nutrients Article Effect of Human Milk Appetite Hormones, Macronutrients, and Infant Characteristics on Gastric Emptying and Breastfeeding Patterns of Term Fully Breastfed Infants ZoyaGridneva1,*,SambaviKugananthan1,2,AnnaR.Hepworth1,WanJ.Tie1,ChingT.Lai1, LeighC.Ward3,PeterE.Hartmann1andDonnaT.Geddes1 1 SchoolofChemistryandBiochemistry,TheUniversityofWesternAustralia,Crawley,Perth, WesternAustralia6009,Australia;[email protected](S.K.); [email protected](A.R.H.);[email protected](W.J.T.);[email protected](C.T.L.); [email protected](P.E.H.);[email protected](D.T.G.) 2 SchoolofAnatomy,PhysiologyandHumanBiology,TheUniversityofWesternAustralia,Crawley,Perth, WesternAustralia6009,Australia 3 SchoolofChemistryandMolecularBiosciences,TheUniversityofQueensland,St.Lucia,Brisbane, Queensland4072,Australia;[email protected] * Correspondence:[email protected];Tel.:+61-8-6488-4428 Received:29September2016;Accepted:22December2016;Published:28December2016 Abstract: Humanmilk(HM)componentsinfluenceinfantfeedingpatternsandnutrientintake,yet it is unclear how they influence gastric emptying (GE), a key component of appetite regulation. This study analyzed GE of a single breastfeed, HM appetite hormones/macronutrients and demographics/anthropometrics/bodycompositionoftermfullybreastfedinfants(n=41,2and/or 5mo). Stomachvolumes(SV)werecalculatedfrompre-/post-feedultrasoundscans,thenrepeatedly untilthenextfeed. Feedvolume(FV)wasmeasuredbythetest-weighmethod. HMsampleswere analyzedforadiponectin,leptin,fat,lactose,totalcarbohydrate,lysozyme,andtotal/whey/casein protein.Linearregression/mixedeffectmodelswereusedtodetermineassociationsbetweenGE/feed variablesandHMcomponents/infantanthropometrics/adiposity. HigherFVswereassociatedwith faster(−0.07[−0.10, −0.03], p<0.001)GErate, higherpost-feedSVs(0.82[0.53, 1.12], p<0.001), andlongerGEtimes(0.24[0.03,0.46],p=0.033). Higherwheyproteinconcentrationwasassociated withhigherpost-feedSVs(4.99[0.84,9.13],p=0.023). LongerGEtimewasassociatedwithhigher adiponectinconcentration(2.29[0.92,3.66],p=0.002)anddose(0.02[0.01,0.03],p=0.005),andlower casein:wheyratio(−65.89[−107.13,−2.66],p=0.003). FVandHMcompositioninfluenceGEand breastfeedingpatternsintermbreastfedinfants. Keywords: human milk; term breastfed infants; gastric emptying; feeding frequency; ultrasound; stomachvolumes;appetitehormones;macronutrients;feedvolume;anthropometrics;bodycomposition 1. Introduction Breastfeedinganditslongerdurationareassociatedwithreducedrisksofdevelopingobesity and other chronic non-communicable diseases later in life [1,2]. This unique protection could be the result of many mechanisms associated with both nutritive and non-nutritive components of human milk (HM) [3] as well as breastfeeding patterns and behaviour [4,5]. It has been shown that HM has the pleiotropic role, providing immune and anti-inflammatory protection [6,7] and endocrine, developmental, neural, and psychological benefits [2]. Non-nutritive HM components suchashormones,growthfactors,neuropeptides,andanti-inflammatoryandimmune-modulating Nutrients2017,9,15;doi:10.3390/nu9010015 www.mdpi.com/journal/nutrients Nutrients2017,9,15 2of21 agentsinfluencethegrowth,development,andfunctionofthegastrointestinal(GI)tractduringearly infancy [8], while some micronutrients act as nutritional antioxidants, improving GI functions [9]; however, there is much to be learned about the spectrum of HM programming agents, how their patternschangethroughoutlactationperiod,andtheirshort-termeffectonthegastricemptying(GE) rateofthebreastfedinfants. GEisaprocessbywhichingestedfoodismechanicallyandchemicallypartiallybrokendownand deliveredtotheduodenumatacontrolledrateforfurtherdigestionandabsorption[10,11]. Whilewell studiedinthepretermpopulation[12–14],inhealthytermfullybreastfedinfantstheGErateandits relationshipwithbreastfeedingpatternsarenotfullyunderstood. GE rate and patterns are known to depend on the nature and macronutrient composition of theingestedmeal. HMorformulaintheinfantstomachseparatesintotwophases,aliquidphase consistingofwater,wheyproteins,lactose,etc.,andasemi-solidphaseconsistingofcurdformedby caseinandlipids. Thesemi-solidphasetypicallyemptiesmoreslowlythantheliquidphase. Different proportionsofthesephasesinpartexplainthedifferencebetweenGEpatternsofformula-fedand