ebook img

Effect of High Fat Diet on Hypothalamic Appetite Regulatory Peptides in Broiler Chickens PDF

23 Pages·2016·1.64 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Effect of High Fat Diet on Hypothalamic Appetite Regulatory Peptides in Broiler Chickens

©2017.PublishedbyTheCompanyofBiologistsLtd|JournalofExperimentalBiology(2017)220,607-614doi:10.1242/jeb.143792 RESEARCHARTICLE Dietary fat alters the response of hypothalamic neuropeptide Y to subsequent energy intake in broiler chickens XiaoJ.Wang,ShaoH.Xu,LeiLiu,ZhiG.Song,HongC.JiaoandHaiLin* ABSTRACT Severalstudieshaveshownthatthesehypothalamicneuropeptides are sensitive to body energy status and critical to whole-body Dietaryfataffectsappetiteandappetite-relatedpeptidesinbirdsand metabolic adjustment. NPY reduces energy expenditure by mammals;however,theeffectofdietaryfatonappetiteisstillunclear decreasing adipose tissue thermogenesis (Egawa et al., 1991; Patel in chickens faced with different energy statuses. Two experiments etal.,2006; Chaoet al., 2011; Zhangetal.,2014).The obesityof wereconductedtoinvestigatetheeffectsofdietaryfatonfoodintake ob/obmiceisattenuatedwhenNPYisknockedout(Ericksonetal., and hypothalamic neuropeptides in chickens subjected to two 1996; Segal-Lieberman et al., 2003). NPY deficiency attenuates feeding states or two diets. In Experiment 1, chickens were fed a responsestoapalatablehighfatdietinmice(Hollopeteretal.,1998; high-fat(HF)orlow-fat(LF)dietfor35days,andthensubjectedtofed Patel et al., 2006). Animals in which POMC neurons have been (HF-fed,LF-fed)orfasted(HF-fasted,LF-fasted)conditionsfor24h. knocked out are obese and hyperphagic (Butler and Cone, 2002; InExperiment2,chickensthatwerefedaHForLFdietfor35days Mencarelli et al., 2012; Diané et al., 2014; Raffan et al., 2016). werefastedfor24handthenre-fedwithHF(HF-RHF,LF-RHF)orLF Additionally,thereleaseoftheseneuropeptidesiscloselyassociated (HF-RLF, LF-RLF) diet for 3h. The results showed that chickens withdietaryfatlevel.MicefedahigherfatdiethadlowerNPYand fedaHFdietfor35dayshadincreasedbodyfatdepositiondespite AgRPmRNAlevels(Linetal.,2000;Wangetal.,2002)andhigher decreasing food intake even when the diet was altered during the POMC mRNA levels (Lukaszewski et al., 2013). Therefore, we re-feedingperiod(P<0.05).LFdiet(35days)promotedagouti-related hypothesized that the response of hypothalamic neuropeptides to peptide (AgRP) expression compared with HF diet (P<0.05) under energystatuscouldbechangedbythedietaryfatlevel. both fed and fasted conditions. LF-RHF chickens had lower Inthepresentstudy,twoexperimentswereconductedtoevaluate neuropeptideY(NPY)expressioncomparedwithLF-RLFchickens; the effect of dietary fat on the response of hypothalamic conversely, HF-RHF chickens had higher NPY expression than neuropeptides to different energy statuses in broiler chickens. The HF-RLFchickens(P<0.05).Theseresultsdemonstrate:(1)thatHF modernbroilerchickenhasafastgrowthrate,largefatdepositionrate dietdecreasesfoodintakeevenwhenthesubsequentdietisaltered; and highinsulin level,and thereforeisanexcellentmodelforafat (2)theorexigeniceffectofhypothalamicAgRP;and(3)thatdietaryfat metabolismstudy(Sundicketal.,1996;Tsietal.,2003).Twofeeding alters the response of hypothalamic NPY to subsequent energy states (fasted versus fed in Experiment 1) and two re-feeding diets intake. These findings provide a novel view of the metabolic withdifferentenergylevels(re-fedhighfatdietversusre-fedlowfat perturbationsassociatedwithlong-termdietaryfatover-ingestionin diet in Experiment 2) were employed to induce differential body chickens. energystatuses.Ourresultsindicatethatdietaryfatalterstheresponse KEYWORDS:Poultry,Appetite,Energystatus,Hypothalamus, ofhypothalamicNPYtosubsequentenergyintake.NPY-basedself- Energybalance adjustingmechanismscandevelopinleanchickensbutdonotreadily occurinobesityinducedbyahighfatdiet.Thesefindingsprovidea INTRODUCTION novelviewofthemetabolicperturbationsassociatedwithlong-term Thehypothalamusisaprocessingcentrethatintegratessignalsfrom dietaryfatover-ingestioninchickens. thebrain,peripheralcirculationandgastrointestinaltracttoregulate energy intake and expenditure. Two neuron populations in the MATERIALSANDMETHODS arcuatenucleus(ARC)ofthehypothalamusexertpotenteffectson Ethicsstatement y foodintake,energybalanceandglucosehomeostasis:agouti-related All of the animal experiments were reviewed and