ScienceoftheTotalEnvironment640–641(2018)1548–1565 ContentslistsavailableatScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Review Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: A review EwaLipczynska-Kochany EnvironmentalConsultants,Mississauga,ONL5A4C3,Canada H I G H L I G H T S G R A P H I C A L A B S T R A C T (cid:129) Humicsubstances(HS)playanimpor- tantroleingenerationofgreenhouse gases(GHG). (cid:129) Climatechange(CC)enhancesbiodeg- radationofhumicsubstances(HS). (cid:129) Microbialactivityisstimulatedanddeg- radationofcontaminantsmoreefficient. (cid:129) Solardisinfectioninsurfacewatersis inhibitedbyincreasedpresenceofDOM. (cid:129) Pollutants may be desorbed and re- mobilized. a r t i c l e i n f o a b s t r a c t Articlehistory: Humicsubstances(HS),ahighlytransformedpartofnon-livingnaturalorganicmatter(NOM),compriseupto Received31October2017 70%ofthesoilorganicmatter(SOM),50–80%ofdissolvedorganicmatter(DOM)insurfacewater,and25%of Receivedinrevisedform30May2018 DOMingroundwater.Theyconsiderablycontributetoclimatechange(CC)bygeneratinggreenhousegases Accepted30May2018 (GHG).Ontheotherhand,CCaffectsHS,theirstructureandreactivity.HSimportantroleinglobalwarming Availableonline18June2018 hasbeenrecognizedandextensivelystudied.However,muchlessattentionhasbeenpaidsofartoeffectson thefreshwaterquality,whichmayresultfromtheclimateinducedimpactonHS,andHSinteractionswithcon- Editor:D.Barcelo taminantsinsoil,surfacewaterandgroundwater.Itisexpectedthatanincreasedtemperatureandenhancedbio- Keywords: degradationofSOMwillleadtoanincreaseintheproductionofDOM,whilethefloodingandrunoffwillexportit Climatechange fromsoiltorivers,lakes,andgroundwater.Microbialgrowthwillbestimulatedandbiodegradationofpollutants Humicsubstances inwatercanbeenhanced.However,theremaybealsonegativeeffects,includinganinhibitionofsolardisinfec- Surfacefreshwater tioninbrownlakes.TheCCinduceddesorptionfromsoilandsediments,aswellasre-mobilizationofmetalsand Wetlands organicpollutantsareanticipated.In-situtreatmentofsurfacewaterandgroundwatermaybeaffected.Qualityof Groundwater thesourcefreshwaterisexpectedtodeteriorateanddrinkingwaterproductionmaybecomemoreexpensive. In-situremediation ManyofthepossibleeffectsofCCdescribedinthisarticlehaveyettobeexploredandunderstood.Enormouspo- tentialforinteresting,multidisciplinarystudiesintheimportantresearchareashasbeenpresented. ©2018ElsevierB.V.Allrightsreserved. E-mailaddress:[email protected]. https://doi.org/10.1016/j.scitotenv.2018.05.376 0048-9697/©2018ElsevierB.V.Allrightsreserved. E.Lipczynska-Kochany/ScienceoftheTotalEnvironment640–641(2018)1548–1565 1549 Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1549 2. Humicsubstances(HS)andtheirroleinCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1549 2.1. HS:structureandreactivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1549 2.2. HSroleinCC:generationofgreenhousegases(GHG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1550 3. EffectofCConsoilHS,theirbiodegradationandinteractionswithpollutants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1551 3.1. MicrobialdegradationofHS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1551 3.2. InteractionsbetweenHSandsoilcontaminants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1552 4. EffectofCConthequalityofsurfacefreshwater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1552 4.1. GlobalconsequencesofCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1552 4.2. InteractionsbetweenHSandmicrobesinfreshwater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1552 4.3. HSandpollutantsinsurfacewaters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1553 4.4. EffectofsunlightontheHS-microbialinteractionsinfreshwater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1553 4.5. Surfacewaterremediationandproductionofdrinkingwater. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554 4.5.1. Surfacewaterpollution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554 4.5.2. Naturalandconstructedwetlands(CWs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554 4.5.3. Productionofdrinkingwater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554 5. EffectofCConthequalityofgroundwateranditsremediationin-situ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1555 5.1. EffectofCCongroundwaterrechargeandquality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1555 5.2. Groundwaterremediationin-situ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1556 6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1557 7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1557 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1557 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1557 1.Introduction 2017;Morenoetal.,2017;Wangetal.,2017).Thesereportsindicatethat theeffectsofsolar,geophysical,andhumanactivityonCCinteract,and “Climate”termreferstoglobal,long-term(yearsordecades)environ- thatmoreinvestigationsarerequiredinordertoexplainthiscomplicated mentalconditions,e.g.globalaverageoftemperature,humidityandrainfall relationship.Whateverthereason,naturaloranthropogenic,thereisa patternsoverseasons.“Climatechange”termdescribesanychangeincli- largebodyofevidencethattheEarth'sclimateischanging(IPCC,2001; mateconditionsresultingfromnaturalcausesorhumanactions.Itde- King,2004)andthatglobalwarmingisthemaincharacteristicofthis scribesabroadrangeofglobalphenomena,whichincludetheincreased change(NASA,2016). temperaturetrends(globalwarming)andotherchangeslikeriseinsea Humicsubstances(HS)considerablycontributetoglobalwarmingby level;lossoficemassandextremeweatherevents(NASA,2018). generatingGHG.Theirroleintheglobalwarminghasbeenextensively ChangesintheEarth'sclimatehavebeenhappeningsincetheEarth's studiedandreported(Section2.2below).Ontheotherhand,CCaffects generation.Therehavebeensevencyclesofglacialeventsuntil,about HS,theirstructureandreactivity.Manytopics,includingtheeffectonthe 7000yearsago,thelasticeageendedandthemodernclimateeraand soilorganicmatter(SOM),itsstructure,microbialcommunityaswellas humancivilizationbegan.Mostofthepastclimatechangesarebelieved carbonstorageandrespirationresponsearestillnotfullyunderstood tohaveresultedfromverysmallvariationsintheEarth'sorbit,which (Bond-Lambertyetal.,2016).Muchlessattentionhasbeenpaidsofarto changedtheamountofsolarenergyreceivedbyEarth(Lean,2010). freshwater(surfaceandgroundwater)pollution,resultingfromtheclimate Sincetheearly20thcentury,especiallysincethelate1970s,anincreas- inducedimpactonHSandtheirinteractionswithsoilandwaterpollutants. ingtemperaturetrendacrossthewholeEarth,namedastheglobal ThisarticlestartswithpresentationofHS,theirstructure,reactivityand warming, has been observed (NASA, 2018). It has been concluded contributiontothegenerationofGHG.Subsequently,potentialimpactsof that,contrarytothepastclimatechanges,Sunisnotresponsiblefor CContheHSbiodegradation,microbialactivityinsoilandwateraswell the increase in the Earth's temperature observed over the past asfreshwaterpollutionarereviewed.Theeffectsincludeaninhibitionof 50years.Instead,recentchangesintheEarthclimatearerelatedto solardisinfectioninbrownlakescausedbyanincreasedconcentrationof humanactivityandhuman-producedgreenhousegases,GHG(IPCC, NOM,resultingfromtheenhanceddegradationofHSandsubsequent 2014;Lockwood,2009;NASA,2018;Oreskes,2004). wash-upfromthesoilandsedimentsurfaces.TheCCinduceddesorption Most of GHG(CO , CH , N OandH O) occurnaturally. The heat- fromsoilandsediments,aswellasre-mobilizationofmetalsandorganic 2 4 2 2 