breastfedinfants—linearandcurvilinear,respectively[12,15]. HMhasauniquecomposition,includingnutrients,growthfactors,immunefactors,andhormones. Despite numerous investigations into the different effects of HM and formula, few components, includingmajormacronutrients,havebeenstudiedinconnectionwiththeGEofbreastedterminfants. FattyacidsprofilesarenotassociatedwithGErateinpreterminfants[16],whileinterminfants morerapidGEhasbeenattributedtothefatandproteincomponentsoffeedswithsimilarlactose concentrationandosmolality[17]. BothosmolalityandcarbohydratecontentareknowntoinfluencetherateofGEinadults[18], butininfantsresultsaredependentonthetypeofcarbohydrate[19,20]. ProteinsfromdifferentHMfractionssuchaswheyandcaseinareresistanttoproteolysisinthe infantstomach[21]andtheproteincontentofafoodhasalsobeenshowntoinfluenceappetiteand itsregulation[22]. InfantformulagenerallyemptiesmoreslowlythanHMinterminfants;further, formulaswithdifferentcasein:wheyproteinratioexhibitdifferentGErates,withcasein-predominant formulasemptyingslowerthanwhey-predominantformulas[23]. Thusthecasein:wheyratioofHM couldplayanimportantroleincontrollingGEinthebreastfedinfant. HMlysozyme,alsopresentinwheyinarelativelyhighconcentration,catalyzesthehydrolysis ofspecificbondsinGram-negativebacteriacellwallsandplaysmultiplerolesindigestivestrategy, suchascontrollingthemicrobiomeinthestomachandspeedingupthedigestionofmicrobialprotein, whichmayaffectgastricmotilityandGErate[24,25]. Thesatietyhormoneleptinandtheappetite-stimulatinghormoneadiponectinarealsopresent inHM.Althoughnottransferredtotheinfantcirculationindirectmanner,levelsofHMleptinand adiponectinfromHMhavebeenfoundtocorrelatewithlevelsofthesehormonesininfantserum[26,27] andareknowntoaffectbothappetitecontrolandinfantbodycomposition(BC)[28,29],butareyettobe investigatedinrelationtoGEintheterminfant. Inanimalmodels(rat,mouse),injectionofleptininto thefourthventriclehasbeenshowntodelayGE[30]andoraladministrationreducedfoodintake[31]. Leptin in HM is by far the most studied appetite hormone, but predominantly in skim milk [32]. LeptinmeasuredinskimHMwasnotassociatedwithtimebetweenfeeds[33,34]orGE[34]interm breastfedinfants,emphasizingtheneedforstudiesincludingwholemilkleptin,wherethelevelsof leptinareshowntobehigher[32]. Adiponectinhasthehighestconcentrationofanyappetitehormone inHM.Itispresentinabiologicallyactiveformthatisresistanttodigestion[35]. Intheanimalmodel adiponectininhibitstension-sensitivegastricvagalafferentmechanosensitivity,modulatingsatiety signalsinbothleanandobeseanimals,whilesimultaneouslyincreasingthemechanosensitivityof mucosalgastricvagalafferentintheobesity-inducedmodel[36]. Inhumans,elevatedserumlevels ofadiponectinareassociatedwithmorerapidGEindiabeticpatients[37]. Itisnotknownwhether adiponectinlevelsimpactGEintheinfantandthiswarrantsfurtherinvestigation. Nutrients2017,9,15 3of21 Thevolumeofmilktakenatasinglefeedvariesgreatlybothwithinandbetweeninfants[38]. ThismaybeaffectedbyHMcomposition,withgreaterbreastfeedingfrequencyassociatedwithlower total 24-h protein intakes and higher lactose concentrations [39]. This suggests that the variations in HM components between mothers may potentially influence GE rate and time, and therefore feedingpatterns. This study investigated the effects of HM appetite hormones (whole milk adiponectin and leptin,skimmilkleptin)andmacronutrients(fat,totalcarbohydrates,lactose,oligosaccharides,total protein, caseinandwheyprotein,lysozyme)onfeedingfrequencyandGE.Furtherexplorationof infantdemographics,anthropometrics,andBCwascarriedouttodeterminerelationshipswithinfant feedingandGE. 2. MaterialsandMethods 2.1. Participants Lactatingmothersandtheirinfants(n=27)wererecruitedpredominantlythroughtheAustralian BreastfeedingAssociation. Inclusioncriteriawere: healthysingletons,gestationalage≥37weeks, fullybreastfedondemandatthepointofmeasurement. Exclusioncriteriawere: infanthealthissues requiringmedicationthatcouldpotentiallyinfluenceGErate(e.g.,reflux),indicationsoflowmaternal milkproductionorinfantgrowthissues. Allmothersprovidedwritteninformedconsenttoparticipate inthestudy,whichwasapprovedbytheUniversityofWesternAustralia,HumanResearchEthics Committee (RA/1/4253) and registered with the Australian New Zealand Clinical Trials Registry (ACTRN12616000368437). 