarderrorvalues(threeerrorbarsare clippedattheaxislimit).B,EffectofaerationonCH production.Valuesarecalculatedfromweeklymeans 4 fromduplicateaeratedfielddigestersoperatedwithandwithoutaeration.Verticalbarsshowstandarderror values. https://doi.org/10.1371/journal.pone.0185738.g002 aerationunderarangeofbiogasflowratesandmuchlowerretentiontimes.Inaddition,since themajorityofH Soxidationwithindigestersislikelyduetomicrobialbiofilmslocatedonthe 2 digestatesurface,wealsosoughttodeterminetheeffectofvaryingtheavailableliquidorwet- tedsurfaceareaonsulfuroxidationratesduringheadspaceaeration.Fortheseexperiments, wemademinormodificationstoa10LdesulfurizationunitdescribedbyRamosandcowork- ers[7].Inthefirstsetofexperiments,wedeterminedH SoxidationratesasafunctionofH S 2 2 loadingrateusingpolypropylenebarrelswithtwodifferentliquidsurfaceareas.Pairsof65L barrelscontainingdigestatewereoperatedvertically(0.099m2liquidsurfacearea)orhorizon- tally(0.150m2liquidsurfacearea)andsubjectedtomicro-aerationunderdifferentflowrates ofbiogasfromtheBARCdigester. PLOSONE|https://doi.org/10.1371/journal.pone.0185738 October4,2017 6/12 Effectofliquidsurfaceareaonmicro-aeration Resultsshowthatthehorizontaltanks(containing50%moreliquidsurfaceareacompared totheverticaltanks)oxidizedH Satmaximumratesthatwereapproximately3-foldhigher 2 thantheverticalbarrels(Fig3,Table1).Whennormalizedforsurfacearea,maximumH S 2 oxidationratesfromhorizontalunitsareapproximately2-foldhigherthanthosefromthever- ticalunits(Table1).Sincethebarrelswereotherwiseidentical,webelievethatthelikelyexpla- nationforthedifferentratesisthatincreasedliquid/gassurfacearealeadstomoresurface biofilmcontainingH SoxidizingbacteriaandhigherratesofH Soxidation.Therearefew 2 2 resultsfromotherstudieswithwhichtocompareourresultsbecausemoststudieshavenot beendesignedtodeterminemaximumH Soxidationratesandfewprovideinformation 2 neededtodeterminedigesterliquidsurfacearea.ThedesulfurizationunitdescribedbyRamos andcoworkersreducedtheeffluentbiogasH Scontentfromapproximately3000ppmvto 2 between100and200ppmv[7].Undertheirconditions,thecalculatedH Soxidationratewas 2 25gSd-1m-2.Thisvalueiswithintherangeofvaluesdeterminedinourstudy(Table1). Nghiemandcoworkersconductedastudyinwhichmicro-aerationwascontrolledbyoxida- tionreductionvaluesinthedigestate[13].Undertheirconditions,effluentbiogasH Sconcen- 2 trationsdecreasedfromapproximately6000ppmvto30ppmvandthecalculatedH S 2 oxidationratewas2.6gSd-1m-2(Table1).Thisvalueislowerthanvaluesdeterminedinthis studybutislikelyanunderestimateofthemaximumratebecausetheirstudywasnotdesigned forthispurpose. Inthesecondsetofexperiments,wedeterminedtheeffectofincreasingthewettedareafor biofilmgrowthontheH Soxidationrate.Intheseexperiments,wedeterminedH Soxidation 2 2 ratesusing104Lbarrelscontainingdigestate(Fig4,panelA).Averticalpieceofcottonterry- clothfabric(29X29cm)wassuspendedverticallyintoandabovethedigestatesurfaceineach ofapairofbarrels(Fig4,panelC).Thefabricwassaturatedwithdigestateatthebeginningof theexperiment.Asecondpairofbarrelswasoperatedwithoutfabric(Fig4,panelB).Barrels weresubjectedtodifferentflowratesofbiogasandaeratedat5%v/vofbiogasflowas describedabovefor30days. Resultsshowthattheunitscontainingfabric(withapproximately50%morewettedsurface areacomparedtotheunitswithoutfabric)oxidizedH Satmaximumratesthatwereapproxi- 2 