trappingcapacityofthenaturallygeneratedGHGhasbeenknownfora pollutantshavebeenconsidered.PossibleCCeffectsontheprocessesrele- longtime.ThereisancientevidenceshowingthattheEarth'sclimatere- vanttothein-situsurfacewaterandgroundwaterremediation,including spondstochangesinGHGlevels.Forthousandsofyears,naturalsources constructedwetlands(CWs),in-situflushingandpermeablereactivebar- ofGHGhavebeenbalancedbynaturalsinks.Humanactivitysignificantly riers(PRBs),havebeendiscussed.Thisreviewconcentratesontheimpact contributestoemissionsofallknownGHGexceptfortheH Ovapor ofCConprocessesoccurringinnaturalenvironmentandonthequalityof 2 (Bousquetetal.,2006;IPCC,2014;USEPA,2016).Itisbelievednowthat freshwaterresources.However,anydeteriorationinthesourcefreshwater humanactivityhasupsetthebalance,whichexistedbeforetheIndustrial qualitywillaffectthedrinkingwaterproduction.Therefore,CCeffectson Revolution(IPCC,2001,NASA,2018;NASEM,2017a;USEPA,2017a,b). thedrinkingwatertreatmenthavebeenbrieflydescribed. Resultsofthelateststudiesseemtocontradicttheconclusionthat humanactivityistheonlycauseoftheobservedclimatechange.Ithas 2.Humicsubstances(HS)andtheirroleinCC beenshownthatalargeproportionofclimatevariationscouldbeexplained byactionoftotalsolarirradiance(TSI)andcosmicrays(CRs)onthestateof 2.1.HS:structureandreactivity theloweratmosphereandothermeteorologicalparameters(Alexandri etal.,2017;Biktash,2017;Chapanovetal.,2017;Friis-Christensenand HSarethemajorcarbonpoolinthebiosphere,about1600×1015gC. Lassen,1991;EngelsandvanGeel,2012;KilifarskaandHaight,2005;Ma, Theycompriseupto70%ofsoilorganicmatter,SOM(Grinhutetal., 1550 E.Lipczynska-Kochany/ScienceoftheTotalEnvironment640–641(2018)1548–1565 2007)andtheyrepresentabout50–80%ofdissolvedorganicmatter naturalsourcesofCH includewetlandsandoceans(USEPA,2017a) 4 (DOM)infreshwater(Thurman,1985),25%ofDOMingroundwater aswellaseruptionsofvolcanoes(Etiopeetal.,2007;NASEM,2017b). andasmallfraction(0.7–2.4%)ofDOMinocean(Pauletal.,2004).HS SoilsundernaturalvegetationareanimportantsourceofN O,which 2 playaveryimportantroleinecosystemsbecausetheyregulatethe is also produced in oceans. H O vapor is the most abundant GHG. 2 globalcarbonandnitrogencycles.Theyarebrowntodarkcoloredmix- Large amounts of H O are released by volcanoes (LeGrande et al., 2 tures,usuallyseparatedintothreefractionsbasedontheiraqueoussol- 2016;NASEM2017b;Robock,2000)andbyevaporationfromoceans, ubility:fulvicacids,humicacids,andhumin.Accordingtothecurrent lakesandrivers.H Oactsasafeedbacktotheclimate.Itresponds 2 view(PiccoloandConte,2000;Piccolo,2001),HSshouldbeconsidered quicklytochangesinconditionsbyprecipitationasrainorsnow,or assupramolecularassociationsofheterogeneousandrathersmallmol- evaporationbacktotheatmosphere(USEPA,2017a,b). ecules.HSdynamicconformation isweaklystabilizedbyhydrogen ThereisevidencethatHSinsoilandwetlandssignificantlycontrib- bondsandvanderWaalsinteractions;itcanbedisruptedbyweakor- utetoCCbyproducingGHG,includingCO (Fig.1).Approximately81% 2 ganic acids (Peuravuori, 2005; Peuravuori et al., 2007; Piccolo and oftheorganiccarbonresourcesisinvolvedinthesignificantdegrada- Conte,2000;Piccolo,2001,2002). tion of SOM and it results in increased CO emissions from soils 2 HSstructuredependsontheiroriginandageandsoitisdifficultto (Dalias et al., 2001; Davidson and Janssens, 2006; Jenkinson et al., characterizeitonthemolecularlevel(Hedgesetal.,2000).However, 1991;Kattereretal.,1998;Kirschbaum,1995,2000,2006;Lloydand manyHSpropertiesarewelldeterminedandsomecharacteristics,re- Taylor,1994;Trumboreetal.,1996).AccordingtoKirschbaum(1995), gardlessoftheirorigin,aresimilar.HScontainvariousfunctionalgroups a1°Cincreaseoftemperaturewouldleadto10%carbonlossinareas (Stevenson,1994)andformcomplexeswithmetalsandorganiccom- withmeantemperatureabout5°C,whereasthesametemperaturein- pounds (Aiken et al., 2011; Davies et al., 1997; Nriagu and Coker, creasewouldleadtolossof3%inareaswheremeantemperatureis30 1980;PerminovaandHatfield,2005;SpositoandWeber,1986;Struyk °C.Therefore,importantregionaldifferencesintheSOMlossandCO 2 andSposito,2001).Theycontainhighamountsofstablefreeradicals productioncanbeexpected.Innaturalenvironments,carbonenters (Pauletal.,2006a)whichcanreactwithvariousbioticandabioticsub- thesoilinlitterfall,rootturn-overordeathofindividualplants,provid- stances.Theybehavelikecolloids(Piccoloetal.,1996;vonWandruszka, ingthesubstratefortheformationofSOM.TheamountofHSinSOMis 2000)andareknownforthesorptionabilities(Aeschbacheretal.,2012; controlledbytheHSproduction(inputofplantandanimaldebris)and Georgietal.,2007,2008;Niedereretal.,2007).HSregulatethegrowth therateofthedegradation.Both,theSOMformationanddegradation, ofplantsandmicroorganisms,actasbiostimulantsinhorticultureand aretemperature-dependent.Thechangeofthesoilcarbonstorageinre- arethemajorcomponentoforganicfertilizers.HScatalyzebiochemical sponsetoclimatewarmingdependsonhowtheyarebalancedrelative reactionsandhavedirectnutritivevalue,becausetheirlowmolecular toeachother(DavidsonandJanssens,2006;Kirschbaum,2000,2006; partscanbetakenbyaquaticorganisms(Canellasetal.,2015;Piccolo, Stergiadietal.,2016;VonLützowandKögel-Knabner,2009).Degrada- 1996).Theyareinvolvedinenvironmentprocesses,includingredoxre- tionofDOMwithinlakesandriversmayalsoimpactclimateifDOMis actions,sorption,complexation,fateandtransportofheavymetalsand completelymineralizedandemitsCO toatmosphere(Tranviketal., 2 organicpollutants,aswellasthestabilizationofsoilstructure.Toxicity 2009;Raymondetal.,2013). ofheavymetalstobacteriaisoftencorrelatedtothefreecationsconcen- Methane (CH ) is the GHG with the global warming potential 4 tration.FormationofHS–metalcomplexesandadsorptionofmetalcat- (GWP) 28–36times higher than CO on a 100 year time scale (US 2 ionsonthesurfaceofHS(andironoxyhydroxides)reducestoxicityof EPA,2017b).15–40%oftheglobalCH comesfromwetlands,wheremi- 4 heavymetalsbyloweringtheconcentrationoftheirfreecationsin crobialactivityisfundamentallydifferentfromthatinuplandecosys- water (Davies et al., 1997; Nriagu and Coker, 1980; Sposito and tems(Yvon-Durocheretal.,2014).Wetlandscoverapproximately6% Weber, 1986; Struyk and Sposito, 2001, Lipczynska-Kochany and oftheEarth'slandsurface.Theyaretransitionalareasbetweenland Kochany,2009). and water with the not always well-defined boundaries (US EPA, Theassociationorbindingofnon-polar,hydrophobicorganicmole- 2015).Theyrepresentabout12%oftheglobalcarbonpoolandthey culestoHSincreasesthesolubilityandthusmobilityofvariouscontam- playanimportantroleintheglobalcarboncycle(IPCC,1996).Inaddi- inants. On the other hand, interactions between HS and organic tiontoemissionofGHG,wetlandsalsoaffecttheclimatebyregulating pollutantsmayresultinacompleteimmobilizationandincorporation airtemperaturethroughevapotranspiration(Pokornýetal.,2016). ofsomesubstancesintoHS(BronnerandGoss,2011;Georgietal., Wetlandscanserveasboth,acarbonsinkandsource;theyactasa 2007,2008;Panetal.,2008;PolubesovaandChefetz,2014).Microbes long-termstorageofCO ,buttheyarealsoalargesourceofCH .In 2 4 maybealsoadsorbedonHS.Thus,HSmayaffectthebioavailabilityof mostuplandsoilsorganiccarboncanbecompletelymineralizedto organiccontaminantstobacteriabybindingthemicrobesaswellas CO bymicroorganisms,usingoxygen(O )asaterminalelectronaccep- 2 2 the pollutants (Perminova and Hatfield, 2005; Van Trump et al., tor(TEA).Incontrast,anaerobicdecompositioninwetlandsoilinvolves 2006).HSalsoplayasignificantroleintheanaerobicbiologicalpro- manymicrobialprocessesgeneratingbothCO andCH asthefinal 2 4 cessesbyactingaselectrondonors,acceptorsandelectronshuttles.Bac- productsofmineralization(BartlettandHarris,1993;Caoetal.1998; teria can use HS as an electron donor or acceptor in anaerobic FrolkingandRoulet2007;KellerandBridgham,2007;Kelleretal., respiration(Coatesetal.,2002;Heitmannetal.,2007;Lauetal.,2015; 2009;Yu,2012).Wetlands(andsediments)containahighcontentof Lipczynska-Kochany,2018;Martinezetal.,2013;VanTrumpetal., HS,whichactaselectronacceptorsforanaerobicmicrobialrespiration, 2006).ElectrontransfertoandfromHSisfullyreversibleandsustain- includinganaerobicCH oxidation(BlodauandDeppe2012;Bridgham 4 ableoversuccessiveredoxcycles(Klüpfeletal.,2014;Walpenetal., etal.,2006,2013;Cervantesetal.,2000,2011;Coatesetal.,2002;Keller 2018). and Bridgham 2007; Keller and Takagi 2013; Lovley et al., 1996; Lipczynska-Kochany,2018andrefs;Martinezetal.,2013;Valenzuela 2.2.HSroleinCC:generationofgreenhousegases(GHG) etal.,2017).Recently,Walpenetal.(2018)haveobservedthatthat electrontransfertoDOMisfullyreversibleoveranelectrochemicalre- MostGHG(CO ,CH ,N O,andH O)havebeengeneratedthrough ductionandsubsequentO -reoxidationcycle.Thisfindingsupportspre- 2 4 2 2 2 natural processes. For instance, CO emissions originate from an viousreports(Klüpfel et al., 2014)that HScanactasre-generable 2 ocean-atmosphereexchange,plantandanimalrespirationaswellas electronacceptors,allowingholdinglargeamountofCH inwetlands, 4 soilrespirationanddecomposition.CO isalsocreatedbyvolcanicerup- andnottoreleaseittotheatmosphere. 2 tionsandthroughundergroundvolcanicmagma.Itisreleasedthrough DOMcarboncyclinghasaninfluenceonclimatebecausedegrada- vents,porousrocksandsoils,andwater,whichfeedsvolcaniclakesand tiontoCO andCH isoneofthemainsinksofDOMinboreallakes 2 4 hotsprings(LeGrandeetal.,2016;NASEM2017b;Robock,2000).The andwetlands.However,itsneteffectonglobalwarmingisdifficultto E.Lipczynska-Kochany/ScienceoftheTotalEnvironment640–641(2018)1548–1565 1551 Fig.1.HSimpactonclimatechange(CC). bepredicted(BertilssonandTranvik,2000).Forinstance,inplaceswhere N Oinsoilsaremicrobially-mediatedprocesses,nitrificationanddeni- 2 waterlevelsfallandorganicmatterisexposedtoair,moreCO canbere- trification.N Oemissionscanoccurasdirectemissionsfromnatural 2 2 leasedfromtheformerlyanoxicsedimentswhichproducedCH ,more and constructive wetlands (CWs) as well as from lakes and major 4 powerfulgreenhousegas(MortschandQuinn1996;Benoyetal.,2007). riversystems.DOMplaysanimportantroleindrivingmicrobially- DependingonthebalancebetweenDOMlossestoatmosphereversus mediateddenitrification(PhilipandTownsend,2010).Recentstudies transfertothesediments,formationofCO andCH andtheirsubsequent suggestthatsoilbiocharamendmentreducessoilnitrousoxide(N O) 2 4 2 releasetotheatmospherecanincreaseordecrease,affectingtheeffectof emissionsanditleadstoshiftsinthesoilmicrobialcommunitycompo- climatechange.Complexmicrobialprocesses,whichplayanimportant sition(Harteretal.,2016;Jonesetal.,2014). roleintheglobalfluxesofCO andCH,arelikelytobeaffectedbyCC.How- 2 4 ever,isstillunclear,whetheralterationoftheseprocessesmightresultina 3.EffectofCConsoilHS,theirbiodegradationandinteractionswith netpositiveornegativefeedbackforGHGemissions(Singhetal.,2010).Itis pollutants alsouncertainifwetlandsHSwillhaveapositiveornegativefeedbackto theglobalclimatesystem(Frolkingetal.,2011;Junketal.,2013;Lenhart 3.1.MicrobialdegradationofHS 2009;Mengetal.,2012,2016). Nitrousoxide,N2O,anotherpotentGHG,hasanatmosphericlifetime HScontributetochangeinclimatebygeneratingGHG.Ontheother ofabout100years,andanalmost300-foldgreaterglobalwarmingpo- hand,CChasasignificantimpactontheHSstructureaswellasontheir tential(GWP)comparedtoCO2(USEPA,2017b).Themainsourcesof bioticandabioticinteractions(Fig.2). Fig.2.ImpactofCConHSinsoilandsediments. 1552 E.Lipczynska-Kochany/ScienceoftheTotalEnvironment640–641(2018)1548–1565 Innature,thehalf-decaytimes(t )ofHScanamounttothousands metals(Daviesetal.,1997;Dercovaetal.,2007Conteetal.,2005; 1/2 ofyears(Grinhutetal.,2007)andsoithasoftenbeenassumedthatHS PerminovaandHatfield,2005;Sanninoetal.,2013).Onecanexpect areinerttobiodegradation.However,eventhoughHSbelongtothe thatCC,whichaltersthestructureandthereactivityofHS,wouldaffect moststablecomponentsofthesoilorganicfraction,theirmicrobialde- theefficiencyofsuchtreatments. compositionconstitutesasignificantpartoftheturnoveroforganiccar- Complicated interactions between soil HS, oxides and clays boninsoil(Lipczynska-Kochany,2018;Martinezetal.,2013).Bacteria, (Vermeeretal.,1999)withmicrobesandenvironmentalpollutants actinomycetesandfungi(Grinhutetal.,2007)playanimportantrolein arestronglyaffectedbyenvironmentalconditionsincludingpH,tem- manyprocessesoccurringinsoilandcanevenmineralizeHS.HSdegra- perature,ionstrengthandredoxstate(VanTrumpetal.,2006).Climate dationinsoilisdependentonenvironmentalconditions,includingtem- inducedchangesinthestructureofHS,resultingfromtheirmicrobial perature,soilmoisture,pH,O2,presenceofnutrients,redoxpotential, transformationsarealsolikelytoalterthecharacterofbindingbetween sorptioncapacityetc.(Castroetal.,2010;Kunc,1988;Steinberg,2003). HSandpollutants,whatmayleadtodesorptionandre-mobilizationof IncreaseinsoiltemperaturecouldenhanceHSdegradation(Christ metalsandorganic pollutants.Stormevents,thedischargedrunoff andDavid,1996;Parketal.,2015;Reyetal.,2005)andincreasethe andfloodingmightcontributetotheproblemandincreasetheconcen- amountofsubstancesavailableformicrobialrespiration(Balseretal., trationoftoxicsubstancesinaquaticsystems. 2010;Dorrepaaletal.,2009;Zoggetal.,1997).Non-labilepartofSOM ismoresensitivetotemperaturethanlabileSOM,andsomoreDOM 4.EffectofCConthequalityofsurfacefreshwater willbeformedasaresultofglobalwarming(Coleetal.,2007;Kalbitz etal.,2000;Knorretal.,2005;Ritsonetal.,2014a,2017). 4.1.GlobalconsequencesofCC Ingeneral,ariseintemperaturecorrespondstoariseinmicrobial activity(Balseretal.,2010;MandalandNeenu,2012;Whitakeretal., ConsequencesofCCarenumerousanddifficulttobepredictedpre- 2014).However,microbesliveincomplexcommunitiescomposedof cisely. They include rising sea levels, increased emission, extreme verydifferentorganisms,whichareexpectedtorespondtoCCinadif- weatherevents,andchangesinbioavailabilityandenvironmentstabil- ferentway.CCmaythereforealterspeciesdistributionsandinteractions ity(IPCC,1996;NASA,2018).ItisexpectedthatCCwillseriouslyaggra- amongorganisms(Classenetal.,2015;Rivkinetal.,1996;Whitaker vate already existing freshwater problems. Freshwater, which is etal.,2014;Zoggetal.,1997).Inadditiontotemperature,thesoilmois- necessaryforlife,constitutesonlyabout2.5%ofthewateronEarth. tureandthefrequencyofwet/dryandfreeze/thawcycles,aswellas Most of it is locked up in permafrost (ca 69%) and in the ground changesinprecipitation,canmodifythesoilaggregation.Theymay (30%).Surfacewater,inlakesandrivers,makesupabout1.2%ofall havepotentialimportantimpactsontheavailabilityofHSand,asacon- freshwater(Shiklomanov,1993).ItispredictedthatCCwillintensify sequence,onthemicrobialstructureandactivity(Castroetal.,2010; thewatercycle.Warmingisexpectedtobringanoverallincreasein MandalandNeenu,2012). rainfallandinextremeprecipitation,includingflashflooding.However, theanticipatedrainfallsoverdryareaswillnotnecessarilymakemore 3.2.InteractionsbetweenHSandsoilcontaminants wateravailablebecauseevaporationwillincrease(Donatetal.,2016). Whilesomeplacesmayexperiencestormsurgesandlongerdroughts, Soilsarereceivinglargequantitiesoftracemetalsfromawidevari- otherplacesmayenjoymilderweather(Bond-Lambertyetal.,2016). etyofindustrialwastes(Nriagu,1996;NriaguandPacyna,1988).When Despitethepredictedglobalincreasesinrainfall,CCisalsoexpectedto introducedintotheenvironment,heavymetalstendtoaccumulatein reducerainfallinmanyalreadydryregions.Accordingtotheestimate soilsandsedimentsbecauseoftheiraffinityforsorptionprocesses(Su oftheIPCC,CCmightleadtothesituation,inwhichaboutonebillion etal.,2014).Biogeochemicalprocesses(sorption/desorption,complex- peopleindryregionswouldsufferfromtheshortageofwater(Bates ation,dissolution/precipitation,anduptake/releasebybiota)control etal.,2008). themobilityofheavymetalsandthustheresidencetimeinsoilsand CCisexpectedtochangetheamountofHSinsurfacewatersandto water(Reederetal.,2006).Althoughmanyofthemosttoxicsubstances altertheirstructureaswellaschangebioticandabioticinteractions introducedintotheenvironmentbyhumanactivityhavebeenbanned withwatercontaminants.TheimpactofCConHSandthesurfacefresh- orrestrictedinuse,manystillpersist,especiallyinsoilsandsediments. waterqualityissummarizedinFig.3anddescribedinSections4.2–4.5 Sorptiondirectlyorindirectlycontrolsallbioticandabioticprocessesin below. soil,whichaffectmetalsandalsoorganicpollutants(Barthetal.,2009; Bloomfieldetal.,2006;Elzwayieetal.,2017;Maetal.,2016;Smithetal., 4.2.InteractionsbetweenHSandmicrobesinfreshwater 2009;Sunetal.,2016;Wangetal.,2015;Wangetal.,2016;Whitehead etal.,2009).TheinteractionsofHSwithpollutants,especiallysorptive Dissolved HS play an important role in freshwater ecosystems processes,havebeenthesubjectofintensestudiesforseveraldecades (Steinbergetal.,2003,2008).Itcandecreasepollutantstoxicitythrough andaredescribedinmanyoriginalandreviewpapersincludingPan formationofvariouschemicalcomplexeswithxenobioticcompounds et al. (2008), Piccolo et al. (1992), Senesi and Miano (1995) and andmetals.DissolvedHSaretakenupandinduceavarietyofresponse Werneretal.(2013). reactionsinorganisms(Steinbergetal.,2006,2009);theyserveasacar- Generally,sorptioncoefficientsdecreasewithincreasingtempera- bon and energy source for microorganisms in water and soil ture.Thiseffectisinverselyrelatedtowatersolubilitywhich,onthe (Lipczynska-Kochany,2018andrefs).DOMinteractswithfreshwater contrary, increases with temperature for most organic compounds organismsinavarietyofwaysanditcontrolstheirgrowth(Steinberg (DelleSite,2001;Jiaetal.,2010;Tremblayetal.,2005;Wangetal., etal.2009).ManyauthorsreportedHSroleinsupportingbacterialpro- 2010).ThroughcomplexationandbindingHScanenhancewatersolu- ductioninlakes,riversandblackwatermarsh(MoranandHodson, bilityandmobilityofmetalsandotherpollutants(SpositoandWeber, 1990; Moran et al., 2000; Steinberg and Bach, 1996; Tranvik and 1986;VanTrumpetal.,2006).ManystudiesdemonstratedthatpH, Höfle,1987;Tranvik,1988;TranvikandSieburth,1989;Tranvik,1990, temperatureandionicstrengthhaveanimportantinfluenceonthespe- 1992;Visser,1985a,1985b).Forinstance,TranvikandHöfle(1987)re- ciation of metal and binding with HS and other soil constituents portedthatheterotrophicbacterialbiomassproducedonwaterfrom (Benedettietal.,1995;Ghabbouretal.,2001;GüngörandBekbölet, humiclakewasdoubleascomparedtothatonclearwater. 2010;Havelcovaetal.,2009;Kjølleretal.,2004;PehlivanandArslan, LargeriversfrequentlyreceiveinputsofDOMfromsoilandwet- 2006;Reederetal.,2006;Sauveetal.,2000;Whiteheadetal.,2009; lands.CCisexpectedtoalterconditionsacrosstheEarthandtoinflu- Wijngaardetal.,2017).HShavefoundanapplicationinremediation ence the DOM export. CC induced variations in runoff and andbioremediationofsoilcontaminatedwithorganicpollutantsand temperaturewilllikelyresultinchangesintheDOMstructureandits E.Lipczynska-Kochany/ScienceoftheTotalEnvironment640–641(2018)1548–1565 1553 Fig.3.ImpactofCConHSandsurfacefreshwater. concentrationsinfreshwater(e.g.Benoyetal.,2007;ChristandDavid (Bloomfieldetal.,2006;Sjerpsetal.,2017;Whiteheadetal.,2009, 1996; Duan et al., 2017; Eimers et al., 2008; Porcal et al., 2009; Section3.1herein).CCisalsoexpectedtoinfluencetransportandredis- Mortsch and Quinn, 1996; Porcal et al., 2015). During the last tributionpathwaysofpollutants,becauseadsorptionprocessesaretem- 30years,anincreaseinDOMconcentrationsinlakesandrivershas peraturedependentandsodirectlyaffectedbyCC(Kallenbornetal., beenalreadyobservedinEuropeandNorthAmerica(Hongveetal., 2012;Ripszametal.,2015).Moreintenseextremeeventslikestorms 2004;Evansetal.,2005;Freemanetal.,2001b, 2004;Porcaletal., andrainfallaswellasfloodingmayreleasepollutantsadsorbedtosed- 2009;Schindleretal.,1997;Vuorenmaaetal.,2006;WorrallandBurt imentsandsoil,andtransportthemtorivers,lakesandoceans.Melting 2004).ChangesinDOMstructureandconcentrationareexpectedto ofpolaricecapsandpermafrostmayremobilizepollutantsstoredin varybecause,accordingtotheCCmodels,theCCeffectssuchasthefre- snowandiceand,asaresult,bringthembacktoaquaticecosystems quencyofstorms,droughtandrunoffevents,willdependontheregion (Spezzano,2012).DOMbindsnutrients(N,P,Fe),metalsandotherpol- (CoxandWhitehead, 2009;Eimerset al.,2008;Evanset al.,2006; lutants, affecting their toxicity and bioaccumulation (Section 2.1). TranvikandJansson,2001).TerrestriallyderivedDOMisdecomposed Underalteredenvironmentalconditions,theDOMstructureanditsin- bymarineaswellasestuarinebacterialcommunities(Eshametal., teractionswithcontaminantsmaychangeleadingtothereleaseof 2000;Rockeretal.,2012).Temperatureisconsideredtobeanimportant bound nutrients and pollutants, including toxic free metal cations factoraffectingmicrobialproductionandspecificgrowthrateinestua- (BertilssonandTranvik,2000;Keltonetal.,2007;Shilleretal.,2006; rine,costalandfreshwaterecosystems(Goldmanetal.,2013;Shiah StummandMorgan1995;Vähätaloetal.,2003). and Ducklow, 1994). It is thereforelikely that CC will increase the amountofDOMinsurfacewaters,enhancingtheobservedactivity.As 4.4.EffectofsunlightontheHS-microbialinteractionsinfreshwater aresultofCC(higherwatertemperature,changesinrainfallandin- creasednutrientinputs)harmfulalgalbloomsinfreshwaterandinma- Innaturalwaters,HSrepresentthemainfractionofDOMthatab- rineenvironmentsareexpectedtoincrease(Paul,2008;Chapraetal., sorbssolarradiation(Pauletal.,2004,2006a).SunlightaffectstheHS 2017).Ontheotherhand,micro-algalgrowmayhaveabeneficialeffect –microbialinteractioninanumberofwaysandboth,benefitsandad- becausemicro-algaecanbeconvertedtobiodieselfuel,allowingreduc- verseeffectsonaquaticorganismshavebeenreported(Amadoretal., ingtheuseofcarbon-basedfossilfuelssuchaspetroleum(Chisti,2008; 1989;BertilssonandTranvik,2000;Granélietal.,1996;Osburnetal., PienkosandDarzins,2009;Lardonetal.,2009;Mataetal.,2010;Sayre, 2001;Pauletal.,2004;Porcaletal.,2015;Scullyetal.,2003a,2003b; 2010). Steinberg,2014). IncreaseoftemperatureandanenhancedbiodegradationofSOM 4.3.HSandpollutantsinsurfacewaters leadtoanincreaseintheproductionofDOM,whilethefloodingand runoffexportDOMfromsoiltoriversandlakes.AnychangeinDOCcon- EffectsofHSonbiodegradationinsoilhavebeenextensivelyinves- centrationsandpropertiesmayaffectbiological,chemicalandphoto- tigated.However,muchlessattentionhasbeensofarpaidtoeffectsof chemicalprocessestakingplacethere.ThebrownDOMinlakeand HSandCConthetoxicityandbiodegradationoforganicpollutantsin rivers absorbs solar light and undergoes photochemical reactions freshwaterecosystemandinsediments(Delplaetal.,2009;Noyes whichmodifyitschemicalproperties. etal.,2009).ResultsoffewstudiesconfirmthatHS-pollutantsinterac- PhotolysisofDOMproducesbioavailablelowmolecularorganic tions can alter contaminants toxicity and their biodegradation compounds,whichserveasorganicnutrientsforheterotrophicbacteria (TranvikandHöfle,1987). anditcanreleasetheDOM-boundinorganicnutrients,stimulatingthe Climatewarmingandchangingrainfallpatternsareexpectedtoaf- microbialgrow(BertilssonandTranvik,1998,2000;Pauletal.,2004; fectfateandbehavioroforganicpollutantsinsurfacewater.Mostof Tranviketal.,2009).Therefore,theincreasedconcentrationofDOMin chemicalreactionsandmicrobialprocesses,includingDOMdegradation watermayhaveabeneficialeffectbecauseDOMstimulatesactivityof anditsinteractionswithcontaminants,arefasterathighertemperature bacteriadegradingorganicpollutants.Ontheotherhand,sunlightcan 1554 E.Lipczynska-Kochany/ScienceoftheTotalEnvironment640–641(2018)1548–1565 damagemicroorganisms(Scullyetal.,2003a,b).Inadditiontodirect beappliedinacombinationofphysical,chemicalandbiologicalpro- photolysis,microbescanbedestroyedbyfreeradicalsreleasedduring cesses(Kimetal.,2015;Liuetal.,2015;USEPA,1996;Vymazal,2013, thephoto-irradiationofDOM(Steinberg,2014). 2014;Wuetal.,2015b),includingacombinationofbiologicallagooning Anincreaseinbrowningofthesurfacewaters,causedbytheHS withasolardrivenphoto-Fentonreaction(Silvaetal.,2015)aswellas washedfromthesurroundinglandmayhaveanadverseeffectonthe CWswithmicrobialfuelcells(MFCs(Dohertyetal.,2015).Another waterquality.Ithasbeenrecentlyobservedthatanincreaseofthe novel systemhasbeen proposedbyJasper andSedlak(2013)who amountofDOMresultedinincreasedabsorptionofsolarultraviolet havedemonstratedthatopen-watercellsinunitprocesstreatment rays,preventedlightfrompenetratingwaterandkillingpathogens.In wetlandscanusesunlighttoremovetraceorganiccontaminantsfrom somecases,browning decreasedtheability of sunlightto disinfect municipalwastewater. waterbyafactorof10.Thus,anincreaseinbrowningofthesurfacewa- Constructionandapplicationsofwetlandstosurfacewatertreat- ters,causedbyDOMwashedintothelakefromthesurroundingland menthavebeenextensivelystudiedanddescribedinnumerousother may have an undesirable effect for drinking water supplies originalandreviewarticles(e.g.Caoetal.,2016;Chenetal.,2016; (Williamsonetal.,2017). Chyanetal.,2016;CorbellaandPuigagut,2018;Hernández-Crespo etal.,2017;Hijosa-Valseroetal.,2016;Jácomeetal.,2016;KKivaisi, 4.5.Surfacewaterremediationandproductionofdrinkingwater 2001; Li et al., 2014; Lin et al., 2015; Lizama et al., 2011; Martín- Monerrisetal.,2013;Odingaetal.,2013;Papaevangelouetal.,2016; 4.5.1.Surfacewaterpollution Ruanetal.,2006;SundaravadivelandVigneswaran,2010;Tuetal., ItisexpectedthatchangesoccurringasaresultofCCwillhaveasig- 2014; Uggettia et al., 2016; Vymazal, 2010, 2014; Vymazal and nificantinfluenceonthefreshwaterquality(Delplaetal.,2009).Surface Březinová,2015;Zhangetal.,2014,2015). wateractsasareceptorofpollutants,whicharewashedoutandcarried Both,naturalandconstructedwetlandsareshallowwaterbodies, bythesurfacerunoff.Theymayincludefuelandoil,detergentsandfer- vulnerabletoclimatechange.Theyaresensitivetochangesintheir tilizersandvariouskindsoflitter.Riseoftemperaturewillenhancesoil watersupply(IPCC,1996)andsotheymaybestronglyaffectedbyalter- microbial activity and production of DOM (Kalbitz et al., 2000; ationsinthehydrologicalregimesandprecipitation.OtherCCrelated Section3.1),whichwillbewashedoutfromsoilandwetlandstofresh- factorsmayalsoplayanimportantrole.Theyincludeanincreasedtem- water(Evansetal.,2005;Freemanetal.,2001a;Moetal.,2016;Ritson perature(KadlecandReddy,2001),changedevapotranspiration,bio- etal.,2014b;Ritsonetal.,2017;Worralletal.,2003).Intensedown- geochemistry,amountsofsuspendedsedimentloadings(Burkettand pourscanwashsoilHS(Shangetal.,2018)anddesorbedpollutants Kusler2000)andincreasesinthefrequencyofextremeclimateevents. (Section3.2herein,Chouetal.,2018)intowatersourcesanditmay CCinducedenvironmentalchangesarelikelytoaffectCWsbioremedia- complicatewatertreatmentprocesses.Ontheotherhand,droughtcon- tion by affecting aquatic organisms (Steinberg 2003a; Lipczynska- ditionsandlowerstreamflowcanaggravatetheseproblemsbyconcen- Kochany,2018andrefs;Section3.1herein),aswellastheirinteractions tratingpollutantsandlimitingdilution. withHSandpollutants(Section3.2here). Inmanyplaces,surfacewaterpollutionisaseriousproblemandvar- Manywetlandprocesses,includingmicrobiallymediatedHSdecom- iousremediationtechniqueshavebeenapplied(e.g.LiandChu,2003; positionandnitrogencyclingreactions(mineralization,nitrification, Borin and Tocchetto, 2007; Cao et al., 2012; Centi and Perathoner, and denitrification), are affected by temperature (Hu et al., 2010; 2003).Watertreatmentmaybeconductedusingphysical,chemical, KadlecandReddy,2001;Liu2013).Thecoastalwetlands,suchasman- and biological treatment technologies (Hamby, 1996; Wang et al., groves,mightbealsoinfluencedbytherisingofsealevels(Barrosaand 2012),usingex-situorin-situmethods.Intheex-situapproach,con- Albernaza,2014;ChristandDavid,1996;Duanetal.,2017;Eimersetal., taminatedwaterisremovedtobetreatedelsewhere,whilein-siture- 2008;IPCC,1996;Porcaletal.,2009;Reyetal.,2005). mediation it is treated at the polluted site. Water remediation Variousprocesses,biological,chemicalorphysical,occurringinthe processesaredesignedtomeetstandardsbasedonhistoricalclimate complexwetlandsystems,overlapandinteract.Theytakeplacewithin conditions.UnderCCconditions,theexistingtechnologiesmayhave thevegetation,thewatercolumn,andinthesoilandinvolveplants,mi- tobemodified(Pykeetal.,2011). croorganisms,soilmatrixandpollutantsinwastewater.Thesecomplex processesarestillnotwellunderstood(Stottmeisteretal.,2003).How- 4.5.2.Naturalandconstructedwetlands(CWs) ever,itislikelythatCCinfluenceonvegetation,biologicalactivityand Bioremediationtechnologies(i.e.remediationusingaquaticplants, waterchemistry(pH,alkalinity,temperatureanddissolvedoxygen) aquaticanimalsandmicroorganisms,includingbacteriaandfungi) may have astrong effecton thewetlandperformance(e.g. Lizama havebeenconsideredtobeparticularlyattractiveasin-situmethods etal.,2011;Paingetal.,2015;StefanakisandTsihrintzis,2012).Asare- forthetreatmentofcontaminatedsurfacewater.Constructedwetlands sultofCC,adsorbedonsoilandsedimentsheavymetalsandothercon- (CWs)arefullyhuman-madewetlandsforwastewatertreatment.They taminants,maybereleasedbacktowater.Stormeventsmayaffect usenaturalwetlandprocesses,associatedwithwetlandhydrology, constructed (and natural) wetland discharges (Taylor et al., 1993, soils,microbesandplants.Potentialofwetlandplantstotreatwastewa- 2013).Mostoftheprocessesoccurringinwetlandsareexpectedtobe ters was recognized in Germany in the early 1950s (Seidel, 1955; affectedbyCC,buttheirresponsestoCCwilllikelyvary,dependingon Vymazal,2011).Sincethelate1960s,whenthefirstfull-scalesystems theregion.TheeffectofCConwetlandsmaybecomplexanddifficult werecreated,variousconstructedwetlands(CWs)andsemi-natural topredict(e.g.Champagne,2008;IPCC2001,2014;Erwin,2009;Junk treatment wetlands (SNTWs) (Kadlec and Wallace, 2009; US EPA, etal.2013;KadlecandReddy2001;Pauletal.2006b). 2015;Vymazal,2011)havebeenusedtotreatwastewaterinmany countries(e.g.Ateiaetal.,2016;Brix,1997;Chazarencetal.,2015; Ghrabi et al., 2011; Mitsch and Gosselink, 2007; Wu et al., 2015a, 4.5.3.Productionofdrinkingwater 2015b;Tamiazzoetal.,2015).CWs,SNTWsaswellasartificialfloating HSstimulatemicrobialdegradationofpollutantsandtheyplaya islands(AFs)canbeusedtotreatcollectedwastewaterfromvarious beneficialroleinremediationofsoil(Section3.2herein),wastewater sources,includingmunicipalanddomesticwastewaters(Kimetal., and groundwater (e.g. Lipczynska-Kochany and Kochany, 2008a, 2016; Vymazal, 2011), industrial and agricultural wastewaters, 2008b,2009,2011;Section5.2herein).ApplicationofHSinnaturalre- stormwater runoff and landfill leachate (e.g. Kadlec and Wallace, mediationofsurfacewater,highlycontaminatedwithnuclearwastehas 2009;Changetal.,2017;DengandNi,2013;Moratóetal.,2014;Sun beenalsoreported(Aleksandrovaetal.2010).However,HSpresencein etal.,2017;USEPA,1996;Vymazal,2013,2014;Zhaoetal.,2012). drinkingwaterisunwanted.Theycontributetoodor,color,tasteaswell Thesemethodscanbeusedastheonlytreatmentsbuttheymayalso astoacidityproblemsinwatersupplies.Theyareprecursorsofharmful E.Lipczynska-Kochany/ScienceoftheTotalEnvironment640–641(2018)1548–1565 1555 (Singer,1999)disinfectionby-products(DBPs)(Bondetal.,2011,2012; forgroundwatersupplyishigh,whileinareaswherepermafrostorgla- ChenandWesterhoff,2010;KimandYu,2007;Uyaketal.,2008). ciers melt, the groundwater recharge will increase (Dragoni and Duringthepast20years,topicsrelatedtothepresenceofHSin Sukhija,2008;Pitz,2016).ResultsofstudiesonthepotentialCCeffect drinkingwaterhavebeenstudiedbymanyresearchers(e.g.Hongve onthegroundwaterrechargehavebeendescribedinanumberoforig- etal.,2004).ExtensiveresearchontheHSremovalfromwaterhas inalandreviewarticles(e.g.EarmanandDettinger,2011;Holman, beenconductedusingvarioustreatmentmethods,includingcoagula- 2006;JyrkamaandSykes,2007;Milehametal.,2009;Meixneretal., tion,filtrationandadvancedoxidationprocesses.Resultshavebeende- 2016;Smerdon,2017). scribedinnumerousoriginalandreviewpapers(e.g.Domanyetal. CCisexpectednotonlyaffectrechargeand(discharge),butalsoto 2002; Lamsal et al., 2011; Levchuket al.,2018;Loweand Hossain, influence the quality of groundwater (Dragoni and Sukhija, 2008, 2008;MatilainenandSillanpää,2010;Matilainenetal.,2010;Murray Greenetal.,2011;Tayloretal.,1993,2013;Taylor,2014).Therelation and Parsons, 2004; Philippe et al., 2010; Stanford and Majeda betweenCCandgroundwaterisconsideredmorecomplicatedthan Khraisheh,2009). thatwithsurfacewater.Groundwateraquifershaveahighstorageca- AsaresultofCC,thequalityofthesourcefreshwaterisexpectedto pacityandarebelievedtobelesssensitivetoCCthansurfacewaters. deteriorate.Drinkingwaterproductionfacilitiesarenotalwaysde- However,groundwatertemperaturemaybemoresensitivetoclimate signedandequippedtohandletheincreasedconcentrationsofDOM warmingthanpreviouslybelieved.Recentreportsindicatethatincreas- andothercontaminants.Theymayneedtoadapttheirprocessesto ing groundwater temperature may have a significant influence on dealwithconsequencesoffrequentoccurrencesofextremeweather groundwaterandriverecology(Greenetal.,2011;Menbergetal., andwithvariableDOMconcentrations.Thus,modificationsoftheinfra- 2014;Pitz,2016).RelativelyfewstudiesonCCanditsinfluenceon structuremightberequiredandhighercostofdrinkingwaterproduc- groundwaterhavefocusedonprocesses,whichmayaffectgroundwater tioncanbeexpected(Delplaetal.,2009;Raekeetal.,2017;Ritson quality.TheyincludeinvestigationsofCCeffectsonpesticidefateand etal.,2014a,2014b;Ritsonetal.,2016). transportinthesubsurface(Bloomfieldetal.,2006). HSingroundwateroriginatefromrechargeorin-situgenerationby 5.EffectofCConthequalityofgroundwateranditsremediationin- partialdegradationofsedimentaryorganicmatter,includinglignite.HS situ concentrationandcompositiondependsontherechargeconditions,af- fectedbyCC(Artingeretal.,2000;Buckau,2005).ResultingfromCC,ex- 5.1.EffectofCCongroundwaterrechargeandquality pected intense downpours can wash out soil HS and desorbed pollutantsnotonlyintosurfacewaterbutalsotogroundwater.Ex- Globally,groundwateristhesourceofonethirdofallfreshwater pectedCCimpactsonthegroundwaterqualityhavebeensummarized withdrawals,supplyinganestimated36%,42%,and27%ofwaterused inFig.4. for domestic, agricultural, and industrial purposes, respectively HSplayakeyroleinthetransportofpollutants,includingheavy (ShresthaandPandey,2016).Itistheworld'slargestreservoiroffresh- metalsandradionuclides.TheCCinducedchangesin thestructure wateranditplaysanimportantroleinsustainingecosystemsanden- andquantityofHSingroundwatermayalterinteractionsbetween abling human adaptation to climate variability and change. CC is metals,HS,soilsandsediments(Kjølleretal.,2004).Thesorptionof expectedtohaveasignificantinfluenceonsoilwaterandtemperature, HSonoxidesandclaymineralsisknowntochangethephysicochemical aswellasonsubsurfacehydrologicalandthermalprocesses(Green propertiesofrelevantinterfaces(Guetal.,1995,1996)anditisaffected etal.,2011;Menbergetal.,2014).However,researchontheCCimpact bypHchangesJiangetal.,2014).HSformcomplexeswithironoxides onwatersystemshasbeenfocusedmainlyonthesurfacewater,while throughvarioustypesoffunctionalgroupsandtheycansorbtomineral potentialeffectsongroundwaterhavereceivedmuchlessattention surfaces(e.g.Tipping,1981;Liuetal.2008).HScandonateelectronstoa (Aslametal.,2018). numberofdissolvedandsolidFe(III)compounds(BauerandKappler, TheCChasapotentialtoaffectboththequalityandquantityof 2009)andmagnetite(Sundmanetal.,2017),resultinginthereduction groundwater,predominantlythroughimpactsonrechargeandevapo- andsubsequentdissolutionofminerals.HS-induceddissolutionofmin- transpiration.Groundwaterisrechargednaturallybyrainandsnow eralsmayresultinremobilizationofcontaminantspreviouslyadsorbed meltandbyinteractionswithsurfacewater(rivers,lakesandwet- onitssurface.CCmayhaveasignificantimpactonthesecomplexenvi- lands).Soilmoistureisalsoanimportantfactorinthegroundwaterre- ronmentalequilibria.PollutantscanbealsoadsorbedonHSandform chargeprocess(Balek,1988;Sophocleous,2004).Groundwaterand stableaqueouscomplexes,whatmayimpacttheirremoval(Klausen surfacewaterusedtobeconsideredseparateentities,andinvestigated etal.,2003;Liuetal.,2008;O'Loughlinetal.,1999;Sunetal.,2016). individually.However,processesoccurringinthetransitionzonesmay affect transport, degradation, transformation, precipitation, and/or sorptionofcontaminants.Resultsofstudiesonexchangeprocessesbe- tweengroundwaterandsurfacewaterhaveshownthatsuchinterac- tionsmayhaveasignificantimpactonthewaterqualityofeitherof these hydrological zones (Kalbus et al., 2006; Keery et al., 2007; Sophocleous,2002;Stegenetal.,2016). Anychangesintheregimeandquantityofprecipitation,together withchangesintemperatureandevapotranspiration,haveasignificant influenceonthegroundwaterrecharge.MoststudiesontheCCeffects ongroundwaterhavefocusedonprocessesthataffectinput(recharge), output(discharge),changesinstorage,aswellastheassociatedphysi- calprocesseswhichcontrolsubsurface-waterflow.Itispredictedthat, asaresultofCC,theoverallrateofgroundwaterrechargemayincrease. Thehigherintensityandfrequencyofprecipitationispredictedtocon- tributesignificantlytothesurfacerunoff,whileevapotranspirationrate mayincreaseasaresultofglobalwarming.However,itisalsoexpected thatclimate-relatedchangestothegroundwaterrecharge,storage,and baseflowdischarge,willdependonlocalconditions.Theremaybedry andsemi-dryareaswhereaquiferrechargeratesarelowanddemand Fig.4.ImpactofCCongroundwater. 1556 E.Lipczynska-Kochany/ScienceoftheTotalEnvironment640–641(2018)1548–1565 ItisexpectedthatchangesinDOMcompositionmayhaveaninflu- surfactantsallowingfordesorptionoftheorganiccompoundsfrom enceonthefateoforganicpollutants,includingpolycyclicaromatichy- thesoilandsediments,andmakethemmoreavailableforbiodegrada- drocarbons(PAHs)(Chenetal.,2017;Haftkaetal.,2010;Huretal., tion.However,underchangedconditions,dissolvedHScanadsorbto 2014).Metals,andotherpollutants,adsorbedonironmineralscanbe soilsandaquifermaterials,resultinginre-immobilizationofpollutants. re-mobilizedandreleasedtogroundwater.Itmaybethereforeexpected HSarealsoknowntobindtomineralsurfacesandtometals(e.g. thatanychangesinDOMconcentrationingroundwatersystemswill Davis, 1982, 1984; Davis and Leckie, 1978; Ho and Miller, 1985; havealargeeffectonthegroundwaterpollution(Wengetal.,2009). KerndorffandSchnitzer,1980;Tipping,1981).Theinteractionsbe- tweenHS,metalsandmineralsarestronglydependentonanumber 5.2.Groundwaterremediationin-situ of factors, including pH (e.g. Ho and Miller, 1985; Kerndorff and Schnitzer,1980).ThemobilityofametalwithaffinityforHSisdeter- Itisverylikelythatextremeweatherevents,causedbyCC,willlead minedbythemobilityofHS.Ingroundwater,HScandecreasemobility toreductionofsurfacefreshwater.Inthissituation,groundwaterwillbe ofHS-bondedmetals,ifconditionsfavorsorptionofHStomineralsur- criticaltorelievetheseriousfreshwaterproblems.Peopleinwater- faces.However,whenconditionsfavormobilityofHS,mobilitythe scarce areas will become increasingly depended on groundwater. HS-complexedmetalmaybeenhanced.Dependingongeologicalcondi- Therefore,theavailabilityandqualityofgroundwaterareofagreat tions,HScouldbeusedtomobilizesomemetalsoritcouldbeusedto importance. enhancethesorptionofothermetals(Petrovićetal.1999). Manygroundwatersitesarecontaminatedwithcomplexmixtures Ithasbeenconcludedthatanin-situapproachforremediationof ofvariouspollutants,includingchlorinatedsolvents,fuels,metalsand/ groundwaterplumescouldbebasedontheinjectionofHSintothe orradioactivematerials.Since1970s,pollutedsiteshavebeentreated aquifer, enhancing attenuation of some metals in the subsurface usingthepump-and-treatsystems,i.e.bypumping-outgroundwater (Petrovićetal.,1999;WangandMulligan,2006;Denhametal.,2014, fromthesubsurface,followedbyanabovegroundtreatmentandadis- 2015).Underthegroundwaterconditionstypicalofmanymetalandra- chargebackintotheground.Asaresultofpumping,thegroundwater dionuclidecontaminantplumes,HSsorbwelltomineralsurfaces.Wan levelislowered,leavingremainingpollutantsadsorbedtothesoil. etal.(2011)havedemonstratedthatpeatandsoilHS,whensorbedto When,afterthetreatment,groundwaterreturnstoitspreviouslevel, SavannahRiverSitesoils,enhancedthesorptionofuraniumunder adsorbedcontaminantsdissolve,whatiscalledthe“rebound”(Nyer, acidicconditions(pH=3.0to4.5).Denhametal.(2014,2015)have 2000a;USEPA,1996).Itispossiblethatmajorrainorfloodingevents, alsoconcludedthattheinjectedHSisapotentialattenuation-based whichwilllikelybecomemorefrequentunderCC,mayaffectsuch methodforin-situremediationofacidicwasteplumescontainingura- rebounds. nium,iodineI-129(butnotforstrontium,Sr-90). Oneshouldnote Morerecently,variousatthesite(in-situ)remediationtechnologies thoughthattheHSadsorptiontosedimentmineralsvarieswithpH.In- havebeendeveloped.Suchmethodsdonotneedanyextractionofcon- teractionsbetweenmetalsandHSaredependentonanumberoffac- taminatedgroundwateroutoftheground.Instead,theremediationis tors,includingpH.ItisthereforepossiblethatCCinducedchangesin carried out directly atthecontaminatedplume (Naftz et al.,2002; the aquifer conditions, might lead to release of some HS and re- Nyer,2000b).Asignificantinterestinnaturalattenuationofmetals mobilizebondedmetals.Carefulmonitoringwouldbethereforere- and organic pollutants in soil and in aquifers has been observed quiredandsomecorrectionsofthetreatmentmaybeneeded. (Bekins et al., 2001; Bourg et al., 1992; NRC, 2000; Wang and InjectionofdissolvedHS,followedbyasubsequentinjectionofacid, Mulligan,2006;Wiedemeieretal.,1999).Naturalattenuationisdefined hasbeenproposedasamethodforcreatingapermeablereactivebar- bytheUSEnvironmentalProtectionAgency(USEPA)as“avarietyof rier,PRB(OesteandKempfert,1996;Palmer,2000;Thiruvenkatachari physical,chemical,orbiologicalprocessesthat,underfavorablecondi- etal.,2008).PRBsfilledwithHShavebeenalsoreportedbyBalcke tions,actwithouthumaninterventiontoreducethemass,toxicity,mo- etal.(2005),Kopinkeetal.(2005),WangandWang(2011).Humus bility,volume,orconcentrationofcontaminantsinsoilorgroundwater” degradationinsoilisdependentonenvironmentalconditionsincluding (Rittmann,2004).Thenaturalattenuationprocessesareconductedin- temperature,soilmoisture,pH,O ,redoxpotential,sorptioncapacity, 2 situandtheyincludebiodegradation;sorptionandchemicalorbiologi- etc.(Schmidtetal.,2011,Section3.1herein).Thus,CCinducedchanges calstabilization,transformation,ordestructionofpollutants.Thesepro- oftheseconditionsarelikelytoaffecttheperformanceofHSPRBs. cessesareexpectedtobeinfluencedbyCC. CCmayalsoaffecttheperformanceofPRBsfilledwithothermate- HSandHS-basedproductsholdagreatpromiseasreactiveagents rials,includingironoxidesandmetalliciron(Gheju,2017;Henderson forin-situremediation.Theycanperformmultiplefunctionsinbiotic andDemond,2007;Obiri-Nyarkoetal.,2014;Schereretal.,2008). (Lipczynska-Kochany,2018)andabioticprocesses.Theirinteractions Under environmental conditions, iron undergoes corrosion (Evans, withpollutantsandlivingorganismscanbeusedinremediationof 1981;Lipczynska-Kochanyetal.,1994;Sato,1989).Atacidicandanoxic soil andgroundwater. Anextensiveoverviewof HSpropertiesand sites,attenuationproceedsmainlythroughreductionandimmobiliza- their potential applications have been given by Perminova and tion on the iron surface (Matheson and Tratnyek, 1994; Tratnyek Hatfield(2005).PropertiesofnaturalHSdependontheiroriginandso etal.,2003).However,atneutralpH,corrosionproductsbecomeimpor- the reactivity of HS from different sources may vary significantly tant.Presenceofironoxidesonthezerovalentiron(ZVI)PRBshasbeen (Angstetal.,2018).Therefore,aconceptofachemicalmodificationto demonstratedinmanylabandfieldsexperiments(e.g.Farrelletal. designtheHSmaterialsofadesiredremedialactivityhasbeenintro- 2001;Furukawaet al.,2002;Jiao,et al.,2009;Phillipset al.,2003; duced.ManufacturedHS,withenhancedthenaturalHSproperties, Wilkinetal.,2005;Su,2007).Pollutantsareremovedfromgroundwater havebeendescribedbyPerminovaetal.(2004,2011,2012,2014)and by adsorption/co-precipitation on the corroding iron surface Volikovetal.(2016a,b). (Noubactep, 2010), along with redox transformations mediated by Permeablereactivebarriers(PRBs)andin-situflushingareconsid- iron(hydr)oxidescoatingonthesurfaceofiron(Johnsonetal.,1998; eredtobethemostpromisingtechnologiesapplyingHS(Perminova Schereretal.,1998;Ritteretal.,2002).TheZVIPRBtechnologyhas andHatfield,2005).In-situflushinginvolvestheinjectionorinfiltration been described in many original and review articles (e.g. Ghauch, ofanaqueoussolutionintoazoneofcontaminatedsoiloraquifertoat- 2015;Gheju,2017;Guanetal.,2015;HendersonandDemond,2007; tenuate metals and organic pollutants in soils and aquifers (Nyer, ITRC,2011,Noubactep,2015;Sunetal.,2016).However,therehas 2000b). HS are used as flushing agents to treatsites contaminated beenlittleinterestsofarinthepotentialeffectofCContheperformance withdieselfuel,PAHsandotherorganiccontaminants(Conteetal., ofPRBs. 2005; Georgi et al., 2007; Lesage et al., 2001; Van Stempvoort and Warner(2007)notedthattheclimate-inducedshiftsinhydraulic Lesage2002;VanStempvoortetal.,2002a,b,2005).HSactasnatural gradients(resultingfromshiftingrainfallpatterns,risingsealevels, E.Lipczynska-Kochany/ScienceoftheTotalEnvironment640–641(2018)1548–1565 1557 andfluctuatingriverlevels)maybeareasonforconcern.Hesuggested subsurfaceanditmayaffecttheperformanceofPRBs,whichareusually thatsitedesignshouldtakeunderconsiderationpossibleshiftsinthe placedinthegroundfordecades.Itcanbeexpectedthat,asaresultof hydraulicgradientcausedbyCC.Nevertheless,manyotherenviron- CC,thequalityofsourcefreshwaterwilldecline,whatwillaffectthe mentalfactorsmayalsohaveaneffectonthePRBsperformance.They productionofdrinkingwateranditmayincreasethetreatmentcost. includecharacteristicsoflocalconditione.g.temperature,pH,dissolved oxygen,aswellaswaterchemistry(e.g.,anions,cations,HS)andpres- 7.Conclusions enceofmicroorganisms.Theseinfluences,stillnotwellunderstood, shouldnotbeconsideredindividuallyisolatedbecause,innaturalsys- CCisexpectedtohaveasignificantimpactonHSandonthequality tems,theyusuallyaffecteachanother(Sunetal.,2016). offreshwater.AsaresultoftheCCinducedbiodegradationofSOM,and Theironoxidewaterinterfaceisaverydynamicregioncharacter- anenhancedconcentrationofdissolvedHSinfreshwater,microbial ized by sorption, desorption, growth, and dissolution processes growthmaybestimulatedandbiodegradationofpollutantsinwater (Brownetal.,1999;CornellandSchwertmann,2003).Adsorptionof canbeenhanced.Ontheotherhand,negativeeffectsmaybealsoex- contaminantsonironhydroxides,andinteractionswithHS,depend pected,includinganinhibitionofsolardisinfectioninbrownlakesas stronglyonpHbecausethesurfacechemistryandthesurfacecharge wellasanimpactonthetreatmentoffreshwaterin-situ.Complexand oftheironhydroxidesoxidesvary.Removalofpollutantsadsorbedon stillnotfullyunderstood,naturalattenuationprocessesmaybeaffected oxidessurfaceisstronglyinfluencedbypHandtemperature.Changes inawaydifficulttobepredicted.Itispossiblethat,dependingonthe intheseconditionsmaybecriticalforthereleaseofmetals(Jiao,etal., localconditions,toxicpollutantsmaybere-mobilizedfromsediments 2009;Kumaretal.,2015)andotherpollutantsimmobilizedonthe and/or from some PRBs surface, increasing contamination in the PRBssurfaceorontheironmineralsingroundwatersediments. groundwatersystems.ManyofthepossibleCCeffects,describedin Transformationofpollutantsadsorbedonironoxidescanbeen- thisarticle,haveyettobeexploredandunderstood.Hopefully,the hancedbyironreducingmicrobes(VanNootenetal.,2008;Philipps enormouspotentialforinteresting,multidisciplinaryresearchwillen- etal.,2010),whosegrowthisdependentonpH,oxygenandtempera- couragereadersofthisreviewtoconductstudiesinthisimportant ture(ITRC,2011).Presenceofsulfate-reducingbacteriainoraround andstilllargelyoverlookedresearcharea. ironbarriersandthesubsequentformationofironsulfidescanalsoin- crease transformation of contaminants (Lipczynska-Kochany et al., 1994;Kumaretal.,2015;VanNootenetal.,2007).Insoilandsediments Acknowledgment environments,metaloxidesandbacteriatendtobeassociatedwith each another. Interactions between HS and bacteria (Lipczynska- AuthorisgratefultotheEditorandtotheanonymousRefereesfor Kochany2018andrefs)aswellasprocessesoccurringonthePRBSsur- theirhelpfulcomments. face,includingthesorptionofHSonironoxide-bacteriacomposite (Jiang,etal.,2014),arestillnotwellunderstood.PotentialroleofCC References changeoncomplicatedprocesses,relevantforthein-situremediation Aeschbacher,M.,Brunner,S.H.,Schwarzenbach,R.P.,Sander,M.,2012.Assessingtheef- ofgroundwater,areyettobeexplored. fectofhumicacidredoxstateonorganicpollutantsorptionbycombinedelectro- chemicalreductionandsorptionexperiments.Environ.Sci.Technol.46:3882–3890. 6.Summary https://doi.org/10.1021/es204496d. Aiken,G.R.,Hsu-Kim,H.,Ryan,J.N.,2011.Influenceofdissolvedorganicmatterontheen- vironmentalfateofmetals,nanoparticlesandcolloids.Environ.Sci.Technol.45: Humicsubstances(HS)arethemajorcarbonpoolinthebiosphere 3196–3201.https://doi.org/10.1021/es103992s. andtheirimportantroleintheglobalwarminghasbeenrecognized Aleksandrova,O.N.,Schulz,M.,Matthies,M.,2010.Naturalremediationofsurfacewater systemscontaminatedwithnuclearwasteviahumicsubstancesinSouthUral. andextensivelystudied.However,muchlessattentionhasbeenpaid WaterAirSoilPollut.206:203–214.https://doi.org/10.1007/s11270-009-0096-7. sofartoeffectsonthesurfacewaterandgroundwaterquality,which Alexandri,G.,Georgoulias,A.,Meleti,C.,Balis,D.,Kourtidis,K.A.,Sanchez-Lorenzo,A., mayresultfromtheclimateinducedimpactonHS.Increaseintemper- Trentmann,J.,Zanis,P.,2017.Ahighresolutionsatelliteviewofsurfacesolarradia- atureandenhancedbiodegradationofSOMleadstoanincreaseinthe tionovertheclimaticallysensitiveregionofEasternMediterranean.Atmos.Res. 188:107–121.https://doi.org/10.1016/j.atmosres.2016.12.015. productionofDOM,whilethefloodingandrunoffexportitfromsoil Amador,J.A.,Alexander,M.,Zika,R.G.,1989.Sequentialphotochemicalandmicrobialdeg- torivers,lakesandgroundwater.IncreasedconcentrationofDOMin radationoforganicmoleculesboundtohumicacids.Appl.Environ.Microbiol.55, waterwillstimulatemicrobialgrowthanditmayenhancebiodegrada- 2843–2849. Angst,G.,Messinger,J.,MariaGreiner,M.,Häusler,W.,Hertel,D.,Kirfel,K.,Kögel-Knabner, tionofpollutantsinwater.However,itmayhavealsonegativeeffects, I.,Leuschner,C.,Rethemeyer,J.,Mueller,C.W.,2018.Soilorganiccarbonstocksintop- includinganinhibitionofsolardisinfectioninsurfacewaters.Increase soilandsubsoilcontrolledbyparentmaterial,carboninputintherhizosphere,and inDOMconcentrationsinthesourcefreshwatermaycreateproblems microbial-derived compounds. Soil Biol. Biochem. 122:19–30. https://doi.org/ 10.1016/j.soilbio.2018.03.026. fordrinkingwaterproductionfacilities. Artinger,R.,Buckau,G.,Geyer,S.,Fritz,P.,Wolf,M.,Kim,J.I.,2000.Characterizationof ClimateinducedchangesinthestructureofHS,resultingfromtheir groundwaterhumicsubstances:influenceofsedimentaryorganiccarbon.Appl. microbialtransformations,aswellaschangesinacidityandotherenvi- Geochem.15:97–116.https://doi.org/10.1016/S0883-2927(99)00021-9. Aslam,R.A.,Shrestha,S.,Pandey,V.P.,2018.Groundwatervulnerabilitytoclimatechange: ronmentalfactorswillalterthecharacterofbindingbetweenHSand Areviewoftheassessmentmethodology.Sci.TotalEnviron.5(612-853-875). contaminants.Asaresult,re-mobilizationofmetalsandorganicpollut- https://doi.org/10.1016/j.scitotenv.2017.08.237. ants,andtheirsubsequentwash-upfromthesoilandsedimentssur- Ateia,M.,Yoshimura,C.,Nasr,M.,2016.In-situbiologicalwatertreatmenttechnologies forenvironmentalremediation:areview.J.Bioremed.Biodegr.7:348–353.https:// faces may beexpected.Thereis a concern that CCwill have broad doi.org/10.4172/2155-6199.1000348. negativeimpactsonthebehaviorandfateofmanyfreshwatercontam- Balcke,G.,Georgi,A.,Woszidlo,S.,Kopinke,F.D.,Poerschmann,J.,2005.Utilizationof inants.Both,naturalandconstructivewetlandsareexpectedtobeinflu- immobilized humic organic matter for in-situ subsurface remediation. In: encedandthein-situsurfacewatertreatment(CWs)maybeupset.Itis Perminova,I.V.,Hatfield,K.,Hertkorn,N.(Eds.),UseofHumicSubstancestoRemedi- atePollutedEnvironments:FromTheorytoPractice.NATOScienceSeries(SeriesIV: alsoanticipatedthat,asaresultofthesurfacewatershortage,demand Earth andEnvironmental Series)Vol.52. Springer, Dordrecht. https://doi.org/ forgroundwaterwillincrease.Groundwaterqualityanditseffectivere- 10.1007/1-4020-3252-8_10(PrintISBN978-1-4020-3250-9). mediationarethereforeofagreatimportance.Processesrelevanttothe Balek,J.,1988.Groundwaterrechargeconcepts.In:Simmers,I.(Ed.),EstimationofNatu- ralGroundwaterRecharge.NATOASISeries(SeriesC:MathematicalandPhysicalSci- groundwatertreatmentconductedin-situarestronglydependenton ences)Vol.222.Springer,Dordrecht DOI.https://doi.org/10.1007/978-94-015-7780- theenvironmentalconditions.Changesinacidityandotherenviron- 9_1. mentalfactorswillalterthecharacterofbindingbetweenHS,contami- Balser,T.C.,Gutknecht,J.L.M.,Liang,C.,2010.Howwillclimatechangeimpactsoilmicro- bialcommunities?In:Dixon,G.R.,Tilston,E.L.(Eds.),SoilMicrobiologyandSustain- nantsandminerals.Therefore,CC(andincreasedconcentrationsof able Crop Production. Springer Science + Business Media B.V. :pp. 373–397 DOM) may have a significant influence on processes occurring in Chapter10.https://doi.org/10.1007/978-90-481-9479-7_10