2.2. StudyDesign ParticipantsarrivedatourlaboratoryatKingEdwardMemorialHospitalforWomen(Subiaco, Perth,WA,Australia)inthemorning(09:30–11:30a.m.) toavoidcircadianinfluenceontheoutcomes, andstayedfortwoconsecutivebreastfeedingsessions. Beforethefirstfeed(F1)infantswereweighed andhadultrasoundstomachvolumesrecorded(pre-feedresidual,R1). Mothersexpressedapre-feed sample(fore-milk)ofmilkfromthefeedingbreast/breastsandthenbreastfedtheirinfantsasusual. ImmediatelyafterF1,infantstomachvolumesimagesandinfantweightsweretaken,andmothers expressedapost-feed(hind-milk)milksample. Subsequentscansofthestomachwerescheduledat 15–20minintervals(althoughattendinginfants’needscausedsomevariation)untiltheinfantcued forthenextfeed(F2),whenafinalstomachvolumeimmediatelybeforeF2wasmeasured(pre-feed residual,R2). To assess infant BC bioimpedance spectroscopy measurements were taken pre-feed, unless impractical—thentheyweretakenpost-feed[40]. Ultrasoundskinfold,length,andheadcircumference measurements were taken post-feed. This combination of two methods for measuring infant BC wasusedtoensuresafe,non-invasiveandaccurateassessmentandtoavoidtheinherentlimitations ofasingulartechnique[41]. Clothingwasremovedforthemeasurementsexceptforadrydiaper andasinglet. 2.3. FeedingFrequency Motherswereaskedhowfrequentlytheirinfantfeeds,andtheself-reportedtypicaltimebetween thefeeds(e.g.,everythreehours)duringtheweekpriortothestudysessionwastakenasaproxy measureoffeedingfrequency. 2.4. FeedVolumeMeasurement Thevolumeofmilktransferredfromabreast/breastsbytheinfantwasdeterminedbyweighing theinfantimmediatelybeforeandafterthebreastfeedusingelectronicscales(±2.0g,MedelaElectronic BabyWeighScales,MedelaInc.,McHenry,IL,USA).Milkintake(g)wascalculatedbydeductingthe Nutrients2017,9,15 4of21 Nutrients 2017, 9, 015 4 of 21 initialweightfromthefinalweightoftheinfant[42]andwasconvertedtomL(feedvolume;FV)using HMdeddeuncstiitnygo tfh1e .0in3itgia/lm wLei[g4h3t] .from the final weight of the infant [42] and was converted to mL (feed volume; FV) using HM density of 1.03 g/mL [43]. 2.5. StomachMeasurementswithUltrasound 2.5. Stomach Measurements with Ultrasound Theinfant’sstomachwasscannedusingtheAplioXG(Toshiba,Tokyo,Japan)machine,witha The infant’s stomach was scanned using the Aplio XG (Toshiba, Tokyo, Japan) machine, with a high-resolutionPVT-674BT(6MHz)transducerandParkerultrasonicgel(Fairfield,NJ,USA).Threeto high‐resolution PVT‐674BT (6MHz) transducer and Parker ultrasonic gel (Fairfield, NJ, USA). Three nine(median[IQR]:5[5; 6])serialmeasurementsofinfantstomachsweretaken3to62minapart to nine (median [IQR]: 5 [5; 6]) serial measurements of infant stomachs were taken 3 to 62 min apart (16±10). Scanswereperformedwiththeinfantinthesemi-supinepositionaccordingtothemethod (16 ± 10). Scans were performed with the infant in the semi‐supine position according to the method validatedinpreterminfants[44]. Briefly,thesagittalandtransverseplanesofthestomachwereused validated in preterm infants [44]. Briefly, the sagittal and transverse planes of the stomach were used tomeasurethelongitudinal(L),anterior-posterior(AP)andtransverse(T)diametersdirectlyfrom to measure the longitudinal (L), anterior‐posterior (AP) and transverse (T) diameters directly from imagesontheultrasoundscreenusingelectroniccalipers(Figure1). Oneexperiencedsonographer images on the ultrasound screen using electronic calipers (Figure 1). One experienced sonographer withgoodintra-andinterraterreliability[44]performedallofthemeasurements. Gastricvolume(mL) with good intra‐ and interrater reliability [44] performed all of the measurements. Gastric volume was(mcaLl)c wulaast ecdalcfruolamtetdh feroambo tvhee mabeoavseu rmedeadsuiarmede dteiarsmuesteinrsg ufsoilnlogw foilnlogweiqnuga etiqounatfioorna fnore allnip eslloipidsaolidbaold y: body: Stomachvolume(mL)=L(mm)×AP(mm)×T(mm)×0.52. (1) Stomach volume (mL) = L (mm) × AP (mm) × T (mm) × 0.52. (1) Figure 1. Measurements of infant’s stomach with ultrasound. Ultrasound images of infant’s stomach: Figure 1. Measurements of infant’s stomach with ultrasound. Ultrasound images of infant’s (a) transverse view with anterior‐posterior (AP) and transverse (T) diameter measurements; (b) stomach:(a)transverseviewwithanterior-posterior(AP)andtransverse(T)diametermeasurements; longitudinal view with longitudinal (L) diameter (maximum length) measurement. Stomach volume (b)longitudinalviewwithlongitudinal(L)diameter(maximumlength)measurement.Stomachvolume (mL) = longitudinal diameter (mm) × anterior‐posterior diameter (mm) × transverse diameter (mm) × (mL)=longitudinaldiameter(mm)×anterior-posteriordiameter(mm)×transversediameter(mm)×0.52. 