mately50%higherthanunitswithoutfabric(Fig5,Table1).Whennormalizedforwettedsur- facearea,maximumH Soxidationratesfromunitswithandwithoutfabricwerenearly 2 identical(Table1).Useoftallerpiecesofsaturatedfabric(29cmwidex59cmhigh)insubse- quentexperimentsdidnotresultinincreasedratesofH Soxidation(resultsnotshown).Itis 2 possiblethatadditionofwettedfabricabove29cmdidnotleadtoincreasedoxidationrates becausefabricabovethisheightdidnotmaintainadequatemoisturelevels.Indeed,we observedthatthefabricremainedvisiblywetonlyabout12cmabovethedigestatesurface. Althoughthemaximumoxidationratesmeasuredintheseexperimentsareusefulindeter- mininglimitingfactorsinthemicro-aerationprocess,digesteroperatorsarefocusedonthe maximumH SloadingratesthatachievespecificH Stargetconcentrations.Ourresultssug- 2 2 gestthatbiogasH Sconcentrationswerereducedfromapproximately3500ppmvtolessthan 2 500ppmvatH Sloadingratescorrespondingtoapproximately25to40%ofthemaximum 2 oxidationrates(Table1).BiogasH Sconcentrationswerereducedtobelow100ppmvatH S 2 2 loadingratescorrespondingto8to18%ofthemaximumoxidationrates. Althoughdigestatesfromdesulfurizationunitsturnedyellowandcontainedvisibleflocsof sulfur-containingsolids,wedidnotcharacterizesulfurrecoveryintheseunits.Alkalinityand pHvalueswerelowerindigestatesfromunitsreceivingaerationcomparedtothosenotreceiv- ingaeration.However,wedidnotcollectsamplesneededfordeterminingarelationship betweenpH,alkalinity,andoxidizedsulfur(sampleswerecollectedonlyatthebeginningand endofexperiments).Ramosandcoworkerscollectedsulfur-containingsolidsintheirstudyof PLOSONE|https://doi.org/10.1371/journal.pone.0185738 October4,2017 7/12 Effectofliquidsurfaceareaonmicro-aeration Fig3.HydrogensulfideoxidationratesasafunctionofH Sloadingrateinverticalandhorizontal65 2 Lbarrels.Valuesaremeansofdailymeasurementsfromduplicateaeratedbarrels.Redcircles,horizontal barrels.Bluetriangles,verticalbarrels.Verticalbarsshowstandarderrorvalues.Dottedlinesshowestimated maximumremovalratescorrespondingtovaluesshowninTable1. https://doi.org/10.1371/journal.pone.0185738.g003 Table1. ComparisonofH Soxidationratesusingpilot-scaledesulfurizationunits. 2 65Lvertical 65Lhorizontal 104Lbarrelno 104Lbarrelwith 10Ldesulfur- 50Ldigester barrel barrel fabric fabric izationunit[7]1 [13]2 Headspacevolume(L) 59 59 74 74 9 20 Liquid/wettedsurfacearea(m2) 0.099 0.150 0.146 0.224 0.049 0.126 BiogasH S(ppmv) 3500 3500 3500 3500 3000 6000 2 BiogasH S(gm-3) 4.88 4.88 4.88 4.88 4.18 8.38 2 BiogasflowrateatmaximumH S 1.5 1.5 2.0 2.5 0.15 0.027 2 oxidationrate2(LPM) Biogasretentiontime(min) 39 39 37 30 60 740 MaximumH Soxidationrate3(gSd-1) 4.3±0.3 12.4±1.3 15.3±0.5 22.4±0.3 n.d.4 n.d.4 2 MaximumH Soxidationrate3(gSd-1m-2) 43±3a 83±7b 104±5c 101±2bc n.d.4 n.d.4 2 MaximumH Sinputrateforeffluent n.d. 24(29%)5 27(26%) 44(43%) 25 n.d.4 2 content<500ppmvH S(gSd-1m-2) 2 MaximumH Sinputrateforeffluent n.d. 6.6(8%)4 9.3(9%) 18(18%) n.d. 2.6 2 content<100ppmvH S(gSd-1m-2) 2 1Experimentsuseda10L(25cmdiameter)plasticcontainerandachievedeffluentbiogasH Svaluesof100to200ppmv.MaximumH Soxidationrates 2 2 werenotdetermined. 2Experimentsuseda50L(40cmdiameter)digesterandachievedeffluentbiogasH Svaluesof30ppmv.MaximumH Soxidationrateswerenot 2 2 determined. 3Valuesaremeans±SEof6or7dailymeasurementsfromduplicatebarrels.Treatmentmeanswithdifferentlettersarestatisticallysignificantatthe0.05 significancelevel. 4n.d.:notdetermined. 5ValuesinparenthesesindicatetheoreticalH Sinputratewitheffluentcontent<500ppmvor<100ppmvH Sasapercentageofthemaximumoxidation 2 2 rate. https://doi.org/10.1371/journal.pone.0185738.t001 PLOSONE|https://doi.org/10.1371/journal.pone.0185738 October4,2017 8/12 Effectofliquidsurfaceareaonmicro-aeration Fig4.Imagesof104Lmicro-aerationunits.A,Viewofinsulatedbarrels.B,Viewofsulfurdepositionon digestatesurfaceinbarrelreceivingaeration.C,Viewofsaturatedfabric(29x29cm)inbarrelsreceiving aeration. https://doi.org/10.1371/journal.pone.0185738.g004 PLOSONE|https://doi.org/10.1371/journal.pone.0185738 October4,2017 9/12 Effectofliquidsurfaceareaonmicro-aeration Fig5.Hydrogensulfideoxidationratesasafunctionofloadingratein104Lbarrelswithandwithout verticalstripsofcottonfabric.Bluetriangles,barrelswithoutfabric.Redcircles,barrelswithsaturated cottonfabricinheadspaceabovedigestate.Valuesaremeansofdailymeasurementsfromduplicateaerated barrels.Verticalbarsshowstandarderrorvalues.Dottedlinesshowestimatedmaximumremovalrates correspondingtovaluesshowninTable1. https://doi.org/10.1371/journal.pone.0185738.g005 adesulfurizationunitandestimatedthattherecoveredsolidscontained60%ofinputH S-S 2 (assumingthatallH S-SwasconvertedtoS0)[7]. 2 OurresultssuggestthatmaximumH Soxidationratesduringheadspaceaerationarelim- 2 ited,inpart,bythewettedareaavailableforbiofilmgrowthand/oractivity.Verticalsaturated fabricabovethedigestatesurfaceprovidesasuitablehabitatforthebiofilmactivity.Although itmaybepossibletomaximizeoxidationefficiencyfurtherbyreducingfabricheightbelow29 cm,resultsfromexperimentsusingshorterlengthsoffabricwereinconclusive(notshown).It islikelythatH Soxidationratescouldbeincreasedbyadditionofmultiplestripsofadurable 2 absorbentmaterialpositionedverticallyinthedigesterheadspace(orinanexternaldesulfuri- zationunit). Althoughtheefficiencyofmicro-aerationisinfluencedbyotherfactors(suchasH Scon- 2 centration,biogasretentiontime,digestatetemperature,andadequatemixingofoxygenatthe digestatesurface),thesulfuroxidationvaluesbasedonliquidsurfaceareamaybeusefulfor estimatingH Soxidizationcapacitiesofdigestersanddesulfurizationunits.Using10gSm-2 2 d-1fortheH Soxidationrateneededtoachievebiogaseffluentcontaining<100ppmvH S, 2 2 thefield-scalehorizontalplug-flowdigesters(withasurfaceareaofapproximately3.3m2) couldbeoperatedtoproduceupto33gH Sd-1.Thisratecorrespondstoadailybiogaspro- 2 ductionvalueofabout6m3d-1(assumingacontentof3500ppmvH S(5gSm-3))thatis 2 3-foldhigherthanourtypicalproductionratesof1–2m3d-1[9].Thesulfuroxidationvalues canalsobeusedtoestimatethesizeofanexternaldesulfurizationunitneededtotreatdigester biogas.Forthefarm-scaleBARCdigester,theestimatedH S-Soutputisapproximately325g 2 Sd-1(assuming65m3d-1biogascontaining3500ppmvH S).Usingvaluesof25or10gSm-2 2 d-1,externaldesulfurizationunitsofapproximately13m2or33m2wouldberequiredto achievebiogasH Sconcentrationsbelow500ppmvorbelow100ppmv,respectively. 2 PLOSONE|https://doi.org/10.1371/journal.pone.0185738 October4,2017 10/12

Description:
cultural Research Center (BARC) (Beltsville, Maryland, USA). arated liquid manure (containing roughly 3% TS) is pumped over the course of digesters chosen for headspace aeration, air was pulsed 20 times per day into . Results show that the horizontal tanks (containing 50% more liquid surface
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.