approved by the g o peptide/neuropeptide Y (AgRP/NPY) neurons are orexigenic Institutional Animal Care and Use Committee of Shandong l o (promote feeding and inhibit energy expenditure), while Agricultural University and performed in accordance with the i proopiomelanocortin (POMC) and corticotropin-releasing ‘Guidelines for Experimental Animals’ of the Ministry of Science B l hormone (CRH) neurons promote anorexia (reduce food intake andTechnology(Beijing,China).Alleffortsweremadetominimize a t andincreasecatabolicprocesses)intheARCofavianspeciesand suffering. n e mammals(Boswelletal.,2002;Richards,2003). m Birdsandhusbandry i r Male broiler chicks [Arbor Acres, Gallus gallus domesticus e p DepartmentofAnimalScience,ShandongAgriculturalUniversity,ShandongKey (Linnaeus 1758); 1day old] were obtained from a local hatchery x LabforAnimalBiotechnologyandDiseaseControl,Taian,Shandong271018, E and were reared in an environmentally controlled room. In both China. f Experiment1andExperiment2,128chickswererearedin16floor o *Authorforcorrespondence([email protected]) pens each containing eight chicks (1m2 per pen). Each pen was al equipped with a feeder and a nipple water line. The brooding n H.L.,0000-0002-0878-137X r temperaturewasmaintainedat35°C(65%relativehumidity)forthe u o Received2June2016;Accepted23November2016 first 2 days, then decreased gradually to 21°C (45% relative J 607 RESEARCHARTICLE JournalofExperimentalBiology(2017)220,607-614doi:10.1242/jeb.143792 and body mass gain (BMG) of one chicken were calculated. At Listofsymbolsandabbreviations 36daysold,halfoftheexperimentalchickensineachdiettreatment AgRP agouti-relatedpeptide were sampled during the fasted state after 24h of food withdrawal ARC arcuatenucleus (HF-fasted,LF-fasted),andtheotherhalfweresampledinafedstate BMG bodymassgain (HF-fed,LF-fed).Attheendoftheexperiment,eightchickenswitha CRH corticotropin-releasinghormone similarbodymasswere randomlyselected from each treatment for GAPDH glyceraldehyde3-phosphatedehydrogenase sampling. A blood sample was drawn from a wing vein using a HF highfat heparinizedsyringe.Plasmawasobtainedfollowingcentrifugationat INSR insulinreceptor LF lowfat 400gfor10minat4°Candstoredat−20°C.Immediatelyafterthe NPY neuropeptideY blood samples were obtained, the chickens were killed by POMC proopiomelanocortin exsanguination. The abdominal, cervical and subcutaneous thigh PVH paraventricularnucleus fatswereharvestedandweighedusinganelectronicbalancewithan RHF re-fedwithHFdiet accuracy of 0.01g (A&D, Tokyo, Japan). Hypothalamus samples RLF re-fedwithLFdiet werecollectedaccordingtoYuanetal.(2009),snap-frozeninliquid 18S 18SribosomalRNA nitrogenandstoredat−80°CuntilRNAextraction. humidity) until day 28 and was thereafter maintained at 21°C Experiment2 through to the end of the experiment. The light regime was 23 h At1dayold,128chickswithsimilarbodymassweredividedintotwo light:1 h dark. All of the birds had free access to food and water groups with eight replicates/pens per group and eight chickens per duringtherearingperiod. replicate.AsshowninFig.1B,thechickswererandomlyfedtheHFor theLFdietfor35days.At36daysold,allofthechickenswerefasted Experimentalprotocolandsamplecollection for 24h, then half of the experimental chickens in each group were Experiment1 randomlyre-fedwithHFdietfor3h(HF-RHF,LF-RHF)orLFdiet At1dayold,128chickswithsimilarbodymassweredividedinto for3h(LF-RLF,HF-RLF).Foodintakewasrecordedafterre-feeding. twogroupswitheightreplicates/penspergroupandeightchickens Attheendoftheexperiment,eightchickenswithasimilarbodymass per replicate. As shown in Fig. 1A, the chicks were randomly wererandomlyselectedfromeachtreatmentforsampling.Plasmaand subjectedtooneofthefollowingtwotreatmentsfor35days:(1)high- hypothalamussampleswerecollectedasabove. fat(HF)diet(15.06MJkg−1,13.5%soyoil)or(2)low-fat(LF)diet (10.90MJkg−1,0%soyoil).Thecompositionandnutrientlevelsof Measurementofplasmainsulinlevels theexperimentaldietsareshowninTable1.Foodintakeandbody Plasma insulin was measured using a radioimmunoassay with massoftheeightchickensrearedinonepenwereweighedweekly guinea pig anti-porcine insulin serum (3V, Weifang, China). A using an electronic balance with an accuracy of 1g (Senssun, largecross-reactionhasbeenobservedbetweenchickeninsulinand Guangdong,China),andthedailyaveragefoodintake,energyintake theguineapiganti-porcinesera(Simonetal.,1974).Theinsulinin A