0.52. 2.6.2.M6. iMlkiSlka mSapmlepCle oClloelcleticotinon MoMthoetrhsehrsa nhda-nedx‐perxepsrseesdseodr pour mpupmedpsemd aslml(a1l–l 2(1m–L2 )mprLe)- panred‐ paonsdt- fpeoesdt‐mfeieldk smamilkp lseasminptloess eipnator ate 5-mseLppaoraltyep r5o‐mpyLl epnoelypplarostpiyclveniael sp(lDasitsipc ovsaiablsle (PDriosdpouscatbs,leA Pdreoladiudcets,,S AA,dAeluaisdtrea, lSiaA)., FAautsctoranlciae)n. trFaatti on wascomnceeansturraetidon(b welaosw m)aenasdusreadm p(bleelsowwe) raenfdro szaemnpaltes− w20er◦eC frfoozrefnu ratht e−r20b i°oCch feomr ifcuarlthaenra blyiosicsh.emical analysis. 2.7. BiochemicalAnalysis 2.7. Biochemical Analysis 2.7.1. FatContent 2.7.1. Fat Content Percentagefatwasmeasuredinpre-andpost-feedsamplesimmediatelyaftersamplecollection withthePcerrecaemntaatgoec fraitt mwaesth moeda[s4u5r]edu siinn pgrteh‐e aCndre paomsta‐tfoeecrdi tsaPmlupsldese vimicmee(Mdieadteellya aIfntecr., sMamcHpleen croyl,lIeLct,iUonS A). Fatwcoitnhc tehnet rcarteiaomnaotfotchreit pmree-thaondd [p4o5]s tu-fseinedg mthiel kCsraemampaletosc(rgit/ PLl)uws adsevcaiclec u(lMateeddelfaro Imnc.t,h MeccrHeeanmryc,o InLt,e nt oftUheSAm).i lFkast acmonpcleenst,rbaatisoend oof nthteh pereeq‐ uaantdio pno[s4t‐6f]e:ed milk samples (g/L) was calculated from the cream content of the milk samples, based on the equation [46]: Fat(g/L)=3.56+(5.917×creampercentage). (2) Fat (g/L) = 3.56 + (5.917 × cream percentage). (2) Fat concentration in the volume consumed by the infant was further calculated [47]: Nutrients2017,9,15 5of21 Fatconcentrationinthevolumeconsumedbytheinfantwasfurthercalculated[47]: Fat(g/L)=0.53×Fat +0.47×Fat . (3) pre-feed post-feed 2.7.2. SamplePreparation Prior to further analysis, all samples were thawed for two hours at room temperature (RT) and aliquoted into 1.5-mL tubes (Sarstedt, Numbrecht, Germany). Components’ concentrations were determined in both pre- and post-feed samples in case of adiponectin, skim and whole milk leptin, fat, and lactose, and in pooled samples in case of total protein, casein, whey protein, total carbohydrates,andlysozyme. Concentrationsofpre-andpost-feedsampleswereaveragedtoarrive attheconcentrationusedforstatisticalanalyses. Wholemilkwasusedformeasuringwholemilk adiponectin and leptin concentration. Milk samples were defatted (by centrifugation at RT in a BeckmanMicrofuge11(AberdonEnterpriseInc.,ElkGroveVillage,IL,USA)at10,000×gfor10min andremovingthefatlayerbyclippingitoffwiththetopofthetube[48])foranalysisofskimmilk leptin,totalprotein,lysozyme,lactose,andtotalcarbohydratesconcentrations. Thestandardassays wereadaptedforandcarriedoutusingaJANUSworkstation(PerkinElmer,Inc.,Waltham,MA,USA) andmeasuredonEnSpire(PerkinElmer,Inc.,Waltham,MA,USA). 2.7.3. Leptin Leptin concentration in HM was measured using the R & D Systems Human Leptin enzyme linkedimmunosorbentassay(ELISA)DuoSetkit(Minneapolis,MN,USA)optimizedtomeasureleptin insonicatedskimHM,aspreviouslydescribedbyCannonetal.[33]andfurthermodifiedtomeasure leptininskimandwholeHMmilkasdescribedbyKugananthanetal.[32]. Recoveryofleptinwas 97.7%±9.7%(n=10)withadetectionlimitof0.05ng/mLandaninter-assayCVof<7.2%. 2.7.4. Adiponectin AdiponectinconcentrationinwholemilkwasmeasuredusingtheBiovendorHumanAdiponectin SandwichELISAkit(LifeTechnologies,Asheville,NC,USA).Adiponectinrecoverywas96.2%±3.2% (n=10)withadetectionlimitof1ng/mLandaninter-assayCVof<2.5%. 2.7.5. Protein Casein and whey proteins were separated by the method fully described by Kunz and Lonnerdal[49], andKhanetal.[50]. Proteinconcentrations(totalproteinofskimHM,caseinand wheyproteins)weremeasuredusingtheBradfordProteinAssayadaptedfromMitoulasetal.[51]. Recoveryofproteinwas100.6%±5.2%(n=5)withadetectionlimitof0.031g/Landaninter-assay CVof7.8%(n=18). Casein:wheyratiowascalculatedasfollows: Casein:wheyratio=caseinconcentration/wheyproteinconcentration. (4) 2.7.6. Lysozyme Lysozymeconcentrationwasdeterminedusingamodifiedturbidimetricassay[52]. Henegg whitelysozyme(EC3.2.1.17,Sigma,St. Louis,MA,USA)standards(range0.00075–0.0125g/L)and skimmilksampleswerediluted10-foldwith0.1MofNa HPO /1.1mMofcitricacid(pH5.8)buffer. 