ebook img

Effect of Flow-Acoustic Resonant Interactions on Aerodynamic Response of Transitional Airfoils PDF

65 Pages·2017·4.86 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Effect of Flow-Acoustic Resonant Interactions on Aerodynamic Response of Transitional Airfoils

Dissertations and Theses 12-2016 EEffffeecctt ooff FFllooww--AAccoouussttiicc RReessoonnaanntt IInntteerraaccttiioonnss oonn AAeerrooddyynnaammiicc RReessppoonnssee ooff TTrraannssiittiioonnaall AAiirrffooiillss Joseph Hayden Follow this and additional works at: https://commons.erau.edu/edt Part of the Aerodynamics and Fluid Mechanics Commons SScchhoollaarrllyy CCoommmmoonnss CCiittaattiioonn Hayden, Joseph, "Effect of Flow-Acoustic Resonant Interactions on Aerodynamic Response of Transitional Airfoils" (2016). Dissertations and Theses. 302. https://commons.erau.edu/edt/302 This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. i EFFECT OF FLOW-ACOUSTIC RESONANT INTERACTIONS ON AERODYNAMIC RESPONSE OF TRANSITIONAL AIRFOILS A Thesis Submitted to the Faculty of Embry-Riddle Aeronautical University by Joseph Hayden In Partial Fulfillment of the Requirements for the Degree of Master of Science in Aerospace Engineering December 2016 Embry-Riddle Aeronautical University Daytona Beach, Florida iii TABLE OF CONTENTS LIST OF TABLES ............................................................................................................. iv LIST OF FIGURES ........................................................................................................... v SYMBOLS ........................................................................................................................ vii ABBREVIATIONS ......................................................................................................... viii ABSTRACT ....................................................................................................................... ix 1. Introduction .......................................................................................................... 1 1.1. Motivation ................................................................................................................... 1 1.2. Airfoil Noise ............................................................................................................... 2 1.3. Ikeda Results ............................................................................................................... 2 1.4. Objective of Current Work ........................................................................................ 4 2. Numerical Models ................................................................................................ 5 2.1. The ILES Code ........................................................................................................... 5 2.2. The Turbulence Model ............................................................................................... 8 3. Results .............................................................................................................. 12 3.1. NACA-0012: Mach 0.0465 Re 140,000 ................................................................. 13 3.1.1. Pressure Spectra and Lift History ........................................................................ 13 3.1.2. Boundary Layer Statistics .................................................................................... 17 3.2. SD7003: Mach 0.0465 Re 140,000 ......................................................................... 23 3.2.1. Pressure Spectra and Lift History ........................................................................ 23 3.2.2. Boundary Layer Statistics .................................................................................... 27 3.3. NACA-0012: Mach 0.2 Re 10,000 ......................................................................... 32 3.3.1. Pressure Spectra and Lift History ........................................................................ 33 3.3.3. Boundary Layer Statistics .................................................................................... 37 3.4. SD7003: Mach 0.2 Re 10,000 ................................................................................. 41 3.4.1. Pressure Spectra and Lift History ........................................................................ 42 3.4.3. Boundary Layer Statistics .................................................................................... 45 4. Conclusion .......................................................................................................... 49 REFERENCES ................................................................................................................. 53 iv LIST OF TABLES Table 3.1 Geometric angle of attack investigated for NACA-0012 Re=140,000 ............. 13 Table 3.2 Geometric angle of attack investigated for SD7003 Re=140,000 .................... 23 Table 3.3 Geometric angle of attack investigated for NACA-0012 Re=10,000 ............... 33 Table 3.4 Geometric angle of attack investigated for SD7003 Re=10,000 ...................... 41 v LIST OF FIGURES Figure 1.1 Time-averaged lift curves of 2-D simulation results for NACA-4x06 airfoils (Ikeda et al., 2014) .............................................................................................................. 3 Figure 3.1 Surface Pressure Spectra Comparison of NACA-0012 ................................... 14 Figure 3.2 Coefficient of Lift vs. Non-Dimensional Time Comparison for NACA-0012 15 Figure 3.3 Comparison of Fast Fourier Transform of Lift for NACA-0012 .................... 15 Figure 3.4 Time-averaged CL vs. Angle of Attack Comparison for NACA-0012 ........... 16 Figure 3.5 Time-averaged CD vs. Angle of Attack Comparison for NACA-0012 ........... 17 Figure 3.6 Instantaneous Z-Vorticity Contours for NACA-0012 ..................................... 18 Figure 3.7 Time-averaged U-Velocity Contours NACA-0012 ......................................... 19 Figure 3.8 Mean Pressure Coefficient Comparison for NACA-0012 ............................... 