Fig.1.Schematicdiagramofthe Fasted for 24 h experimentaldesign.Experiments (N=32) weredesignedtoassesstheeffectof Fed HF for 35 days dietaryfatonchickensunderdifferent (N=64) feedingconditions[A,Experiment1; Fed ad libitum highfat(HF)andlowfat(LF)diet]or (N=32) 1 day old chickens re-feedingconditions(B,Experiment2). (N=128) Fasted for 24 h (N=32) Fed LF for 35 days (N=64) Fed ad libitum y (N=32) g o l o B i B Fasted for 24 h and then re-fed with HF for 3 h l (N=32) a Fed HF for 35 days t n (N=64) e Fasted for 24 h and then re-fed with LF for 3 h m (N=32) i r e 1 day old chickens p (N=128) x E f Fasted for 24 h and then re-fed with HF for 3 h o (N=32) l Fed LF for 35 days a n (N=64) r Fasted for 24 h and then re-fed with LF for 3 h u (N=32) o J 608 RESEARCHARTICLE JournalofExperimentalBiology(2017)220,607-614doi:10.1242/jeb.143792 Table1.Thecompositionandnutrientlevelsoftheexperimentaldiets (ΔCt). On the basis of the Ct values, 18S and GAPDH mRNA (airdrybasis) expressionwerestableacrossthetreatmentsinthisstudy(P>0.1). LF HF Statisticalanalysis Ingredients(%) Dataarepresentedasmeans±s.e.m.Allofthedataweresubjected Maize 46.622 44.859 to one-way ANOVA to test the effect of energy status under pre- Soybeanmeal 30.676 36.984 feedingHForLFconditionsusingtheStatisticalAnalysisSystems Cholinechloride 0.260 0.260 statistical software package (Version 8e, SAS Institute, Cary, NC, Dicalciumphosphate 1.424 1.643 USA).Homogeneityofvariancesamongthegroupswasconfirmed Limestone 1.893 1.742 DL-Methionine 0.255 0.294 using Bartlett’s test (SAS Institute). When the main effect of the Lysine 0.271 0.246 treatmentwassignificant,thedifferencesbetweenthemeanswere NaCl 0.255 0.255 assessed by Duncan’s multiple range analysis. The mean was Soyoil 0 13.468 consideredsignificantlydifferentatP<0.05. Bran 18.094 0 Vitaminpremix* 0.050 0.050 Mineralpremix‡ 0.200 0.200 RESULTS Effectsofdietaryfatonproductionperformance,fat Calculatedchemicalcomposition depositionandplasmainsulin Metabolizableenergy(MJkg−1) 10.900 15.060 After35daysoffeeding,thefoodintakeofthechickensfedtheHF Crudeprotein(%) 20.000 20.000 diet was significantly lower than that of the LF diet-fed chickens Met(%) 0.551 0.556 (P<0.05; Fig. 2A), but the energy intake and BMG showed the Lys(%) 1.064 1.073 opposite result (P<0.05; Fig. 2B,C, Table 3). HF chickens had Ca(%) 1.000 1.000 significantlyenhancedbodymassandfatdepositionintheabdomen P(%) 0.450 0.450 and cervical subcutaneous tissues (P<0.05, Fig. 3) than chickens HF,highfat;LF,lowfat. fed the LF diet. Compared with the LF diet, the HF diet did not *Vitaminpremixprovided(perkgofdiet):vitaminA,8000IU;vitaminD3, 3000IU;vitaminE,33mg;vitaminK3,2.3mg;thiamine,1.75mg;riboflavin, significantlyaffectinsulincontentintheplasmaofeitherfastedor 6.9mg;niacin,28.45mg;pantothenicacid,6.7mg;biotin,2.75mg;folicacid, adlibitumfedchickens(P>0.05,Fig.4A). 0.6mg;vitaminB12,2.2mg;choline(50%),840mg;cobalamin,2.2mg;and During the re-feeding period, the chickens fed the HF diet for pyridoxine,3.35mg. 35daysmaintainedalowerfoodintakethanthechickensontheLF ‡Mineralpremixprovided(perkgofdiet):ferroussulphateheptahydrate, diet (P<0.05), even when they were re-fed a different diet after 183.4mg;heptahydratezincsulphate,255mg;monohydrousmanganese fasting (Fig. 2D); that is, the HF groups maintained a lower food sulphate,276.8mg;coppersulphate,22mg;calciumiodide,2.2mg;and intakethantheLFgroups,independentofthedietthechickenswere pentahydratesodiumselenite,0.6mg. re-fed.Theplasmainsulinlevelwasnotaffectedbytheleveloffat thisstudyisreferredtoasimmunoreactiveinsulin.Thesensitivityof inthere-feedingdiet (P>0.05,Fig.4B). theassaywas1μIUml−1,andallofthesampleswereincludedin the same assay to avoid inter-assay variability. The intra-assay EffectsofdietaryfatonmRNAexpressionofhypothalamic coefficientofvariationwas1.99%. appetite-relatedgenesinchickenswithdifferentenergy statuses RNAisolationandanalysis In Experiment 1, 24h fasting reduced the mRNA expression of Total RNA extraction and real-time PCR were performed as NPY,AgRP,POMC,CRHandinsulinreceptor(INSR)compared described previously (Liu et al., 2014). The primer sequences are with the fed condition (P<0.05; Figs 4C and 5A,C,E,G), shown in Table 2. The PCR data were analysed with the 2−ΔΔCt independent of the diet the chickens ate before fasting. Under method(LivakandSchmittgen,2001).ThemRNAlevelsoftarget both fed and fasted conditions, HF