2 4 Twenty-five microliters of standards or diluted skim milk samples were placed into the wells of aplate(GreinerBio-One,Frickenhausen,Germany),175µLofMicrococcuslysodeiltikussuspension (0.075% w/v, ATCC No. 4698, Sigma, St. Louis, MA, USA) was added into each well and plate wasincubatedatRTfor1h. Theabsorbancewasmeasuredat450nm. Recoveryoflysozymewas 97.0%±5.0%(n=8)withadetectionlimitof0.007g/Landaninter-assayCVof13.0%(n=8). Nutrients2017,9,15 6of21 2.7.7. Carbohydrates Defattedmilkwasdeproteinizedwithtrichloroaceticacid[53]beforedehydrationbysulphuric acid[54]. Thistechniquereliablyestimatesconcentrationsandcarboncontentformonosaccharides, disaccharides,andpolysaccharides. TotalcarbohydrateswereanalyzedbyUV-spectrophotometry. Recoveryoftotalcarbohydrateswas101.4%±2.1%(n=7)withadetectionlimitof0.007g/Landan inter-assayCVof3.3%(n=7). LactoseconcentrationwasmeasuredusingtheenzymaticspectrophotometricmethodofKuhn and Lowenstein [55], adapted from Mitoulas et al. [51], with recovery of 98.2% ± 4.1% (n = 10), detectionlimitof30mMandinter-assayCVof3.5%. The human milk oligosaccharides (HMO) concentration (g) was calculated by deducting concentrationoflactose(g)fromconcentrationoftotalcarbohydrates(g). Theglucoseandgalactose werenotmeasuredoraccountedforastheirconcentrationsinHMaresmallandcomparableorless thantheassayserrors[56]. 2.8. HormoneandMacronutrientDose Doses were defined as the amount of hormone/macronutrient ingested during a breastfeed and calculated as average of the pre- and post-feed HM component concentration, multiplied by the corresponding FV. When an infant fed from both breasts at the breastfeeding session, hormone/macronutrient doses from these individual breastfeeds were calculated separately and addedtogether. 2.9. Infants’AnthropometricsandBodyComposition 2.9.1. AnthropometricMeasurements Infants’weightwasdeterminedbyweighingbeforebreastfeedingusingMedelaElectronicBaby WeighScales(±2.0g;MedelaInc.,McHenry,IL,USA).Clothingwasremovedexceptforadrydiaper andasinglet. Infantcrown-heellengthwasmeasuredoncetothenearest0.1cmusingnon-stretchtape andheadpieceandfootpiece,bothappliedperpendiculartothehardsurface.Infantheadcircumference wasmeasuredwithnon-stretchtape. InfantBMIwascalculatedaccordingtothefollowingformula: BMI=Bodyweight(kg)/(Height(m))2. (5) 2.9.2. BodyCompositionwithBioelectricalImpedanceSpectroscopy Infants’ whole body bioimpedance were measured using the Impedimed SFB7 bioelectrical impedanceanalyzer(ImpediMed,Brisbane,Queensland,Australia)applyinganadultprotocol(wrist to ankle) according to the manufacturer’s instructions and analyzed with settings customized for eachinfantaccordingtoLingwoodetal.[57]andGridnevaetal.[41]. Valuesofresistance(ohm)at frequencyof50kHz(R )weredeterminedfromthecurveofbestfit,averagedforanalysispurposes 50 andusedintheLingwoodetal. agematched(3and4.5moinfants)equationsforfat-freemass(FFM) of2and5moinfantsrespectively[57]: FFM3mo=1.458+0.498×W−0.197×S+0.067×L2/R (6) 50 FM4.5mo=2.203+0.334×W−0.361×S+0.185×L2/R , (7) 50 where L is body length (cm), R is resistance (Ω), S is sex (male = 1, female = 2) and W is infant 50 weight(kg). %FMwascalculatedasfollows: %FM=100(Weight(kg)−FFM(kg))/Weight(kg). (8) Nutrients2017,9,15 7of21 2.9.3. BodyCompositionwithUltrasoundSkinfoldMeasurements InfantultrasoundskinfoldmeasurementswerecarriedoutusingtheAplioXG(Toshiba,Tokyo, Japan)ultrasoundmachine,PLT-1204BX14-8MHztransducerandsterilewater-basedParkerultrasonic gel(Fairfield,NJ,USA).Singleultrasoundscansoffouranatomicalsites(biceps,subscapular,suprailiac, andtriceps)wereperformedontheleftsideofthebodywithminimalcompression. Skinfoldthickness (skinthicknessandtheskin–fatinterfacetofat–muscleinterfacedistance)wasmeasureddirectlyfrom imagesonthescreenusingelectroniccalipers. Oneexperiencedsonographer(DG)withgoodintra- andinterraterreliability[44]performedallofthemeasurements. The doubled ultrasound skinfold thickness was used in Brook body density (d) age-matched (3–18mo)equations[58]developedforskinfoldsmeasuredwithcalipers: ∑ Maled=1.1690−0.0788×log( SFT) (9) ∑ Femaled=1.2063−0.0999×log( SFT), (10) wheredisinfantbodydensity(kg/L)and∑SFTisasumoffourskinfolds(mm). Predictedbodydensitywasconvertedto%FMusingtheLohmanequation[59]: %FM=100×(5.28/d−4.89), (11) wheredistheinfantbodydensity(kg/L). 