ebook img

Effect of Chemical Reaction Rates on Aero-heating Prediction in Re PDF

172 Pages·2012·7.44 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Effect of Chemical Reaction Rates on Aero-heating Prediction in Re

Effect of Chemical Reaction Rates on Aero-heating Prediction in Re-entry Flows A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy by D. Siva Krishna Reddy (Roll No. 06401001) Under the guidance of Prof. Krishnendu Sinha and Prof. Viren Menezes Department of Aerospace Engineering INDIAN INSTITUTE OF TECHNOLOGY–BOMBAY 2012 Toallthosepersonsandincidentswhoandwhichincultivatedscienticcuracity;inspiredmeto takeupdoctorialstudiesandmotivatedmeduring thethesiswork. c CopyrightbyD.SivaKrishnaReddy2012 (cid:13) AllRightsReserved Abstract A re-entry capsule encounters a high temperature and chemically reacting flow during the re- entry phase. Computational Fluid Dynamics is extensively used to simulate these flows, as high enthalpy and low density associated with the flight conditions are difficult to reproduce in wind tunnels or shock tunnels at each re-entry trajectory point. Flowfield solution and surface predictions, such as surface heat flux and pressure, at these conditions are sensitive to chemi- cal reaction rate constants used in the simulation. Uncertainty in the rate constants, which is inherentintheirmeasurement,inducescorrespondingchangesinthesurfaceproperties. Under- standingtheroleofrateconstantsontheflowsolution andtheassociatedsurfacepredictions is important. The present thesis investigates the effect of variation in chemical reaction rate constants on aero-thermal predictions at flight conditions. With in this scope, numerical simulations are performed by varying the reaction rate constants over their uncertainty range. Freestream con- ditions at 35 km, 62 km and 70 km condition are chosen as the test cases. They represent typical low, intermediate and high altitude flight in the earth atmosphere. These conditions are chosensothattheeffectsoffreestreamdensityandstagnationenthalpyontheheatingratevari- ations can be examined. The computations are performed with an in-house CFD code and the aero-thermalpredictionsarevalidatedagainstavailableflightdata. Flowfieldsolutionsarecom- puted by altering the reaction rates from their baseline values and they are carefully analyzed to understand the physical effects that influence the surface heat transfer rate. A controlled zonal analysis is performed to isolate the effects of shock-layer and boundary-layer chemistry onheatfluxvariations. Theanalysisisperformedatdifferentpointsalongthevehicleforebody, afterbodyandshoulder. It is found that the dominant chemical reactions in the gas mixture; chemical state of the gas, i.e. equilibrium, frozen and non-equilibrium; and the extent of recombination reactions at the vehicle surface are the critical factors that influence the heat flux variations due to the i uncertainty in the reaction rate constants. The stagnation enthalpy of the flow determines the dominant reactions to which the surface heating rate is sensitive. On the other hand, the gas densitydeterminesthechemicalstateofthegas,whichinturnaffectsthemagnitudeofheating ratevariations. Ingeneralincreasingthereactionratesenhancestherecombinationreactionsin the boundary layer that leads to higher surface heat flux. An opposite effect is observed when the rate constants are decreased. When the gas is in chemical equilibrium state, increasing the rateconstantsfurtherhasasmalleffectonthesurfaceheatingrate. Ontheotherhand,whenthe gas is in non-equilibrium state, increase or decrease of rate constants can lead to large changes in theheat fluxpredictions. Thesetrends arestudied in the threetest casesoutlined above. The results are then extrapolated to cover the entire range of Earth-reentry trajectory points with stagnationenthalpybetween2MJ/kgand32MJ/kg. Keywords: Re-entryflows,Computationalfluiddynamics,Thermo-chemicalnon-equilibrium, Chemicalreactionrateconstants. ii Contents Abstract i ListofTables vii ListofFigures ix Nomenclature xvi 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 ReviewofLiterature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 MotivationandObjectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 ScopeofThesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 SimulationMethodology 11 2.1 Non-equilibrium ViscousLaminarFlows . . . . . . . . . . . . . . . . . . . . . 12 2.1.1 EquationofState . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.2 SpeciesandMixtureTransportProperties . . . . . . . . . . . . . . . . 15 2.1.3 SpeciesDiffusion Coefficients . . . . . . . . . . . . . . . . . . . . . . 16 2.1.4 ChemicalSourceTerms . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.5 Vibrational SourceTerm . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 GoverningEquationsforTurbulentFlows . . . . . . . . . . . . . . . . . . . . 20 2.2.1 FavreAveragedEquations . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Spalart-Allmaras Model[34] . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 FiniteVolumeMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.1 Integration oftheInviscidFluxes . . . . . . . . . . . . . . . . . . . . 27 iii 2.3.2 SecondOrderSpacialAccuracy . . . . . . . . . . . . . . . . . . . . . 29 2.3.3 EvaluationoftheViscousFluxes . . . . . . . . . . . . . . . . . . . . . 29 2.3.4 TimeIntegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.5 SolutionProcedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 Aero-heatingPredictionsatFlightCondition 33 3.1 FIREIIConfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 SimulationMethodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.1 Computational Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.2 IterativeConvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.1 DescriptionoftheSurfaceProperties . . . . . . . . . . . . . . . . . . 45 3.3.2 EffectofGeometricSimplifications . . . . . . . . . . . . . . . . . . . 46 3.3.3 Comparison withFlightData . . . . . . . . . . . . . . . . . . . . . . . 48 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4 HeatingRateVariationsat35kmAltitude 51 4.1 SimulationMethodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.1.1 ChemicalReactionKinetics . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.1 EffectofReactionRatesVariationontheHeatingrate . . . . . . . . . 58 4.2.2 NoseStagnationPoint . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2.3 ExpansionRegion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2.4 Afterbody . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.2.5 IncreasedReactivityintheEntireDomain . . . . . . . . . . . . . . . . 64 4.2.6 DecreasedReactivityintheEntireDomain . . . . . . . . . . . . . . . 69 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5 HeatingRateVariationsat70kmAltitude 73 5.1 SimulationMethodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.1.1 GridConvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 iv 5.2.1 BoundaryLayerThermo-Chemistry . . . . . . . . . . . . . . . . . . . 79 5.2.2 AlteredReactivityintheBoundarylayer . . . . . . . . . . . . . . . . 83 5.2.3 EffectonSurfaceHeatFlux . . . . . . . . . . . . . . . . . . . . . . . 89 5.2.4 IncreasedReactivityintheEntireDomain . . . . . . . . . . . . . . . . 94 5.2.5 DecreasedReactivityintheEntireDomain . . . . . . . . . . . . . . . 98 5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6 HeatingRateVariationsat62kmAltitude 103 6.1 SimulationMethodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.1.1 GridConvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2.1 Thermo-Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2.2 AlteredReactivityintheEntireDomain . . . . . . . . . . . . . . . . . 109 6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7 Variation withaltitude 118 7.1 ChemicalReactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.1.1 Shock-layerChemistry . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.1.2 TemperatureVariationwithAltitude . . . . . . . . . . . . . . . . . . . 119 7.1.3 Boundary-layer Chemistry . . . . . . . . . . . . . . . . . . . . . . . . 120 7.2 DegreeofNon-equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.2.1 ThermalNon-equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 124 7.2.2 ChemicalNon-equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 126 7.3 HeatingRateVariations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7.3.1 CriticalFactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7.3.2 HeatingRateVariationsattheNoseStagnationPoint . . . . . . . . . . 130 7.3.3 EffectofStagnationEnthalpy . . . . . . . . . . . . . . . . . . . . . . 131 7.3.4 EffectofDensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 8 ConclusionsandFutureWork 134 8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 v

Description:
high enthalpy and low density associated with the flight conditions are difficult to Hence additional thermo-chemical equations which account for the.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.