19 Figure 3.9 RMS Pressure Coefficient Comparison for NACA-0012 ............................... 20 Figure 3.10 Skin Friction Coefficient Comparison for NACA-0012 ............................... 21 Figure 3.11 U-Velocity Profile Comparison for NACA-0012 ......................................... 21 Figure 3.12 RMS of U-Velocity Profile Comparison for NACA-0012 ............................ 22 Figure 3.13 Surface Pressure Spectra Comparison of SD7003 ........................................ 24 Figure 3.14 Coefficient of Lift vs. Non-Dimensional Time Comparison for SD7003 ..... 24 Figure 3.15 Comparison of Fast Fourier Transforms of Lift for SD7003 ........................ 25 Figure 3.16 Time-averaged CL vs. Angle of Attack for SD7003 ..................................... 26 Figure 3.17 Time-averaged CD vs. Angle of Attack for SD7003 ..................................... 26 Figure 3.18 Instantaneous Z-Vorticity Contours for SD7003 .......................................... 27 Figure 3.19 Time-averaged U-Velocity Contours SD7003 .............................................. 28 Figure 3.20 Mean Pressure Coefficient Comparison for SD7003 .................................... 29 Figure 3.21 RMS Pressure Coefficient Comparison for SD7003 ..................................... 29 Figure 3.22 Skin Friction Coefficient Comparison for SD7003 ....................................... 30 Figure 3.23 U-Velocity Profile Comparison for SD7003 ................................................. 31 Figure 3.24 U-rms Velocity Profile Comparison for SD7003 .......................................... 32 Figure 3.25 Acoustic Spectra Comparison of NACA-0012 ............................................. 34 Figure 3.26 Coefficient of Lift vs. Non-Dimensional Time Comparison for NACA-0012 ........................................................................................................................................... 35 Figure 3.27 Comparison of Fast Fourier Transforms of Lift for NACA-0012 ................. 35 Figure 3.28 Time-averaged CL vs. Angle of Attack for NACA-0012 .............................. 36 vi Figure 3.29 Time-averaged CD vs. Angle of Attack for NACA-0012 .............................. 37 Figure 3.30 Instantaneous Z-Vorticity Contours for NACA-0012 ................................... 38 Figure 3.31 Time-averaged U-Velocity Contours NACA-0012....................................... 39 Figure 3.32 Mean Pressure Coefficient Comparison for NACA-0012 ............................. 40 Figure 3.33 RMS Pressure Coefficient Comparison for NACA-0012. ............................ 40 Figure 3.34 Skin Friction Coefficient Comparison for NACA-0012 ............................... 41 Figure 3.35 Acoustic Spectra Comparison of SD7003 ..................................................... 42 Figure 3.36 Coefficient of Lift vs. Non-Dimensional Time Comparison for SD7003 ..... 43 Figure 3.37 Comparison of Fast Fourier Transform of Lift for SD7003 .......................... 43 Figure 3.38 Time-averaged CL vs. Angle of Attack Comparison for SD7003 ................. 44 Figure 3.39 Time-averaged CD vs. Angle of Attack Comparison for SD7003 ................. 45 Figure 3.40 Instantaneous Z-Vorticity Contours of SD7003 ............................................ 46 Figure 3.41 Time-averaged U-Velocity Contours for SD7003 ........................................ 47 Figure 3.42 Mean Pressure Coefficient Comparison for SD7003 .................................... 48 Figure 3.43 RMS Pressure Coefficient Comparison for SD7003 ..................................... 48 Figure 3.44 Skin Friction Coefficient Comparison for SD7003 ....................................... 48 Figure 4.1 Instantaneous contours of streamwise velocity (Kurelek and Yarusevych 2016) ........................................................................................................................................... 51 vii SYMBOLS ρ Density p Pressure T Temperature u Tangential Velocity v Normal Velocity w Spanwise Velocity φ Flux component L Turbulent Length τ Time Scale k Wave Number ω Frequency I Turbulence Intensity α Angle of Attack c Chord Length U Freestream Velocity viii ABBREVIATIONS AFL Acoustic Feedback Loop dB Decibel L Lift D Drag Re Reynolds Number M Mach Number ILES Implicit Large Eddy Simulation RFG Random Flow Generation AoA Angle of Attack Hz Hertz RMS Root Mean Squared C Lift Coefficient L C Drag Coefficient D FFT Fast Fourier Transform T-S Tollmien-Schlichting K-H Kelvin-Helmholtz C Skin Friction Coefficient f C Pressure Coefficient p DNS Direct Numerical Simulation ix ABSTRACT Hayden, Joseph MSAE, Embry-Riddle Aeronautical University, December 2016. Effect of Flow-Acoustic Resonant Interactions on Aerodynamic Response of Transitional Airfoils. A high-accuracy numerical study is conducted to examine the impact of flow-acoustic resonant interactions on the aerodynamic response of symmetric and cambered airfoils in the realistic transitional flow regimes with Re =140,000 and M=0.0465 as well as the low c Reynolds number flow regime with Re =10,000 and M=0.2. The symmetric NACA-0012 c and the cambered SD7003 airfoils are investigated at various angles of attack that have been found previously to include both the tone and no-tone producing regimes, with specific focus on the aerodynamic lift response. Additional simulations are conducted with a low-intensity synthetic turbulence introduced upstream of the airfoils in order to trip the boundary layer on the airfoil surface and thus eliminate the acoustic feedback loop as the tone-generating mechanism. The current work focuses on comparing the lift, drag, and lift to drag ratio curves in the uniform vs. turbulent flow cases to determine the impact of the acoustic feedback loop on the airfoil aerodynamic performance for both realistic and low Reynolds number flow conditions.

Description:
Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Scholarly Commons Citation. Hayden, Joseph, "Effect of Flow-Acoustic Resonant Interactions on Aerodynamic Response of Transitional Airfoils" (2016). Dissertations and Theses.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.