2.10. StatisticalAnalysis StatisticalanalysiswasperformedinR2.9.0[60]forMacOSXusingadditionalpackagesnlme[61]; lattice[62],latticeextra[63],andcar[64];MASS[65],sfsmisc[66]andmultcomp[67]formixedeffects modeling,datarepresentation,robustregression,andmultiplecomparisonsofmeans,respectively. Descriptivestatisticsarereportedasmean±standarddeviation(SD)(range)ormedian(IQR)unless otherwise stated; model parameters are presented as estimate ± standard error (SE), and, where appropriate,anapproximate95%confidenceinterval(95%CI). Measurementsmissingduetoinsufficientsamplevolume: skimmilkleptin,wholemilkleptin, adiponectin,totalprotein,wheyandcaseinprotein,lactoseandtotalcarbohydrate(n=3);lysozyme (n=5). Measurementsoffat(n=14)weremissingasaresultofeitherinsufficientsamplevolumes orabsenceofseparatefeedvolumesfrombreastswherebothbreastwereofferedduringonefeed. Alsomissingwerefeedingfrequencyasreportedbymothers(n=6),measurementsoflength,head circumference,infantBMI,%FMmeasuredwithbioelectricalspectroscopy(n=4)and%FMmeasured withultrasoundskinfolds(n=5). GEtimewasdeterminedasthetimefromthestartofF1tothestartofF2andincludedthetime betweentwofeedsandfeedduration. Feeddurationwasincludedasupto80%ofHMconsumedby termhealthybreastfedinfantsinthefirst4–5min[68]. GEduringbreastfeedingwasdefinedasthe volumeofmilktohaveleftthestomach,calculatedasthedifferencebetweentheimmediatepost-feed stomachvolumesandthesumofR1andFV. Duetothelackofterminfantgastric-emptyingstudiesfocusingonstomachvolume,nopower calculation/sample size determination could be performed for this study. A goal of 20 infants at each two and five months was selected with the expectation that this would be sufficient to show overallpatterns. Whenavailable,infantswereincludedinbothsubsetstoallowforinvestigationof longitudinalpatterns. Linearmixedeffectsmodelsallowustotreattheindividualfeedsasseparate, withouthavingtoassumeindependence,whentheremaybecorrelationsbetweenfeedswithininfants. Influences on GE rate were analyzed by first fitting a time curve to the sequential post-feed stomach volumes using linear mixed effects models; as curves differed significantly within and betweeninfants(p<0.001),randomtimecurveswerefittedtofeedswithininfants. Timeterms(linear, squareroot)wereselectedasperthefractionalpolynomialmethodof[69];thismodelalsoconsidered Nutrients2017,9,15 8of21 possibleconfoundingeffectsofFV(median-centred)andfeedduration(median-centred). Interaction termsinvolvingthetimecurveindicatedchangesintheGErate;maineffectsindicatedoveralleffects on post-feed stomach volumes but not the GE rate. The addition of one term to this base model was used to investigate associations with (a) concentrations/doses of hormones/macronutrients; (b)infantcharacteristics/anthropometrics/BC;(c)R1. WhethertheoveralleffectofHMcomponent concentrationsdiffersbyfeedvolumewasinvestigatedbyincludinginteractionsbetweenFVand concentrationmeasures. Modelsusingtheselectedtechniquedidnotconvergeforfatconcentration, lysozymeconcentration,orlysozymedose. Omittingtherandomeffectoffeedwithininfantprovided converging models, but no evidence of an association with fat or lysozyme was seen. Given the complexity of linear mixed effects models used to analyze GE rate, no further adjustments were performedandp<0.05wasconsideredtobestatisticallysignificant. Associations between pre-feed residual stomach volumes, FV, immediate post-feed stomach volumes,feedduration,feedingfrequencyandbothhormoneandmacronutrientconcentrationsand doses,andinfantanthropometrics/BCparametersweretestedusingrobustlinearregression. Mixed effectsmodelswereconsidered,butwerenotsignificantlybetter(p>0.1)Robustlinearregression (rlm) was chosen so as to address heteroscedasticity in the data and points with high leverage in themajorityofthepredictors; MM-estimation(M-estimationwithTukey’sbiweight,initializedby aspecificS-estimator)accountingforappropriatecovariateswasused[65]. Approximatep-values weredeterminedusingtheWaldtest. MultivariatemodelsaccountingforFVwereusedfortestingthe relationshipwithFV-dependentpredictor(fatdoseandconcentration). Possible age differences in HM components, infant characteristics, and GE/breastfeeding