diet-fed chickens had a lower genes were normalized to glyceraldehyde 3-phosphate AgRP mRNA level compared with the LF diet-fed chickens dehydrogenase (GAPDH) mRNA and 18S ribosomal RNA (18S) (P<0.05,Fig.5C). y g Table2.Gene-specificprimersusedfortheanalysisofchickengeneexpression o l o Gene GenBankaccessionno. Primersequences(5′–3′) Productsize(bp) i B AgRP NM_001031457 F:GGAACCGCAGGCATTGTC 163 l a R:GTAGCAGAAGGCGTTGAAGAA t n CRH NM_001123031 F:CTCCCTGGACCTGACTTTCC 86 e R:TGTTGCTGTGGGCTTGCT m GAPDH NM_204305 F:ACATGGCATCCAAGGAGTGAG 266 i r R:GGGGAGACAGAAGGGAACAGA e p INSR AF111857 F:CAAACGGTGACCAAGCCTCA 186 x R:CATCCTGCCCATCAAACTCCG E NPY M87294 F:GAGGCACTACATCAACCTCATCAC 101 f o R:TGTTTTCTGTGCTTTCCCTCAA l POMC NM_001031098 F:CGCTACGGCGGCTTCA 88 a R:TCTTGTAGGCGCTTTTGACGAT n r 18S AF173612 F:ATAACGAACGAGACTCTGGCA 136 u R:CGGACATCTAAGGGCATCACA o J 609 RESEARCHARTICLE JournalofExperimentalBiology(2017)220,607-614doi:10.1242/jeb.143792 A B 90 * 1250 * 1) –1) 1000 – y y a g da 60 kJ d 750 e ( e ( k k a a nt nt 500 d i 30 y i o g Fo ner 250 E 0 0 HF LF HF LF C D * 50 100 RHF * RLF 40 –1day) 30 –1g 3 h) 6800 G (g 20 ake ( 40 M nt B d i o 10 o 20 F 0 0 HF LF HF LF Fig.2.EffectsoftheHFdietonfoodintakeandbodymassgainofchickensafter35daysoffeedingand3hofre-feeding.(A–C)Foodintake,energy intakeandbodymassgain(BMG)perbird,measuredduring35daysoffeeding.(D)Foodintakeperbird,measuredafter3hofre-feedingwiththeHF(RHF)orLF (RLF)diet.Allofthedataweresubjectedtoone-wayANOVA.Valuesaremeans±s.e.m.(N=8forA–C,N=4forD).*Significantdifference(P<0.05). InExperiment2,geneexpressioninresponsetore-feedingdiet demonstratethatchickensfedahighfatdietshowdecreasedfood was compared between HF and LF groups. Among five appetite- intakeevenwhenthesubsequentdiettypeischanged.Inaddition, related genes measured in the present study, NPY expression in dietaryfatalterstheresponseofhypothalamicNPYtosubsequent response to re-feeding dietary fat was altered depending upon the energyintake. feeding experience: in the HF group, re-feeding with the HF diet (RHF)increasedNPYexpressioncomparedwithre-feedingwiththe HFdietdecreasesfoodintakeevenwhenthesubsequent LF diet (RLF; P<0.05), while the LF group showed the opposite diettypeischanged result,inwhichRHFdecreasedNPYexpressioncomparedwithRLF Chickensfedfor35dayswiththeHFdietdisplayeddecreasedfood (P<0.05; Fig. 5B). For AgRP (Fig. 5D), RHF decreased AgRP intake,inlinewithourpreviousresultsdemonstratingthatchickens expression compared with RLF in the LF group (statistically adjusted their food intake according to the dietary metabolizable significant,P<0.05)andshowedatendencytodosointheHFgroup energy concentration (Yuan et al., 2008). The HF effect on food (−51%,notstatisticallysignificant,P>0.05).ThemRNAexpression intakeislikelytobedrivenmainlybyenergyneeds,becauseseveral ofPOMC,CRHandINSRwasnotsignificantlyaffectedbythelevel reports have shown that taste or palatability was relatively less offatinthere-feedingdiet(P>0.05;Figs4Dand5F,H). important (Blundell et al., 1993, 1996; Berridge, 1996). The viewpointthataHFdietinducesanincreaseinbodymasshasbeen y DISCUSSION widelyverifiedinhumanandanimalstudies(WestandYork,1998; g o Inthepresentstudy,weinvestigatedwhetherdietaryfatinfluenced Murtaughetal.,2007)andwasalsoshowninthepresentstudy.The l o theresponseofhypothalamicappetite-relatedpeptidestodifferent increaseinbodymassresultedfromahigherproportionofadipose i B energy statuses (fed versus fasted; RHF versus RLF). The results tissueratherthanskeletalmuscle(WestandYork,1998;Murtaugh l a etal.,2007).Weobservedthattheadiposemassintheabdomenand t Table3.EffectofHFdietonbodymassofchickensover35days cervical subcutaneoustissues relative to body mass was higher in en HF diet-fed chickens than in LF diet-fed chickens, in line with m BMG(gday−1) HF LF P-value previous work showing that high dietary energy promotes lipid ri Week1 7.5±0.1 7.8±0.2 0.1993 deposition(Eitsetal.,2002).ThefavourableeffectoftheHFdiet e p Week2 32.1±0.6 33.3±0.2 0.0876 on body mass and fat deposition can be ascribed to the higher x Week3 27.6±1.2 27.2±1.6 0.8376 E energy ingestion, despite the lower food intake. In addition, fat Week4 51.4±2.7a 40.7±2.1b 0.0199 f accumulation isgreater whenmoreenergy comes from dietary fat o Week5 70.3±4.2a 51.4±2.4b 0.0077 thanfromcarbohydratesorproteins(Hortonetal.,1995;Leanand al Bodymasswasrecordedweekly,andbodymassgain(BMG)perbirdwas n James,1988). calculatedweekbyweekfor5weeks(35days).Allofthedataweresubjected r Chickens fed for 35days with the HF diet maintained a lower u toone-wayANOVA.Valuesaremeans±s.e.m.(N=8).Differentsuperscript o lettersindicateasignificantdifference(P<0.05). food intake than those fed the LF diet, even when the diet was J 610 RESEARCHARTICLE JournalofExperimentalBiology(2017)220,607-614doi:10.1242/jeb.143792 A B Fig.3.EffectsoftheHFdietonfat * 1.5 1.5 depositionandbodymassinchickens s as after35days.(A)Abdominalfat, m at massmass) 1.0 eous fat mass) 01..92 ((mBCa))scsseu.rbBvciocudataylnsmeuaobsucssutwtahanigsehomufeasatfsaaunt,rded(Da)ttbhoedeynd ominal f% body 0.5 ubcutan% body 0.6 * ommfaathsssse.iesAxelplxdeparritmeaseswneetdraeanssduaibspjegecirvcteeednnttpaoegorenboeirf-dwb.oaFdyayt Abd( al s( 0.3 ANOVA.Valuesaremeans±s.e.m.(N=8). vic *Significantdifference(P<0.05). er 0 C 0 HF LF HF LF C D 1.5 2000 s s * a m 1.2 utaneous thigh fat (% body mass) 000...963 Body mass (g)11505000000 c b u S 0 0 HF LF HF LF altered during the re-feeding period. These results could be meal-induced satiety, thereby reducing food intake (Marx, 2003; explained by the following. (1) Chickens have a short-term Mortonetal.,2014). memory function regarding food intake; according to studies in In mammals, circulating insulin signals the hypothalamus to humans(Higgs,2002),arecenteatingepisodemaybefactoredinto effect long-term changes in energy balance by activating and/or decisions about howmuch to consume atthe next meal.(2) Food inhibiting specific anabolic and catabolic pathways (Woods et al., intake is adjusted in response to changes in body fat content; the 2006). Insulin receptors have been identified in the brains of increased leptin activity following body fat deposition decreases chickens (Simon and Leroith, 1986), and intracerebroventricular foodintakebyincreasingthehindbrainresponsetosatietysignals insulininjectioninhibitedfoodconsumptioninlayerhens(Shiraishi (Schwartz et al., 2000). The positive energy balance induced by et al., 2011). Obrosova et al. (2007) found that a HF diet was HF inhibits the rewarding properties of food while enhancing accompanied by an increase in insulin; however, in the present A Fed B RHF Fig.4.EffectsoftheHFdieton 30 Fasted 30 RLF plasmainsulinlevelsand * hypothalamicinsulinreceptor * 24 24 (INSR)mRNAexpressionin 1) chickensunderdifferentfeeding – ml andre-feedingconditions. U 18 18 (A,C)Insulin(A)andINSRexpression µI ulin ( 12 12 (thCe;ffoelddainncdrefaassteedofsLtaFt-efa.stedlevels)in ns (B,D)Insulin(B)andINSRexpression I 6 6 (D;foldincreaseofLF-RLFlevels) y g followingre-feedingwiththeHFdiet o 0 0 (RHF)orLFdiet(LFR).Valuesare ol HF LF HF LF means±s.e.m.(N=8).*Significant Bi difference(P<0.05). C D al 3 1.5 t n e n * m o essie) 2 * 1.0 eri e exprchang Exp R gen(fold 1 0.5 of S l N a I n r u 0 0 o HF LF HF LF J 611 RESEARCHARTICLE JournalofExperimentalBiology(2017)220,607-614doi:10.1242/jeb.143792 Fed RHF Fig.5.EffectsoftheHFdietonthe 1.5 A * * Fasted 1.5 B RLF mapRpNetAitee-xrperlaetsesdiognenoefshyinpocthhiaclkaemnisc underdifferentfeedingandre- * on * feedingconditions.(A,C,E,G) e expressincrease) 1.0 1.0 cpNreoreolrautotircepoodipotrepmopepetpiilndati-ednreoeYcle(oA(aNrgstiPRinnYPg(,P,hAOCo))M,r,maCgo,onEue)ti-and genold i 0.5 0.5 (CRH,G)geneexpression(fold Y (f increaseofLF-fastedlevels)inthefed P N andfastedstate.(B,D,F,H)NPY(B), AgRP(D),POMC(F)andCRH(H) 0 0 geneexpression(foldincreaseofLF- HF LF HF LF RLFlevels)followingre-feedingwith theHFdiet(RHF)orLFdiet(LFR). C * D Dataweresubjectedtoone-way 18 * * 2.0 ANOVA.Valuesaremeans±s.e.m. (N=8).*Significantdifference n (P<0.05). sio 1.5 * ese) 12 pras ene exd incre 1.0 RP g(fol 6 0.5 g A 0 0 HF LF HF LF E * F 6 2.0 * n o si 1.5 ese) 4 MC gene expr(fold increas 2 10..05 O P 0 0 HF LF HF LF G H 4 1.5 * n * pressioase) 3 1.0 xe ene ed incr 2 gy RH g(fol 1 0.5 olo C i B 0 0 al HF LF HF LF t n e study, the plasma insulin and hypothalamic INSR mRNA levels InvolvementofAgRPintheHF-induceddecreaseinfood m werenotaffectedbydietaryfat.Theseresultsareinconsistentwith intake ri e the previous report that HF induces an increase in insulin Multiple neuronal populations distributed throughout the brain p concentration compared with a control diet in mice (Obrosova influencethedecisiontoseekandconsumefood.AgRPneurons x E et al., 2007) and rats (Sinitskaya et al., 2007). Our results suggest are thought to positively regulate feeding behaviour. AgRP f that insulin secretion is not sensitive to dietary fat. Accordingly, increased food intake when injected into the brain (Hahn et al., o Shiraishi et al. (2011) found that intracerebroventricular insulin 1998).Previousstudieshaveshownthatmiceonahighsaturated al n treatment did not affect food consumption in chicks under fasted fat diet for 1, 4 and 7weeks had decreased ARC AgRP mRNA r andadlibitumconditions.Theroleofinsulinasanafferentsignal levels (Wang et al., 2002). Similarly, our study showed that the u o forenergystoresinpoultryremainstobedetermined. HFdiet-fedchickenshadalowerAgRPmRNAlevelthantheLF J 612 RESEARCHARTICLE JournalofExperimentalBiology(2017)220,607-614doi:10.1242/jeb.143792 diet-fed chickens under both fed and fasted conditions. Authorcontributions HypothalamicAgRPneuronactivationmightbeassociatedwith H.L.conceivedanddesignedtheexperiments,X.J.W.performedtheexperiments, S.H.X.andL.L.collectedandanalyzedthedata,X.J.W.interpretedthedataand the higher food intake in LF diet-fed chickens, confirming the wrotethearticle,H.C.J.andZ.G.S.revisedthearticle.Allauthorsreadandapproved previousfindingontheorexigeniceffectofhypothalamicAgRP. thefinalmanuscript. IncontrasttoAgRP,wefoundthatNPY,POMCandCRHwere not affected by 35days of HF diet in the present study. These Funding results are inconsistent with studies in mammals which showed ThisworkwassupportedbytheNationalNaturalScienceFoundationofChina that NPY, POMC and CRH levels were affected by a HF diet [31301993,31472114];andtheNaturalScienceFoundationofShandongProvince [ZR2014CP028]. (Guan et al., 1998; Chavez et al., 1998; Lin et al., 2000; Lukaszewski et al., 2013), implying a genetic bluntness in the References responsetodietaryfatinavianspecies. Berridge, K. C. (1996). Food reward: brain substrates of wanting and liking. Neurosci.Biobehav.Rev.20,1-25. DietaryfatalterstheresponseofhypothalamicNPYto Blundell,J.E.,Burley,V.J.,Cotton,J.R.andLawton,C.L.(1993).Dietaryfatand the control of energy intake: evaluating the effects of fat on meal size and subsequentenergyintake postmealsatiety.Am.J.Clin.Nutr.57,772S-778S. HypothalamicNPYcancontrolenergyexpenditureandcontributes Blundell,J.E.,Lawton,C.L.,Cotton,J.R.andMacdiarmid,J.I.(1996).Control to overall energy homeostasis. Administration of NPY to the ofhumanappetite:implicationsfortheintakeofdietaryfat.Annu.Rev.Nutr.16, paraventricular nucleus (PVH) increases the activity of PVH 285-319. neurons by presynaptically inhibiting local γ-amino butyric acid Boswell,T.,Li,Q.andTakeuchi,S.(2002).NeuronsexpressingneuropeptideY mRNAintheinfundibularhypothalamusofJapanesequailareactivatedbyfasting release (Cowley et al., 1999) and decreases brown adipose tissue andco-expressagouti-relatedproteinmRNA.Mol.BrainRes.100,31-42. thermogenesis (Egawa et al., 1991). NPY knockout mice have Brady, L. S., Smith, M. A., Gold, P. W. and Herkenham, M. (1990). Altered increased energy expenditure (increased O consumption), expression ofhypothalamicneuropeptidemRNAsinfood-restricted andfood- 2 deprivedrats.Neuroendocrinology52,441-447. increased uncoupling protein-1 (UCP-1) in brown adipose tissue Butler,A.A.andCone,R.D.(2002).Themelanocortinreceptors:lessonsfrom and increased cold-evoked thermogenesis in white adipose tissue knockoutmodels.Neuropeptides36,77-84. andarelesssusceptibletodiet-inducedobesity(Pateletal.,2006; Chao,P.-T.,Yang,L.,Aja,S.,Moran,T.H.andBi,S.(2011).KnockdownofNPY Chaoetal.,2011). expressioninthedorsomedialhypothalamuspromotesdevelopmentofbrown adipocytesandpreventsdiet-inducedobesity.CellMetab.13,573-583. In the present study, chickens fed the HF diet for 35days to Chavez,M.,Seeley,R.J.,Havel,P.J.,Friedman,M.I.,Matson,C.A.,Woods, induceobesity(fat)werecomparedwithchickensfedtheLFdiet S.C.andSchwartz,M.W.(1998).Effectofahigh-fatdietonfoodintakeand for 35days (lean). During the re-feeding period (Experiment 2), hypothalamicneuropeptidegeneexpressioninstreptozotocindiabetes.J.Clin. lean chickens in the RHF group had lower NPYexpression than Invest.102,340-346. Cowley,M.A.,Pronchuk,N.,Fan,W.,Dinulescu,D.M.,Colmers,W.F.and chickensintheRLFgroup,whilefatchickensshowedtheopposite Cone,R.D.(1999).IntegrationofNPY,AGRP,andmelanocortinsignalsinthe result.GiventhatNPYdecreasesbodyenergyexpenditure,NPY hypothalamic paraventricular nucleus: evidence of a cellular basis for the inhibitionbyenergyinput(RHF)inleanchickensdemonstratesan adipostat.Neuron24,155-163. increase in energy utilization, implying a self-adjusting response Diané,A.,Pierce,W.D.,Russell,J.C.,Heth,C.D.,Vine,D.F.,Richard,D.and Proctor, S. D. (2014). Down-regulation of hypothalamic pro-opiomelanocortin todietaryfattomaintainwhole-bodyenergystores.Thefindings (POMC) expression after weaning is associated with hyperphagia-induced in fat chickens, however, suggest that NPY-based self-adjusting obesityinJCRratsoverexpressingneuropeptideY.Br.J.Nutr.111,924-932. mechanismsdonotreadilyoccurinfatchickens,andtheimpaired Egawa,M.,Yoshimatsu,H.andBray,G.A.(1991).NeuropeptideYsuppresses response of NPY to the energy intake in these chickens leads to sympatheticactivitytointerscapularbrownadiposetissueinrats.Am.J.Physiol. 260,R328-R334. a persistent dysregulation of energy balance. On the whole, the Eits,R.M.,Kwakkel,R.P.,Verstegen,M.W.A.,Stoutjesdijk,P.andDeGreef, NPY response to dietary fat can vary among lean and fat K.H.(2002).Proteinandlipiddepositionratesinmalebroilerchickens:responses individuals, and depends upon whole-body energy reserves and toaminoacidsandprotein-freeenergy.Poult.Sci.81,472-480. feedingexperience. Erickson,J.C.,Hollopeter, G.andPalmiter,R.D.(1996).Attenuationofthe obesitysyndromeofob/obmicebythelossofneuropeptideY.Science274, Nevertheless, the disparity between lean and fat individuals in 1704-1707. response to different re-feeding diets (Experiment 2) was not Fekete,C.,Légrádi,G.,Mihály,E.,Tatro,J.B.,Rand,W.M.andLechan,R.M. apparentforthedifferentfeedingstatuses(Experiment1)–allofthe (2000).α-Melanocytestimulatinghormonepreventsfasting-inducedsuppression neuropeptidestestedwerelowerinchickensunderfastedcompared of corticotropin-releasing hormone gene expression in the rat hypothalamic paraventricularnucleus.Neurosci.Lett.289,152-156. with fed conditions independent of the diet that was previously Flier, J. S. (2004). Obesity wars: molecular progress confronts an expanding y consumed.Theseresultsareinaccordancewithpreviousstudiesof epidemic.Cell116,337-350. g POMC (Brady et al., 1990) and CRH (Fekete et al., 2000), but Guan,X.-M.,Yu,H.,Trumbauer,M.,Frazier,E.,VanderPloeg,L.H.T.andChen, o l inconsistent with results on NPY/AgRP (Morton and Schwartz, H.(1998).InductionofneuropeptideYexpressionindorsomedialhypothalamus o ofdiet-inducedobesemice.Neuroreport9,3415-3419. Bi 2001; Flier, 2004). These conflicts might be attributed to fasting Hahn,T.,Breininger,J.,Baskin,D.andSchwartz,M.(1998).Coexpressionof l durationandspeciesvariation. Agrp and NPY in fasting-activated hypothalamic neurons. Nat. Neurosci. 1, a t Insummary,aHFdietresultsindecreasedfoodintakeevenwhen 271-272. n the subsequent diet is altered. Additionally, hypothalamic AgRP Higgs,S.(2002).Memoryforrecenteatinganditsinfluenceonsubsequentfood me intake.Appetite39,159-166. inhibitionmightbeassociatedwiththelowerfoodintakeinHFdiet- Hollopeter,G.,Erickson,J.C.andPalmiter,R.D.(1998).RoleofneuropeptideY ri fedchickens.Finally,dietaryfatalterstheresponseofhypothalamic indiet-,chemical-andgenetic-inducedobesityofmice.Int.J.Obes.Relat.Metab. e p NPYtosubsequentenergyintake. Disord.22,506-512. x Horton,T.J.,Drougas,H.,Brachey,A.,Reed,G.W.,Peters,J.C.andHill,J.O. E (1995).Fatandcarbohydrateoverfeedinginhumans:differenteffectsonenergy f Acknowledgements o storage.Am.J.Clin.Nutr.62,19-29. WethankMsM.ZhaoforRT-PCRtechnicalassistance,andMsB.F.Dingforcareof Lean,M.E.andJames,W.P.(1988).Metaboliceffectsofisoenergeticnutrient al animals. exchangeover24-hoursinrelationtoobesityinwomen.Int.J.Obes.12,15-27. n Lin,S.,Thomas,T.C.,Storlien,L.H.andHuang,X.F.(2000).Developmentof ur Competinginterests obesity and central leptin resistance in high-fat diet induced obese mice. o Theauthorsdeclarenocompetingorfinancialinterests. Int.J.Obes.875,1-8. J 613 RESEARCHARTICLE JournalofExperimentalBiology(2017)220,607-614doi:10.1242/jeb.143792 Liu,L.Song,Z.Jiao,H.andLin,H.(2014).GlucocorticoidsincreaseNPYgene refeeding response to fasting. Am. J. Physiol. Endocrinol. Metab. 284, expression via hypothalamic AMPK signaling in broiler chicks. Endocrinology E1131-E1139. 155,2190-2198. Shiraishi,J.,Tanizawa,H.,Fujita,M.,Kawakami,S.-I.andBungo,T.(2011). Livak,K.J.andSchmittgen,T.D.(2001).Analysisofrelativegeneexpressiondata Localization of hypothalamic insulin receptor in neonatal chicks: evidence for usingreal-timequantitativePCRandthe2(−DeltaDeltaC(T))method.Methods insulinergicsystemcontroloffeedingbehavior.Neurosci.Lett.491,177-180. 25,402-408. Simon, J. and Leroith, D. (1986). Insulin receptors of chicken liver and brain. Lukaszewski,M.-A.,Butruille,L.,Moitrot,E.,Montel,V.,Dickes-Coopman,A., Characterization of alpha and beta subunit properties. Eur. J. Biochem. 158, Lesage,J.,Laborie,C.,Vieau,D.andBreton,C.(2013).Thehypothalamic 125-132. POMCmRNAexpressionisupregulatedinprenatallyundernourishedmalerat Simon, J., Freychet, P. and Rosselin, G. (1974). Chicken insulin: offspringunderhigh-fatdiet.Peptides43,146-154. radioimmunological characterization and enhanced activity in rat fat cells and Marx,J.(2003).Cellularwarriorsatthebattleofthebulge.Science299,846-849. liverplasmamembranes.Endocrinology95,1439-1449. Mencarelli,M.,Zulian,A.,Cancello,R.,Alberti,L.,Gilardini,L.,DiBlasio,A.M. Sinitskaya, N., Gourmelen, S., Schuster-Klein, C., Guardiola-Lemaitre, B., andInvitti,C.(2012).Anovelmissensemutationinthesignalpeptideofthe Pévet,P.andChallet,E.(2007).Increasingthefat-to-carbohydrateratioinahigh- human POMC gene: a possible additional link between early-onset type 2 diabetesandobesity.Eur.J.Hum.Genet.20,1290-1294. fatdietpreventsthedevelopmentofobesitybutnotaprediabeticstateinrats.Clin. Morton,G.J.andSchwartz,M.W.(2001).TheNPY/AgRPneuronandenergy Sci.113,417-425. homeostasis.Int.J.Obes.Relat.Metab.Disord.25,Suppl.5,S56-S62. Sundick,R.S.,Bagchi,N.andBrown,T.R.(1996).Theobesestrainchickenasa Morton,G.J.,Meek,T.H.andSchwartz,M.W.(2014).Neurobiologyoffoodintake modelforhumanHashimoto’sthyroiditis.Exp.Clin.Endocrinol.Diab.104,Suppl. inhealthanddisease.Nat.Rev.Neurosci.15,367-378. 3,4-6. Murtaugh,M.A.,Herrick,J.S.,Sweeney,C.,Baumgartner,K.B.,Guiliano, Tsi,D.,Nah,A.K.H.,Kiso,Y.,Moritani,T.andOno,H.(2003).Clinicalstudyon A. R., Byers, T. and Slattery, M. L. (2007). Diet composition and risk of thecombinedeffectofcapsaicin,greenteaextractandessenceofchickenon overweightandobesityinwomenlivinginthesouthwesternUnitedStates.J.Am. bodyfatcontentinhumansubjects.J.Nutr.Sci.Vitaminol.49,437-441. DietAssoc.107,1311-1321. Wang,H.,Storlien,L.H.andHuang,X.-F.(2002).Effectsofdietaryfattypeson Obrosova, I. G., Ilnytska, O., Lyzogubov, V. V., Pavlov, I. A., Mashtalir, N., bodyfatness,leptin,andARCleptinreceptor,NPY,andAgRPmRNAexpression. Nadler,J.L.andDrel,V.R.(2007).High-fatdietinducedneuropathyofpre- Am.J.Physiol.Endocrinol.Metab.282,E1352-E1359. diabetesandobesity:effectsof“healthy”dietandaldosereductaseinhibition. West,D.B.andYork,B.(1998).Dietaryfat,geneticpredisposition,andobesity: Diabetes56,2598-2608. lessonsfromanimalmodels.Am.J.Clin.Nutr.67,505-512. Patel,H.R.,Qi,Y.,Hawkins,E.J.,Hileman,S.M.,Elmquist,J.K.,Imai,Y.and Woods,S.C.,Benoit,S.C.andClegg,D.J.(2006).Thebrain-gut-isletconnection. Ahima,R.S.(2006).NeuropeptideYdeficiencyattenuatesresponsestofasting Diabetes55,Suppl.2,S114-S121. andhigh-fatdietinobesity-pronemice.Diabetes55,3091-3098. Yuan,L.,Lin,H.,Jiang,K.J.,Jiao,H.C.andSong,Z.G.(2008).Corticosterone Raffan,E.,Dennis,R.J.,O’Donovan,C.J.,Becker,J.M.,Scott,R.A.,Smith, administrationandhigh-energyfeedresultsinenhancedfataccumulationand S.P.,Withers,D.J.,Wood,C.J.,Conci,E.,Clements,D.N.etal.(2016).A insulinresistanceinbroilerchickens.Br.Poult.Sci.49,487-495. deletion in the canine POMC gene is associated with weight and appetite in Yuan,L.,Ni,Y.,Barth,S.,Wang,Y.,Grossmann,R.andZhao,R.(2009).Layer obesity-pronelabradorretrieverdogs.CellMetab.23,893-900. Richards,M.P.(2003).Geneticregulationoffeedintakeandenergybalancein and broiler chicks exhibit similar hypothalamic expression of orexigenic poultry.Poult.Sci.82,907-916. neuropeptidesbutdistinctexpressionofgenesrelatedtoenergyhomeostasis Schwartz,M.W.,Woods,S.C.,Porte,D.,Jr,Seeley,R.J.andBaskin,D.G. andobesity.BrainRes.1273,18-28. (2000).Centralnervoussystemcontroloffoodintake.Nature404,661-671. Zhang,W.,Cline,M.A.andGilbert,E.R.(2014).Hypothalamus-adiposetissue Segal-Lieberman,G.,Trombly,D.J.,Juthani,V.,Wang,X.andMaratos-Flier,E. crosstalk:neuropeptideYandtheregulationofenergymetabolism.Nutr.Metab. (2003).NPYablationinC57BL/6miceleadstomildobesityandtoanimpaired 11,27. y g o l o i B l a t n e m i r e p x E f o l a n r u o J 614

Description:
Dietary fat affects appetite and appetite-related peptides in birds and mammals; . replicates/pens per group and eight chickens per replicate.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.