parameterswereanalyzedwitheitherlinearmixedeffectsmodelsorrobustlinearregressionmodels; modeltypewasdeterminedusinglikelihoodratiotests. Linearmixedeffectsmodelswereusedto analyzerelationshipsofGEduringfeedtimewithHMcomponentsandinfantcharacteristics. R1,FV andfeeddurationwerenotassociatedwithstomachvolumereductionduringthefeedtime,therefore univariatemodelswererun. MultivariatelinearmixedeffectsmodelsaccountingforR1,FVandfeed durationwereusedinanalysisofrelationshipsofimmediatepost-feedstomachvolumeswithHM componentsandinfantcharacteristics. Owingtothelargenumberofcomparisons,afalsediscoveryrateadjustment[70]wasperformed onassociatedsubgroupingsofresultswithoneormorep-values<0.05. p-valueswereconsidered to be significant at <0.011 for GE time, <0.031 for feeding frequency, <0.038 for R2, and <0.008 for associationsbetweenHMcomponents’concentrations. 3. Results 3.1. Participants Characteristics of the 27 participants (2 months (n = 20; longitudinal: 7 females, 7 males; cross-sectional: 2females,4males);5months(n=21;longitudinal: 7females,7males;cross-sectional: 6females);overalln=41feeds)aredescribedinTable1. Atthestudysession,infantsfedfromone (n=23)orboth(n=18)breasts. 3.2. InfluenceofInfantAge Infantanthropometricsand%FMmeasuredwithbioimpedancespectroscopysignificantlydiffered byinfantage(p<0.001),whilebreastfeedingandGEparametersdidnotchangesignificantly(p>0.067) (Table1). Lowerwheyproteinconcentration(5.51±0.96g/L5movs. 6.41±1.39g/L2mo,p=0.034) andsubsequentlyahighercasein:wheyratio(0.32±0.145movs. 0.22±0.072mo,p=0.035)were observedat5months. Allothermeasuredappetitehormonesandmacronutrientconcentrationsdid notdiffersignificantlybyinfantage(p>0.053). Nutrients2017,9,15 9of21 3.3. AnalyzedHumanMilkComponents AppetitehormonesandmacronutrientconcentrationsanddosesperfeedarepresentedinTable2. Higherskimmilkleptinconcentrationswereassociatedwithlowerwholemilkleptinconcentrations (−0.25[−0.34,−0.16],p<0.001)andhigherproteinconcentrationswereassociatedwithhigherwhey proteinconcentrations(0.68[0.41,0.95],p<0.001). HigherHMOconcentrationswereassociatedwith highertotalcarbohydratesconcentrations(p<0.001)andlowerlactoseconcentrations(p<0.001). Table1.Participantcharacteristicsexpressedasmean±SDandrange. 2moa 5mob Totalc Characteristics Mean±SD Range Mean±SD Range Mean±SD Range Infantcharacteristics Infantage(weeks) 9±1 6–10 22±1 18–23 16±7 6–23 Infantlength(cm) 57±2 53–61 65±2*** 62–69 61±4 53–69 Infantweight(kg) 5.3±0.8 4.2–6.3 7.2±1.0*** 5.8–9.5 6.3±1.3 4.2–9.5 InfantBMI 15.9±1.3 13.9–18.1 17.6±1.7*** 14.9–20.4 16.7±1.7 13.9–20.4 HC(cm) 39±1 37–42 43±2*** 40–46 41±2 37–46 FatMasswithBIS(%) 21.4±3.6 11.1–27.1 28.9±3.2*** 21.7–35.8 25.3±5.0 11.1–35.8 FatMasswithUS(%) 24.2±3.6 17.5–30.5 26.6±3.6 20.8–35.9 25.5±3.8 17.5–35.9 BF/GEcharacteristics Feedvolume(mL) 86±34 35–140 85±33 36–180 86±33 35–180 SVafterfeed1(mL) 87±36 32–141 93±41 22–189 90±38 22–189 Feedduration(min) 28±14 11–72 20±8 6–37 24±12 6–72 SVreduction(mL)d 5±21 (−42)–33 4±26 (−57)–56 4±24 (−57)–56 GEtime(min)e 94±29 44–153 88±18 50–140 91±24 44–140 Residual1(mL) 6±12 0–50 11±19 0–62 9±16 0–62 Residual2(mL) 20±20 0–81 15±15 0–55 18±18 0–81 Feedingfrequency(h)f 2.3±0.7 1.0–4.0 2.7±0.8 1.5–4.0 2.5±0.7 1.0–4.0 Dataaremean±SDandranges. a n=20; b n=21. c n=41feeds. d Stomachvolumereductionduring feedtimeiscalculatedasthedifferencebetweenthesumofresidual1andfeedvolumeandtheimmediate stomachvolumeafterFeed1. e GEtimeisthetimefromthestartofFeed1tothestartofFeed2(time betweenfeedsplusfeedduration).fFeedingfrequencyself-reportedbymothersastohowofteninfantfeeds (e.g.,everythreehours). ***Indicatessignificantdifferences(p<0.001)betweentwo-andfive-month-old infants.Abbreviations:BF—breastfeeding;BIS—bioimpedancespectroscopy;GE—gastricemptying;HC—head circumference;SV—stomachvolume;US—ultrasound. Table2.ConcentrationsanddosesofmeasuredHMhormonesandmacronutrients. Concentration DosePerFeed Components Mean±SD Range Mean±SD Range Adiponectin(ng/mL,ng) 10.02±4.08 6.18–22.58 868.62±491.32 238.60–2536.91 WMleptin(ng/mL,ng) 0.51±0.18 0.23–1.10 44.80±24.30 10.15–115.03 SMleptin(ng/mL,ng) 0.28±0.12 0.20–0.84 24.8±15.0 6.91–73.00 Totalprotein(g/L,g) 11.29±2.56 7.60–24.16 0.99±0.39 0.35–2.29 Casein(g/L,g) 1.54±0.53 0.69–3.45 0.14±0.07 0.04–0.29 Wheyprotein(g/L,g) 5.97±1.26 3.82–9.08 0.52±0.19 0.17–0.95 Casein:wheyratio 0.27±0.11 0.10–0.73 n/aa n/aa Lysozyme(g/L,g) 0.14±0.12 0.05–0.48 0.01±0.01 0.003–0.030 TCH(g/L,g) 82.72±7.89 67.08–97.49 7.28±2.62 3.28–15.18 Lactose(g/L,g) 65.84±5.14 53.49–77.94 5.86±2.22 2.19–12.06 HMO(g/L,g) 16.88±9.89 (−10.86)b–35.77 1.42±0.94 (−1.09)b–3.78 Fat(g/L,g) 42.74±12.10 17.42–66.79 3.57±1.45 0.64–6.40 Dataaremean±SDandranges,n=41feeds.aCasein:wheyratiosfordosesarethesameasforconcentrations. bNegativevaluesareseenforhumanmilkoligosaccharides(HMO)whenlactosemeasurementsarehigher thantotalcarbohydrates.Abbreviations:SM—skimmilk;TCH—totalcarbohydrates;WM—wholemilk. 3.4. GastricEmptyingRate The overall decreasing curvilinear pattern of GE (linear: 0.04 [−0.17, 0.24], p = 0.72; square root: −10.5[−12.7, −8.2], p<0.001)isshowninFigure2. HigherFVswereassociatedwithfaster Nutrients2017,9,15 10of21 Nutrients 2017, 9, 015 10 of 21 < 0.001). No association was seen between feed duration and post‐feed stomach volume (−0.25 [−0.68, (−0.07[−0N.u1tr0ie,nt−s 2001.70, 39, ]0,15p <0.001)GErate(Figure3)andhigheroverallpost-feedstom10 oafc 2h1 volumes 0.18], p = 0.23). (0.82[0.53,< 10..01021]),. Npo< as0s.o0c0ia1t)io.nN woasa sseseon cbieattwioeenn wfeeads dsuereatniobn eatnwd epeosnt‐ffeeeedd stdomuarcaht ivoonluamned (−p0.2o5s [t−-0fe.6e8d, stomach volume(−00.1.28]5, p[ −= 00.2.638). ,0.18],p=0.23). 150 ) L150 m e (L) mm olume ( 100 mach vh volu100 c oa Stm 50 o St 50 0 0 0 20 40 60 80 100 120 0 20 40 60 80 100 120 Time post-feed (min) Time post-feed (min) Figure 2. Overall curvilinear pattern of gastric emptying (n = 41 feeds). The lines represent the overall Figure2.pOFaivtgteeurrrnae l2ol.f c Ocuhvraevrnaiglllei ncsu einrav rsiltiponmaeatatrce phra nvttoeolrufnm goafe sg atasrs imtcriecea emsmupprettyydi inbngyg (un(l nt=r a4=1so 4fue1endfdes )ie.m dTahsge). ilniTnghe. sBe roellipdnr eelissneenr etr etphprere eossveeennrtatsltl l hoecaol verall pattern of changes in stomach volume as measured by ultrasound imaging. Bold line represents local patternofrecghraenssgioens simnosotothmera (cLhOvEoSSlu, smpaena =s 0m.9)e. aDsoutrteedd libnyesu rletprraessoeuntn cdonimfidaegnicne gin.tBerovladl. linerepresentslocal regression smoother (LOESS, span = 0.9). Dotted lines represent confidence interval. regressionsmoother(LOESS,span=0.9).Dottedlinesrepresentconfidenceinterval. MI: 35-55 mL MI: 65-85 mL MI: 90-110 mL MI: 115-180 mL 202000 MI: 35-55 mL MI: 65-85 mL MI: 90-110 mL MI: 115-180 mL 151500 L)L) mm e (e ( mm mach volumach volu101000 StoSto 50 50 0 0 0 30 60 90 120 0 30 60 90 120 0 30 60 90 120 0 30 60 90 120 0 30 60 90 120 0 30 60 90 120 0 30 60 90 120 0 30 60 90 120 Time post-feed (min) Time post-feed (min) Figure 3. Gastric emptying of individual feeds in term breastfed infants (n = 41 feeds). Feeds are Figure3.FgGigroauusrpetr ei3dc. bGeyma mstpirlkitcy i neintmagkpeto y(MfiniIg)n tdoof ii vlilnuiddstiurvaaitdel utfhaeele efdeffesedcitsn oifnt te htreem rfmeeb dbr vreeoaalusstmtffeeedsd; ainipnfpafrnaotnxsi tm(sna (t=ne l4y=1 e q4feu1eadlf nse)ue. mdFbesee).rdss F aereed sare groupedbgayrroemu piinelckdlu bidnyet dma kiilnek (einMatcahIk) ept ao(MnielIll).u tDos atirltlaau tspetortianhttees tehrefefp eerfcefsteecontf to tfsh ttohemef afeeceehdd v vvooolullumummees sec;s aa;lpcaupplraoptxerdiom xfariotmemlay t ueeqlltuyraaselo qnuuunmadl bnerusm bers areincludaeirmde aiignnecsel;ua cdcoehndnp eicantni neegal .clihDn epas atlainnepkl .om Dienaatstsau rrpeemopirenentstss e rfnreotpmsret toshemen sta acsmthoem vfeoaeclduh. mBvooeldlsu lcminaeelcs r uecplaarletcesuedlnattfser dloo mcfarlo urmeltg rruaelsstsroiaousnon udnidm ages; imsmaogoetsh; ecro n(LnOecEtSinS,g s lpianne s= l0in.9k) .m easurements from the same feed. Bold line represents local regression connectinglineslinkmeasurementsfromthesamefeed.Boldlinerepresentslocalregressionsmoother smoother (LOESS, span = 0.9). (LOESS,span=0.9). Immediatepost-feedstomachvolumeswerenotassociatedwithR1(p=0.91). Afteraccountingfortimepost-feed,FV,andfeedduration,aspertheabovemodel,largerR1 volumes(0.55[0.24,0.86],p=0.003)andhigherwheyproteinconcentrations(4.99[0.84,9.13],p=0.023) were associated with larger post-feed stomach volumes, while the casein:whey ratio (2.2 ± 0.88, p=0.030)andlactoseconcentration(−0.04±0.02,p=0.037)modifiedtheGEcurvedependingon
Description: