ebook img

Effect of Atomic Charges on Octanol–Water Partition Coefficient Using Alchemical Free Energy ... PDF

15 Pages·2017·1.97 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Effect of Atomic Charges on Octanol–Water Partition Coefficient Using Alchemical Free Energy ...

molecules Article Effect of Atomic Charges on Octanol–Water Partition Coefficient Using Alchemical Free Energy Calculation KojiOgata* ID,MakotoHatakeyamaandShinichiroNakamura RIKENInnovationCenter,NakamuraLaboratory,2-1Hirosawa,Wako,Saitama351-0198,Japan; [email protected](M.H.);[email protected](S.N.) * Correspondence:[email protected];Tel.:+81-(0)48-467-9477 Received:19January2018;Accepted:14February2018;Published:15February2018 Abstract: The octanol–water partition coefficient (logP ) is an important index for measuring ow solubility, membrane permeability, and bioavailability in the drug discovery field. In this paper, the logP values of 58 compounds were predicted by alchemical free energy calculation using ow moleculardynamicssimulation. Infreeenergycalculations,theatomicchargesofthecompoundsare alwaysfixed. However,theymustberecalculatedforeachsolvent. Therefore,threedifferentsets ofatomicchargesweretestedusingquantumchemicalcalculations,takingintoaccountvacuum, octanol,andwaterenvironments. Thecalculatedatomicchargesinthedifferentenvironmentsdo notnecessarilyinfluencethecorrelationbetweencalculatedandexperimentallymeasured∆G water values. Thelargestcorrelationcoefficientvaluesofthesolvationfreeenergyinwaterandoctanol were 0.93 and 0.90, respectively. On the other hand, the correlation coefficient of logP values ow calculatedfromfreeenergies,thelargestofwhichwas0.92,wassensitivetothecombinationofthe solvationfreeenergiescalculatedfromthecalculatedatomiccharges. Theseresultsrevealthatthe solventassumedintheatomicchargecalculationisanimportantfactordeterminingtheaccuracyof predictedlogP values. ow Keywords: MDsimulation;thermodynamicintegration;solvationenvironment;atomiccharge 1. Introduction The octanol–water partition coefficient (logP ) is an index used in drug discovery processes ow to estimate the solubility, membrane permeability, and bioavailability of compounds [1,2]. Severalexperimentalmethodsformeasuringithavebeendeveloped[2–6],buttheyaretimeconsuming andcostly,becauseexperimentalmethodsusetheactualcompounds,andsometimes,thesynthesisof acompoundtakesalongtime. Toacceleratethedrugdiscoveryprocessandtoreduceitscost,weneed alogP measurementmethodthatiseasier,faster,andmoreaccuratethanthecurrentones. ow Computational methods for predicting the logP value have been developed using various ow techniques. The methods summing the contributions of a compound’s atoms and fragments (e.g., XLOGP3 [7], KOWWIN [8], etc.) rapidly calculate logP values similar to those obtained ow experimentally,andhavethereforebeenusedinthescreeningofdrug-likecompounds[9],makingit possible to calculate the logP values for the tens of millions of compounds in databases such as ow PubChem[10]andZINC[11]. The logP values of compounds can also be predicted accurately by alchemical free energy ow calculationtechniquesusingmoleculardynamics(MD)simulationandMonteCarlosimulation,suchas thermodynamicintegration(TI)[12]andfreeenergyperturbation(FEP)[13]. Thesemethodshave beenusedtocalculatehydrationfreeenergyofaminoacids[14],nucleobases[15],andligand/protein bindingfreeenergy[16–28]. Theycantreatwatermoleculeseitherimplicitlyorexplicitly. Thus,inthe caseofligand/proteinbindingfreeenergycalculation,theycanbeusedtopredictthethermodynamic Molecules2018,23,425;doi:10.3390/molecules23020425 www.mdpi.com/journal/molecules Molecules2018,23,425 2of15 behavior of a ligand in solvents. In compounds containing water molecules bridging between the protein and ligand, the calculation with explicit water molecules is efficient for calculating binding free energy. In the application of alchemical free energy calculation to logP calculation, ow DeBolt and Kollman successfully estimated the logP using FEP method with modified force ow field [29]. They were able to reproduce the structural and thermodynamic behaviors of liquid octanol. Using an implicit solvation model, Huang et al. reported a logP prediction method ow in which the 3D-RISM-KH theory was used to calculate the solvation free energy in water and in octanol[30]. Toreproducetheexperimentalconditions,Bhatnagaretal. reportedanadaptivebiasing forcemethodusingexplicitwaterandoctanolsolvents[31]. Inanotherapplication,saturatedoctanol solvation was used for the calculation, taking the hydrate state of octanol in the experiment into account [32,33]. These methods were able to estimate logP values in agreement with the ones ow measuredexperimentally. Thealchemicalmethodsusingall-atomMDsimulationrequiretimeand computerresources,comparedwithatom-andfragment-basedmethods. However,thesemethodsare abletopredictthepartitioncoefficientofseveralsolvents,andobservethethermodynamicbehavior ofcompoundsinthesolvents. Therefore,thefreeenergycalculationusingthealchemicalmethodis expectedtoprovideusefulinformationonphysicalchemistrypropertiesofthecompounds. Inthispaper,thelogP valuesforrelativelysmallcompoundswerepredictedfromthesolvent ow freeenergiescalculatedbyTI[34,35]. Thecalculationofthedifferencefreeenergy,∆G,wasestimated by the Bennett’s acceptance ratio (BAR) method [36]. To analyze the contribution of the atomic charges of the compounds, three sets of atomic charges were examined: one in vacuum, one in octanol,andtheotherinwater. Solvationfreeenergiesinwaterandinoctanolareingoodagreement withtheonesmeasuredexperimentally. Thecorrelationcoefficient(R)ofthesolvationfreeenergies indicatedstrongcorrelationbetweencalculatedandexperimentallymeasuredvalues. Theydidnot differ significantly among the three sets of atomic charges. The logP values, however, showed ow slightlydifferentbehaviors. Infact,theRvaluesoflogP dependedonthecombinationoftheatomic ow chargescalculatedinthedifferentsolvents. Theseresultsrevealthattheenvironmentassumedin thecalculationoftheatomicchargesisaverycriticalfactorforthelogP calculations. Therefore, ow ourresultsprovideusefulinformationforimprovingthequalityofthecalculations. Finally,thelogP ow valuesof17drugscalculatedusingthebestcombinationoftheatomicchargesshowedgoodagreement withthevaluesmeasuredexperimentally. 2. ResultsandDiscussion 2.1. SolvationFreeEnergyinWater Tocalculatefreeenergyinwater,thethreechargesetswereusedindependently. Inthispaper, the notation of the parameter sets calculated with the atomic charges in the different solvents are simplifiedasP {x},wherexiseitherv(vacuum),o(octanol),orw(water). Itshouldbenotedthat, water inthiswork,wedidnotchangetheatomicchargesinwatermolecules,becausetheforcefieldofwater moleculeswasestablishedbythemanystudiesconductedonwatermolecules[37]. Strong correlations between calculated and experimentally measured ∆G values were water observed(Figure1). Inparticular,thefreeenergycalculatedusingP {w},forwhichthecoefficient water of determination (R2) is 0.87, indicated good agreement with experimentally measured values. ThefreeenergycalculatedusingP {v}alsoshowedastrongcorrelationwiththeexperimentaldata, water eventhoughR2(=0.84)wasthesmallestinthethreecases. Theseresultsconfirmthatthecalculated atomic charges in the different environments do not necessarily influence the correlation between calculatedandexperimentallymeasured∆G values. water Molecules2018,23,425 3of15 Molecules 2018, 23, x FOR PEER REVIEW 3 of 15 Molecules 2018, 23, x FOR PEER REVIEW 3 of 15 25 FFiigguurree 11.. SSccaatttteerr ddiiaaggrraamm ooff ccaallccuullaatteedd aanndd eexxppeerirmimenentatlallyly mmeaesausruerde d∆G∆ Gvavlualeuse isn iwnawteart esrolsvoelnvte.n Rt.2 Ra2nadn rdegreregsrseisosnio lninlein aerea rsehsohwonw. n. Figure 1. Scatter diagram of calculated and experimentally measured ∆G values in water solvent. R2 OOnn tthhaened oo rttehhgererers hshiaoannn dldin,,e t thahreee svvhaoalwluunee.s s ooff aattoommiicc cchhaarrggee wweerree sseennssiittiivvee ttoo tthhee ssoollvveenntt iinn tthhee qquuaannttuumm cchheemmiissttrryy ccaallccuullaattiioonn ((FFiigguurree 22)).. IInn tthhee tthhrreeee ssoollvveennttss,, ssoommeewwhhaatt llaarrggee ddiiffffeerreenncceess iinna attoommiicc cchhaarrggee On the other hand, the values of atomic charge were sensitive to the solvent in the quantum vvaalluueessc caannb beef foouunnddi nint htheec chhaarrggeeddg grroouuppc coonnttaaininininggh heetteerrooaattoommss,,e e.g.g.,.,o oxxyyggeenni inna acceettoonnee,,n niittrrooggeenn chemistry calculation (Figure 2). In the three solvents, somewhat large differences in atomic charge iinnp pyyrriiddiinnee,,a anndd ooxxyyggeenn iinn ooccttaannooll.. TThhee ccaallccuullaatteedd aattoommiicc cchhaarrggeess iinn ooccttaannooll aanndd wwaatteerr wweerree ssiimmiillaarr,, values can be found in the charged group containing heteroatoms, e.g., oxygen in acetone, nitrogen aannddw weereres lsilgihghtltylyd idffieffreernetnftr ofrmomth ethoen eosniens tihne tvhaec uvuacmuustmat es.taTthei. sTthenisd etenncdyecnacnyb ceaunn bdee rustnodoedrsfrtooomd in pyridine, and oxygen in octanol. The calculated atomic charges in octanol and water were similar, tfhreomgr atphhe sgdrarapwhsn dforarwthne faotro mthiec cahtoamrgiecs cvhsa.rdgieesl evcstr diciecloencstrtaicn tcovnaslutaenst( Fviagluurees S(1F)i.gTuhree Sa1to).m Tihcec haatorgmeisc and were slightly different from the ones in the vacuum state. This tendency can be understood dcrhaamrgafertsoic madl rtlahymei ngacrtaircpeaahlsslye d orianrwcdrnee caforsere a tosheer aadtteodcmrieeicla ecschet araricgt ecdso ivenslse tdcaitnerlitecsc tacroricon ucsotnandnstt1as0n ,at arvonauldunebdse (c1Fo0igm, uaernec dSo 1nb)s.e tTcaohnemt ateth ocemorenicas fttaenr.t Tthheerseeacdhftiaefrfrge. erTse nhdcereasmes cadatiinfcfaeallrfyef enicnctcersteh acesaern eo gar rfdefesecsctri oetanhseel i narete gdirnieeslteshciteornisc c lcaionttnees rtiandn ittash gearr aosmcuanstdt(e F1r0i gd, uaianrgedr 1ab)me.csTo mh(Feei gsclouonrpsete a1no)t.f Tthhee rselgorpeest shoioef rntehaliefnt erere.fg oTrreh∆sessGieow ndati eflrfienvreae lnfuoceerss ∆ wcGainwth ataerPf fvweacattle urt(hewse )wriesigtcrhleo sPsseiwoattneor (lwtihn)ae it siwn c ilttohhsee Ps wtcoaat tettreh(roa )td, iwwagihtreharm ePasw sa(tFetrh(igoau)t,r wwe i1ht)he. rPTewhaaest etrh(va)t iws sitlhig sPhltwolapyteer( dvoi)ff ftihes rese rlniegtghrfertlsoysmi odnit fhlfieenreoe fntohtr e f∆rrsGo.mwaHte rt ohvwael ueovetshe rew,ristth.h e HPwRoawtevr(ewavl)u eirse, s ctldhoseoe Rnto ov ttahdlauitf ewfsei rtdhso iP gnwnaoteirtfi( odc)a,i fwnfethlrye rseaigamsn otihfniacgta nthtley tahmreoenpwga irtthha meP twehatterer(erves). piFsa usrlraitgmhheetrltyme rdosi.rf efFe,urterhnteht referromwmeo rrtehee,s ttohrtoehnreegr sw.c oHerrorewe lseatvrtioeornn, gtsh caeom Rrro evnlaaglutiteohsnr dese oa. mnoot ndgif ftehrr esieg n ificantly ∆∆aGGmwwoaantteergr vthavelu athelusre,e efs o,pra rwafmohriectherw st.hh Feiuc Rrht hveartmlhueoerse ,oR tfh ePrvweaa twelru(ever)es– sPtwrooatfner(go c)P,o wrPrawteealrtae(rtv(ivo)–)n–PsP wawamatteeorr((nwog)) ,t, harnePedw aPtewra(tver)(–o)P–wPawtearte(rw(w),) apnadirPs, wer(∆eoG )0–w.Pa9te9r 1v2a,l (u0we.9s),8 pf8oa5ri, r wasn,hwdic he0 r.t9eh9e09 .6R9, 9 vr1ea2slu,pe0es.c9 ot8ifv8 Pe5wl,yatae.r n(Ivnd)– t0Ph.w9east9ere9(o 6c),a, rsPeewssatp,e rt(evhc)et–i Povwreadtleyre(.wr I)in,n a twnhdhe siPcewhact etar(hsoe)e– scP,owtmahterep(woo)ur dnedrs water water pairs, were 0.9912, 0.9885, and 0.9996, respectively. In these cases, the order in which the compounds ianrwe ahriarcrahen atghrereadnc agocemcdo parocdcuionnrgdd istnoga rttheoe at hr∆erGa ∆nwGagtweera,td eir,s ai smc cmooorrerde io norrg lleetsossst tthhheee ∆ssaaGmmweae ta earm,moisnogmn gtoh rtehe teho rtrehlere epsesa iptrhsa.e iTrssha.e mTsehe aeansmeal yaosnneagsl ythsees tshhroeewp tahirast. tThhee saetoamnaicl ycsheasrsgheosw wtehraet athffeeactteodm ibcyc hthaerg seoslvweenrte tayfpfeecst eadssbuymtheed sionl vtehnet ctaylpceuslaatsisounm, beudt show that the atomic charges were affected by the solvent types assumed in the calculation, but itnhtehsee tcdhaeilfscfeeu rdleaifntfiecorenesn, dcbeiudst dntihodet n saeoftfd eaicffftfe etcrhte etnh cceoe crsordrerlieadltaintoioontn o aofff f tethhceet t∆∆hGGewwcaateotre rrv vraeallulauetseio.s n. ofthe∆Gwatervalues. Figure 2. Calculated atomic charges of (a) Acetone, (b) Pyridine, and (c) Octanol in vacuum, octanol, and water. Figure 2. Calculatedatomicchargesof(a)Acetone, (b)Pyridine, and(c)Octanolinvacuum, octanol, andwater. Figure 2. Calculated atomic charges of (a) Acetone, (b) Pyridine, and (c) Octanol in vacuum, octanol, and water. Molecules2018,23,425 4of15 TheRMSEandMAEvaluesinthethreeparametersetsshowoppositerelationstotheRvalues; i.e.,thecalculateddatahavingstrongcorrelationshowedlargeerrors(Table1). The∆G ofP {v} water water hadthesmallestRandR2values,buttheerrors,forwhichtheRMSEandMAEvaluesare4.49kJ/mol (=1.07 kcal/mol) and 3.65 (=0.87 kcal/mol), respectively, were the smallest in the three parameter sets. Ontheotherhand,thecalculationwithP {w}showsthelargestRvalue,buttheRMSEand water MAEvaluesarethelargest. Inthesecalculations,thedifferenceofRMSEandMAEvalues,however, are1.2kJ/moland0.6kJ/molbetweenP {v}andP {w}. Thesemaynotbesignificantdifferences water water amongthethreeparameters. Therefore,foralltheselectionsofatomiccharges,theBARmethodcan estimatethe∆G valuesaccuratelyenough. water Table1.Summaryoffreeenergyinwatercalculations. Parameter R R2 RMSEa(kJ/mol) MAEb(kJ/mol) Pwater{v} 0.92 0.84 4.47 3.63 Pwater{o} 0.93 0.87 5.05 3.74 Pwater{w} 0.93 0.87 5.69 4.28 aRootmeansquareerror;bMeanaverageerror. 2.2. SolvationFreeEnergyinOctanol Incalculatingthefreeenergyinoctanol,ninesetsoftheatomicchargeswereused:allcombinations ofthethreesetsofatomicchargesofthecompound(3sets)andoctanol(3sets).Theatomicchargesof octanolmoleculeinoctanolsolvation,theoctanolenvironment,shouldbeconsidered.However,inthis work,tounderstandtheeffectoftheatomicchargesinoctanolonthelogP calculation,wetookinto ow accounttheatomicchargesintheoctanolmoleculeforvacuum,octanol,andwaterstate. Thecompoundandoctanolparametersetscalculatedwiththeatomicchargesinoctanolisdefined as P {x, y}, in which x and y (for compound and octanol, respectively) are either v(vacuum), octanol o(octanol),orw(water). Tendenciessimilartothoseseenintheresultsobtainedwiththe∆G calculationcouldbeseen water intheresultsobtainedwiththe ∆G calculation. ItcanbeseeninFigure3thatallthecalculated octanol ∆G valuesshowedstrongcorrelationswiththeonesmeasuredexperimentally.ThelargestRvalue octanol was0.9(P {v,o}andP {v,w}),thoughthesevaluesareslightlysmallerthanthatin∆G (0.93). octanol octanol water Thecalculated∆G valuesdistributedtowardthesmallrangeofthehorizontalaxis,thus,allthe octanol calculationsmayunderestimatethe ∆G value. ThetendencyoftherelationshipbetweentheR2 octanol valuesanderrorvalues(RMSEandMAE)issimilartothatseeninthe∆G results;i.e.,thelargertheR2 water valuesare,thelargertheRMSEandMAEvaluesare.ThelargestMAEis13.26kJ/mol(=3.16kcal/mol)in the∆G withP {w,w}.Thisvalueisalittlebitlargerthanthatin∆G .Thisresultrevealsthat octanol octanol water thecalculationof∆G valuesaccumulatesmoreerrorsthanthatof∆G .However,these∆G octanol water octanol valuesstillshowedstrongcorrelationwiththeexperimentaldata. In Figure 3 and Table 2, the correlations between the calculated and experimentally measured ∆G valuesareshowntobeindependentoftheatomiccharges. ThevaluesofRandR2 areclose octanol inallthe∆G calculations. TheR,R2,RMSE,andMAEvaluesofthe∆G withP {o,o}are octanol octanol octanol comparablewiththeotherones. Thismeansthattheatomicchargesdidnotaffectthecorrelationof ∆G calculations.The∆G calculatedwitheitherP {v,o}orP {v,w}hadthelargestRand octanol octanol octanol octanol R2values. Thosevaluesindicatedastrongcorrelationwiththeexperimentaldata. Ontheotherhand, the∆G calculatedwithP {w,v}hadthesmallestRandR2values. However,thesevaluesstill octanol octanol indicatedstrongcorrelation.ThedifferencesofRandR2valuesbetweenP {v,o}(orP {v,w})and octanol octanol P {w,v},are0.02and0.04,respectively.Thesearenotnecessarilysignificantdifferences.Therefore, octanol itispossibletoconcludethatthecalculatedatomicchargesinthedifferentenvironmentsdidnotaffect theRandR2valuesin∆G calculations. octanol Molecules 2018, 23, x FOR PEER REVIEW 5 of 15 Molecules2018,23,425 5of15 Table 2. Summary of free energy in octanol calculations. Table2.Summaryoffreeenergyinoctanolcalculations. Parameter R R2 RMSEa(kJ/mol) MAEb(kJ/mol) PaProactmanoel{tve,r v} 0.R89 0.8R02 RMS1E1.a18(k J/mol) MA1E0.b3(6k J/mol) Poctanol{v, o} 0.90 0.81 11.23 10.49 P {v,v} 0.89 0.80 11.18 10.36 PoPctoacntaonlo{lv{v,o, }w} 00..9900 0.80.18 1 111.12.62 3 101.506.4 9 octanol PocPtaonctoaln{ovl{,ow, }v} 00..8980 0.70.88 1 131.15.92 6 121.503.5 6 PoPctaocntoaln{ool{,ov, }o} 00..8898 0.70.87 8 131.37.05 9 121.727.5 3 PoPctoacntaonlo{lo{,o,o }w} 00..8899 0.70.97 8 131.36.57 0 121.722.7 7 P {o,w} 0.89 0.79 13.65 12.72 PoPctoacntaonl{owl{w,v, }v} 00..8888 0.70.77 7 141.41.81 8 131.035.0 5 octanol PPoctan{owl{w,o,} o} 00..8899 0.70.97 9 141.41.51 5 131.138.1 8 octanol PoPctoacntaonl{owl{w,w, w} } 00..8899 0.70.97 9 141.42.32 3 131.236.2 6 a RaoRoot omtmeaenan sqsquuaarree eerrrroorr;; bb MMeeaanna avvereargaegeer reorrr.or. FFiigguurree 33.. SSccaatttteerr ddiaiaggrraamm oof fcacalcluculaltaetded anadn dexepxepreimrimenetnatlalyll mymeaesausruedre ∆dG∆ vGalvuaelsu eins oinctoacntoaln soollvsoenlvte. Rnt2. aRn2da nredgrreegssreiosnsi olinneli nareea srheoswhonw. n. 22..33.. EEffffeecctt ooff WWaatteerr aanndd OOccttaannooll SSoollvveennttss oonn FFrreeee EEnneerrggyy TToo iinnvveessttiiggaattee tthhee eeffffeeccttss ooff ssoollvveennttss oonn ffrreeee eenneerrggyy ccaallccuullaattiioonn,, tthhee ddiieelleeccttrriicc ccoonnssttaanntt ooff wwaatteerr aanndd ooccttaannoolls osolvlvenentstsw wereereev eavluaaluteadteidn tihne tshime usilmatuiolnat.iTonhe. Tdhieele dctireilceccotrnics taconntwstaanstc awlcausl actaeldcualsa[t3e8d, 3a9s] [38,39] 4π (cid:110)(cid:68) (cid:69) (cid:111) ε =ε1+=13+kbT4(cid:104)πV(cid:105) { MM22 −−M(cid:104)M2}(cid:105) 2 (1()1 ) 3k T V b where V, k and T are volume, Boltzmann constant, and temperature, respectively. M is the total where V, kbb and T are volume, Boltzmann constant, and temperature, respectively. M is the total dipole moment. To calculate the dielectric constant of water and octanol solvents, additional 5 ns dipole moment. To calculate the dielectric constant of water and octanol solvents, additional 5 ns MD simulations were performed to generate the products, after 10,000 steps optimization, 50 ps MD simulations were performed to generate the products, after 10,000 steps optimization, 50 ps Molecules2018,23,425 6of15 heat-up,and2nsequilibration. Thedielectricconstantswerecalculatedforthetrajectoriesof5ns MDsimulations. Overestimated dielectric constants of water solvents were obtained by simulation (Table 3). This value is very similar to that reported by Vega et al. [40]. In Figure 1, the largest slope of the regulationslineisfoundinthecalculationwithP (v),ofwhichabsoluteatomicchargevalueswas water smallestinthethreeparameters. Therefore,thepairofthewatersolventwithwhichthedielectric constantwasunderestimated,andthecompoundwithP (v)providedtheclosestabsolutevaluesof water ∆Ginourcalculation. Ontheotherhand,thedielectricconstantsofoctanolsolventwerealsounderestimated. Allthe valuesinthedifferentchargesweresmallerthantheexperimentallymeasuredones. Thesevalues wereslightlysmallerthanthatinthepapersreportedbyDeBoltandKollman[29]. Theyobtained dielectricconstantsnear5.1fortheliquidoctanolat40◦C.Thedielectricconstantinoctanolsolvent graduallydecreasedbytheatomicchargesintheorderofvacuum,octanol,andwater,i.e.,thesevalues decreased in proportion to the absolute values of atomic charges. In Table 3, <µ> of octanol with atomicchargeinwaterwaslargerthanthatofvacuumbecauseofincreasingabsoluteatomiccharges. Thismeansthat, owingtoincreasing<µ>, thevaluesofelectrostaticinteractionincreased. Onthe otherhand,thevanderWaalsinteractiondropswithincreasingabsoluteatomiccharges. Sincethe vanderWaalsparameterswerethesameamongthedifferentsimulations,theelectrostaticinteraction isthoughttodominatethesimulation. However,inFigure3,theslopesoftheregulationlinewere dependent on the atomic charges of compounds, rather than those of octanol solvents. Moreover, thedielectricconstantwithatomicchargesinwatersolventfurtherdifferedfromtheexperimentally measuredvaluesthanthatwithinvacuum. Inthesimulationofliquidoctanol,ofwhichthedielectric constantoftheoctanolisrelativelysmallerthanthatofwatersolvent,astrongcontributionofthe electrostaticinteractionleadstosmallerdielectricconstantvaluesthatappearassimulationerrors. Therefore,inordertoimprovethecalculatedfreeenergyvalues,thebalancebetweenelectrostaticand vanderWaalsinteractionsmayneedtobeinvestigatedinfurtherstudies. Table3.Propertiesofsolventsinsimulation. ε <µ> vdW Elec. Solvents Charge (Debye) Fluc(Debye2) <V>(Å3) (kJ/mol) (kJ/mol) Exp. Sim. Water 78.49(25◦C)a 92.70 2.35 20,914.2 22,290.7 14,371.9 −33,641.5 Octanol Vacuum 9.34(32.1◦C)b 4.21 2.08 836.1 26,547.7 −3860.9 −2778.5 Octanol 3.63 2.24 678.0 26,320.5 −3768.3 −3687.8 Water 3.42 2.27 625.2 26,347.2 −3714.9 −3879.3 aUematsuandFrank[41];bSmythandStoops[42,43];cFlu=<M2>−<M>2. 2.4. LogP forTestedCompounds ow ThelogP valueswerecalculatedusingtheFormula(7)(SeeSection3). Here,thenotationforthe ow logP valuecalculatedfrom∆G usingP {x},and∆G usingP {y,z}wassimplifiedto ow water water octanol octanol P {x,{y,z}},wherex,y,andzareeitherv(vacuum),o(octanol),orw(water). logP ThelogP valuesweresensitivetotheatomicchargescalculatedinthesolvent. Thecorrelation ow ofthelogP withtheexperimentaldataisstronglydependentonthepairofsolvationfreeenergies ow ∆G and ∆G (Figure 4 and Figure S2). For instance, in Figure 4, completely different water octanol correlations of logP values can be seen in the scatter diagrams with the largest and smallest R2, ow whichareP {w,{v,o}}andP {v,{w,o}},respectively. InthecaseofP {w,{v,o}},thelogP was logP logP logP ow calculatedfrom∆G withP {w},and∆G withP {v,o}. Thiscombinationisexpectedto water water octanol octanol resultinlogP valuescloselycorrelatedwiththeexperimentalones. ow Ontheotherhand,inthecaseofP {v,{w,o}},thelogP valuesshowedveryweakcorrelationwith logP ow theexperimentaldata.ThecalculatedlogP valueswerebasedon∆G withP {v}and∆G with ow water water octanol P {w,o}.Thefreeenergiesinwaterandoctanolbothshowedstrongcorrelationswiththeexperimental octanol Molecules2018,23,425 7of15 Mdoalteacu,laesn 2d01t8h, e23R, xM FOSER PaEnEdRM REAVEIEvWa l ueswerenotassignificantlydifferentfromtheothers,asment7io onf e1d5 above.Theslopeoftheregressionlinefor∆G withP {v},however,wasover1,whereasthatofthe water water orevgerre 1s,s iwonhelirneeasf othra∆tG oofc ttahnoel wreigthrePssocitoanno ll{iwn,eo }fowr a∆sGuonctadnoel rw1i.thT hPeocsteanodl{iwff,eor}e wncaess urnaidseerd 1t.h Tehlaersgee dRifMfeSreEnacneds rMaiAseEdv tahleu elasrsglieg RhtMlyS(ET aabnled 4M).AAEs avarelusueslt ,stlihgehltolygP (oTwavbalelu 4e)s. Ashso aw reedsuvletr, ythwee laokgPcoowr rvealaltuioens .sThohweseedr evseurlyts wreevaeka lctohrartetlhaetioconm. bTihneasteio nreosfutlhtse ∆reGvweaatelr athnadt ∆tGheoc tacnoolmisbvinearytioimn poofr ttahnet f∆orGtwhateer caonrrde ct∆lGoogctPanoowl .isT hvaetriys , itmheposertleacntti ofnoro tfhteh ceosrorelvcet nlotginPotwh. eThcaaltc iusl,a tthioen seolfecthtieona toofm tihcec shoalrvgeenst iisnv tehrey ciamlcpuolrattaionnt foofr tthhee altoogmPoicw cchaalcrugleast iiosn v.eTrhyu ism,tphoeritnaanpt pforor pthriea tleogsePloewc ctiaolncuolfatthioens.o Tlvheunst,s tfhoer itnhaepcparlcouplraitaioten soefleactotimonic ocfh tahreg essolrveseunlttss fionrt htheew ceaalkcucloartrieolnat ioofn abteotmwiece nchthaergloegs Proewsuanltds tihne tehxep ewriemaken ctaolrrdealtaat.ioTnh ibsetetwndeeennc ythcea nlobgePoowb saenrvde dthien etxhpeelroigmPeowntwali tdhaPtalo.g TP{hwis,{ wte,nwd}e}n. cTyh eca∆nG bwea toerbwseitrhvePdw aitner {twhe}, laongdPo∆w Gwocittahn oPlwlogPit{hw,P{woct,a nwol}{}w. T,whe}, ∆shGowwatere dwitthhe Pstwratoern{wg}e,s tancodr r∆eGlaotcitaononl winitohu rPotcetasnotl{dwa, taw.}T, hsheovwaelude st,hhe oswtreovnegre,ssth ocowrreedlamtioond eirna toeucro rtreeslta dtiaotna.( RTh=e0 .v7a7l)uneos,t hsotrwonegveerr,t shhaonwtheadt mofotdheera∆tGe wcoatrerrewlaitthioPn lo(gRP {=w 0,.7{v7,) on}}o.t stronger than that of the ∆Gwater with PlogP{w, {v, o}}. FFiigguurree 44.. SSccaatttteerr ddiiaaggrraamm ooff ccaallccuullaatteedd aanndd eexxppeerriimmeennttaallllyy mmeeaassuurreedd llooggPPooww vvaalluueess.. TThhee ddiiaaggrraammss wwiitthh tthhee lalargrgeeststa nadndsm samllaelslteRst2 Rar2e asrheo wshno,wannd, tahnedd itahger admiagorfaPm o{fw P,{lowgP,{ww},} {awre, swh}o} wanref osrhroewfenre nfocre . logP rRe2fearnendcree.g Rr2e sasniodn relignreesasrieosnh loinwen a.re shown. TThhee cchheemmiiccaall ggrroouupp’s’se feffefcetcot nonth ethleo glPogPvowa lvuaelsuoefs aocf oam cpoomupndouisndsh iosw snhoinwFni giunr eFi5g.uInret h5e. lIong tPhe ow ow lcoaglcPuowl actaiolcnuwlaittihonP wit{hw P,l{ovgP,{ow},} ,{vth, eo}e}r, rtohres eorfroerasc hofc eoamchp ocuonmdpwouenred~ w2.e0rein ~a2l.0l ginro aulpl gs,reoxucpesp, tetxhceepetth tehres logP e(ftohrerest h(fyolrp ehtehnyyl lpehtehneyr,l tehteheerrr, othrew earsro3r.1 w6)a.sT 3h.e16c)a.l cTuhlea tceadlc∆uGlated ∆vGalwuateer ovfaeluthey olfp hetehnyyll pehtheenrywl eatshaenr water wovaes raesnt iomvaetree.stTimheatcea. lcTuhlae tecdalcaunldattehde aenxdp etrhime eenxtpaelrlyimmeneataslulyre dme∆aGsuredv ∆alGuweaster wvearleue−s 1w0.e2r2e k−J1/0m.2o2l water kaJn/mdo−l 17a.n9d2 k−J/17m.9o2l , rkeJs/mpeoclt,i vreelsyp. eOctnivtehley.o tOhenr hthane d,otthheerc ahlcaunldat, edth∆e Gcalculwateads a∆nGuonctadnoel rewstaism aatne . octanol uTnhdeecraelsctuimlataetde. aTnhdee cxaplecurilmateendt aalnlydm exepaseurirmeden∆tGally mevaasluureesdw ∆eGreoct−ano3l 4v.9a1lukeJs/ wmeorlea −n3d4.−912 3k.6J/5mkoJl/ amnodl , octanol −r2e3sp.6e5c tkivJ/emlyo.lT, rheesspeedctifivfeerleyn. cTehsecsaeu dseifdfelraerngeceesr rcoarussiendl loagrPge evrraolurse si.nS liomgPilaowr vearrluoress.c Sainmbielafro eurnrdorisn ctahne ow bloeg fPounvda ilnu ethsec alolcguPloawt evdalwueitsh cPalcul{awte,d{w w,iwth}} .PTloghP{ewp, r{owf,i lwe}o}.f Thhiset opgrroafmiles ofof rhiPstog{rwam,{sw f,owr }P}liosgPs{wim, {ilwa,r ow logP logP wto}}t ihsa stimofilhairs ttoog trhaamt osff ohrisPtogra{wm,s {fvo,ro P}}l.ogPT{whe, {evr, roo}r}. oTfheet heryrlopr hoefn eythlyelt hpehresntyaln edtsheoru sttfarnodms othuet fortohmer logP the other compounds. The error of each compound was around 2.0, but these errors are slightly compounds.Theerrorofeachcompoundwasaround2.0,buttheseerrorsareslightlylargerthanthat loafrgthere tvhaalnu ethsacta locfu tlhaete vdawluietsh cPalcu{lawt,e{dv ,woi}t}h. TPhlogePr{ewf,o {rve,, oth}}e. TRhveraelufoersef, otrheP R v{awlu,e{ws ,fowr} P}lwogPe{rwe, s{lwig, hwt}ly} logP logP wsmerael lselrigthhatlny tshmosaellfeorr tPhan t{hwo,s{ev ,foo}r} .PlogP{w, {v, o}}. logP OOnn tthhee ootthheerr hhaanndd,,m mosotsot fotfh ethleo glPogPovwa lvuaelsuecas lccuallcauteldatwedit hwPith P{lvog,P{{wv,, o{w}},w oe}}r ewlaerrgee lratrhgaenr tthhoasne ow logP those calculated with the other parameters. Those of the compounds in the phosphate group, which calculatedwiththeotherparameters. Thoseofthecompoundsinthephosphategroup,whichhas has a strong polarity at the phosphoric acid moiety, showed particularly large errors. The selected a strong polarity at the phosphoric acid moiety, showed particularly large errors. The selected environments in the charge calculation was inconsistent, i.e., the vacuum state was selected in ∆Gwater environments in the charge calculation was inconsistent, i.e., the vacuum state was selected in c∆aGlculaticoanl cualnadti onwaatnedr weantveirroennmvieronnt mwenast wsaeslesceteledc teidn in∆G∆oGctanol caclcaulcluatliaotniosn. s.TThhesees eiinnaaddeeqquuaattee water octanol ccoommbbiinnaattiioonnss iinndduuccee llaarrggee eerrrroorrss iinn tthhee llooggPPow ccaallccuullaattiioonn. .AA ssimimilialarr tteennddeennccyy ccaann bbee ffoouunndd iinn tthhee ow other groups with polar moieties, such as ether and ketone groups. The selection of the environment othergroupswithpolarmoieties,suchasetherandketonegroups. Theselectionoftheenvironment ooff tthhee ccaallccuullaatteedd cchhaarrggeess,, tthheerreeffoorree,, iiss iimmppoorrttaanntt iinn llooggPPow ccaallccuullaattiioonn.. ow To analyze the contributions of the atomic charges in different environments, the R and R2 Toanalyzethecontributionsoftheatomicchargesindifferentenvironments,theRandR2values voafluloegsP of liongTPaowb lien 4Twabelree 4c owmerpea rceodm.pInarethde. Icna lcthuela cteadlcu∆lGated ∆,GthweaterR, tahned RR a2nvda lRu2e svableuceosm beecsommaell ow water small in the order of Pwater{v}, Pwater{o}, and Pwater{w} (Figure S3a). In terms of the atomic charges of the in the order of P {v}, P {o}, and P {w} (Figure S3a). In terms of the atomic charges of the water water water compounds in ∆Goctanol calculations, the R and R2 values of logPow become small in the order of water, octanol, and vacuum environments (Figure S3b). However, the atomic charges of the octanol in octanol solvent seem to affect the logPow values very slightly (Figure S3c). To briefly summarize these results, the atomic charges of the compound in the ∆Gwater and ∆Goctanol calculations are better in Molecules2018,23,425 8of15 compounds in ∆G calculations, the R and R2 values of logP become small in the order of octanol ow water,octanol,andvacuumenvironments(FigureS3b). However,theatomicchargesoftheoctanol inoctanolsolventseemtoaffectthelogP valuesveryslightly(FigureS3c). Tobrieflysummarize ow theseMreolsecuulletss 2,0t1h8,e 23a, txo FmORic PEcEhRa RrgEVesIEoWf thecompoundinthe∆Gwaterand∆Goctanolcalculations8a roef 1b5 etter inwaterandvacuumenvironments,respectively. Infreeenergy,theatomicchargesoftheoctanol molecwualeteirn aoncdt avnaoculusomlv eennvtirsohnomuledntbs,e rreesapseocntiavbellye., nIno nfreeteh eelneesrsg,yt,h tehye daotonmoitc icnhflaurgeensc eoft htheel oogcPtanovl alue ow muchm.oItleschuoleu ilnd obcteannoolt seodlvtehnatt sthhoiusldte bned reenascoynwabillel, bneoninetdheepleesns,d theenyt doof tnhoet ifnuflnucetniocen tahlea lnodgPbowa vsiaslusee tsin much. It should be noted that this tendency will be independent of the functional and basis sets in thecalculationofatomiccharges,becausetheRMSEshowsthesamebehavior(FigureS4),andthe the calculation of atomic charges, because the RMSE shows the same behavior (Figure S4), and the correlationefficientvaluesofourprocedureareverylargewiththeotherproceduresusingthedifferent correlation efficient values of our procedure are very large with the other procedures using the functionalsandbasissetsinfivecompounds(TableS4). different functionals and basis sets in five compounds (Table S4). FigurFeig5u.reE r5r.o Errorofrl oogf PloowgPwow itwhit(ha )(aP) loPglPog{Pw{w,, {{vv,, oo}}}},, ((bb)) PPllooggP{Pv{,v {,w{,w o,}}o,} }a,nadn (dc)( cP)logPP{lwog,P {{ww,, w{w}}, fwor} }thfoer the experimental values. Here, the left-to-right order of the compounds in each group is the same as the experimentalvalues.Here,theleft-to-rightorderofthecompoundsineachgroupisthesameasthe top-down order in Table S1. top-downorderinTableS1. Table 4. Summary of logPow calculations. Table4.SummaryoflogPowcalculations. Parameters R R2 RMSE1(kJ/mol) MAE2(kJ/mol) ParaPmlogeP{tve,r s{v, v}} R0.77 0.R592 RM2S.E161 (kJ/mol) M2A.0E4 2(kJ/mol) PlogP{v, {v, o}} 0.80 0.64 2.17 2.07 PlogPP{vlo,gP{{vv,, v{}v}, w}} 0.07.782 00.6.589 2.172 .16 2.07 2.04 PlogPP{vlo,gP{{vv,,o {}o}, v}} 0.08.055 00.3.614 2.612 .17 2.42 2.07 PlogP{Pvl,og{Pv{v,,w {}o}, o}} 0.08.260 00.3.668 2.632 .17 2.46 2.07 PlogPP{vlo,gP{{ov,,v {}o}, w}} 0.05.562 00.3.381 2.622 .61 2.45 2.42 PlogPP{vlog,P{{ov,, o{}w}, v}} 0.06.049 00.2.346 2.722 .63 2.51 2.46 PPllooggPPP{{vvlo,,gP{{w{ov,,,w v{w}}}}, o}} 00..064.2954 000.2..32984 2.7222 ..6722 2.53 22..4551 PlogPP{vlo,gP{{wv,, {ow}}, w}} 0.05.454 00.2.299 2.742 .72 2.55 2.53 PlogP{Pvl,og{Pw{o,,w {v}}, v}} 0.05.492 00.8.249 1.402 .74 1.31 2.55 PlogPP{olo,g{Pv{o,,v {}v}, o}} 0.09.292 00.8.854 1.421 .40 1.34 1.31 PlogPP{olo,gP{{vo,, o{}v}, w}} 0.09.292 00.8.855 1.431 .42 1.35 1.34 PlogP{Pol,og{Pv{,o,w {}o}, v}} 0.09.285 00.7.835 1.791 .43 1.69 1.35 PlogP{o, {o, o}} 0.87 0.76 1.82 1.73 PlogP{o, {o, w}} 0.88 0.77 1.81 1.72 PlogP{o, {w, v}} 0.82 0.67 1.90 1.78 PlogP{o, {w, o}} 0.84 0.71 1.90 1.81 Molecules2018,23,425 9of15 Table4.Cont. Parameters R R2 RMSE1(kJ/mol) MAE2(kJ/mol) PlogP{o,{o,v}} 0.85 0.73 1.79 1.69 PlogP{o,{o,o}} 0.87 0.76 1.82 1.73 PlogP{o,{o,w}} 0.88 0.77 1.81 1.72 PlogP{o,{w,v}} 0.82 0.67 1.90 1.78 PlogP{o,{w,o}} 0.84 0.71 1.90 1.81 Molecules 2018, 23P, xlo gFPO{Ro ,P{EwE,Rw R}E}VIEW 0 .84 0.71 1.92 1.82 9 of 15 PlogP{w,{v,v}} 0.92 0.85 1.26 1.17 PlogPP{wlog,P{{ov,, {ow}}, w}} 0.09.284 00.7.816 1.921 .29 1.82 1.20 PlogP{Pwlo,gP{{vw,,w {}v}, v}} 0.09.292 00.8.855 1.261 .31 1.17 1.21 PlogPP{wlog,P{{ow,,v {}v}, o}} 0.08.892 00.8.768 1.291 .63 1.20 1.55 PlogPP{wlog,P{{wo,, o{}v}, w}} 0.09.092 00.8.850 1.311 .66 1.21 1.59 PlogP{Pwlo,gP{{ow,,w {}o}, v}} 0.09.088 00.7.881 1.631 .66 1.55 1.58 PlogP{Pwlo,gP{{ww,, v{}o}, o}} 0.08.690 00.8.705 1.661 .73 1.59 1.64 PlogPP{wlog,P{{ww,, o{o}}, w}} 0.08.890 00.8.717 1.661 .75 1.58 1.66 PlogP{Pwlog,P{{ww,, w{w}}, v}} 0.08.886 00.7.757 1.731 .76 1.64 1.68 PlogP{w, {w,1 oR}}o ot0m.8ea8n sq0u.7a7r eerror;2M1.e7a5n averageerror. 1.66 PlogP{w, {w, w}} 0.88 0.77 1.76 1.68 2.5. LogP for17Compounds 1 Root mean square error; 2 Mean average error. ow T2.h5e. LboegsPtowc foomr 1b7i Cnaomtipoonunodfst heparametersoftheadditional17compounds(PlogP{w,{v,w}})was different from those of the small compounds (P {w, {v, o}}) (Table S5). However, the R and R2 The best combination of the parameters of tlohgeP additional 17 compounds (PlogP{w, {v, w}}) was valuesofP {w,{v,v}},P {w,{v,o}},andP {w,{v,w}}wereveryclosetoeachother. Therefore, differenlotg Pfrom those ofl otghPe small compoundlosg P(PlogP{w, {v, o}}) (Table S5). However, the R and R2 weconcludethatchoosingoneofP {w,{v,*}}(*=v,o,andw)parametersetwillprovideRandR2 values of PlogP{w, {v, v}}, PlogP{w, {v,l oog}P}, and PlogP{w, {v, w}} were very close to each other. Therefore, we valuecsocnlcolusedeto ththate cehxopoesrinimg eonntea olfo nPleogsP.{w, {v, *}} (* = v, o, and w) parameter set will provide R and R2 Tvhaleuecsa lcclouslea tteod thleo gexPpoewrivmaelnuteasl oonfetsh. eadditional17compoundswiththebestcombinationofthe atomicchTarhgee csailncuwlaatetedr loagnPdowo vctaaluneosl o(Pf ltohgeP {awd,d{ivti,own}a}l) 1s7h coowmepdoaungdoso wdiathg rteheem beesntt cwomithbitnhaetioenx poef rtihme ental data(aFtoigmuicr ec6h)a.rTgehse iRn awndateRr 2avnadlu eosctwaneorle (0P.l9og3P{wan, d{v0, .8w6},})r esshpoewcteidv ealy .gToohde seagvraeelumeesnwt ewrieths imthiel arto thoseeoxbpteariimneedntbayl dthatea o(tFhigeurrme e6t)h. oTdhse bRa asendd oRn2 vthaeluceos mwperoeu 0n.d93s ’aantdo m0.s86a,n rdesfpreacgtmiveelnyt. sT[h4e4s]e, tvhaoluuegsh our were similar to those obtained by the other methods based on the compounds’ atoms and fragments methodneedsmorecomputationaltimethantheothermethods. TheRMSEandMAEwere2.58and [44], though our method needs more computational time than the other methods. The RMSE and 2.26,respectively,whichwereslightlylargerthanthoseofthesmallcompounds. Theseerrorsaffect MAE were 2.58 and 2.26, respectively, which were slightly larger than those of the small the slope of the regression line, which is somewhat smaller than that of the line obtained for the compounds. These errors affect the slope of the regression line, which is somewhat smaller than that smallcompoundswhenusingP {w,{v,o}}(Figure4). Theseresultsindicatethattheorderofthe of the line obtained for the smloagPll compounds when using PlogP{w, {v, o}} (Figure 4). These results compionudincdatse stohratte tdheb oyrdtheer olof gthPeo wcovmapluoeusn,diss svoerrteyds bimy itlhaer ltoogPthowe voarldueesr, oisf vthereyc soimmiplaoru tno dthses oorrdteedr obfy the logPotwhev acluomespmouenadsus resodretexdp ebryim tehnet allolyg.PTowh ivsamlueeas nmstehaasuttrhede aelcxhpeermimiceanltfarlelye. enTherisg ymceaalcnus latthiaotn tmhee thod withPallcoghPe{mwi,c{avl ,fwre}e} wenilelrbgey ecfafelccutilvateiotno pmreetdhiocdt thweitlhip PolpoghP{iwli,c i{tvy, owf}c} owmipll obuen defsf,eactnivdew toil lpbreedaiucts ethfuel tool fordrluipgopdheisliicginty. of compounds, and will be a useful tool for drug design. FigurFeig6u.rSec a6tt. erScdaitategrr admiaogfracmal cuofl atceadlcuanladteedx paenrdim eexnptearlilmyemnteaalslyu remdealosugrPeodw vloagluPoews fvoarlu1e7s cofomr p1o7u nds. compounds. The logPow values of the other additional 32 compounds were calculated for comparing our results with the previous results reported by Bannan et al. [45]. The logPow values show strong correlation with the experimentally measured values, of which the R and R2 values were 0.85 and 0.72, respectively (Figure 7). These values are very close to those calculated using GAFF-DC that Molecules2018,23,425 10of15 The logP values of the other additional 32 compounds were calculated for comparing our ow rMesolueclutslesw 20i1th8, 2t3h, ex FpOrRev PiEoEuRs RrEeVsIuElWts reported by Bannan et al. [45]. The logP values show s1t0r oonf 1g5 ow correlationwiththeexperimentallymeasuredvalues,ofwhichtheRandR2 valueswere0.85and were reported by Bannan et al., of which R and R2 values are 0.85 and 0.74, respectively. These 0.72,respectively(Figure7). ThesevaluesareveryclosetothosecalculatedusingGAFF-DCthatwere rreepsourlttesd rebvyeBaal ntnhaant ethtea l.c,oonfswidheircahtiRona nodf Rth2ev aaltuoemsiacr ec0h.a8r5gaen ids 0i.m74p,orertsapnetc tfiovre lyim. Tphreosveinregs uthltes rleovgePaolw values. thattheconsiderationoftheatomicchargeisimportantforimprovingthelogP values. ow FFiigguurree 77.. ScSactattetre rdidaigargarmams sofo cfaclcaulcluatlaetde dusuinsgin g(a)( aG)AGFAFF, F(,b)( bG)AGFAFF-DF-CD, Ca,ndan (dc) (Pc)logPP{lwog,P {{wv,, o{}v},, aon}}d, aenxdpeerximpeernimtaellnyt amllyeamsueraesdu relodglPoogw Pvowaluvaelsu feosrf o3r2 3c2ocmopmopuonudnsd. sT.hTeh evavlauluese sccaalclcuulalatteedd bbyy GGAAFFFF aanndd GGAAFFFF--DDCC,, aanndd tthhee eexxppeerriimmeennttaallllyy mmeeaassuurreedd vvaalluueess wweerree ttaakkeenn ffrroomm tthhee rreeffeerreennccee bbyy BBaannnnaann eett aall.. [[4455]].. 33.. MMaatteerriiaallss aanndd MMeetthhooddss 33..11.. SSeettttiinngg PPaarraammeetteerrss ooff CCoommppoouunnddss TThhee ggeenneerraall aammbbeerr foforcrcee fifieledld (G(AGFAFF)F [)46[]4 6w]aws uasseuds feodr bfoorndbionngd pinagrapmaertaemrse (tbeorsnd(b loenngdthle, nbgotnhd, baonngdlea, ntogrles,iotonr sainognlea,n ganled, ainmdpirmopperor pteorrstioornsi oanngalneg) lea)nadn fdofro nronnobnobnodnidnign gvvaann ddeerr WWaaaallss ppaarraammeetteerrss ((rraaddiiuuss aanndd wweellll--ddeepptthhss)) ooff tthhee ccoommppoouunnddss aanndd 11--ooccttaannooll.. AAttoommiicc cchhaarrggeess wweerree ccaallccuullaatteedd bbyy uussiinngg GGaauussssiiaann0099 ssooffttwwaarree[ [4477]]a attt thheeB B33LLYYPP//66--3311GG((dd)) lleevveell.. TThhee ppoollaarriizzaabbllee ccoonnttiinnuuuumm mmooddeell ((PPCCMM)) [[4488]] wwaassu usseeddt otoc ocnosnisdiedretrh tehseo slvoelvnetnetf feefcfteoctn othne thcael ccuallacutiloantioofna otof matiocmchica rcgheasr.gAens.t eAchnatemchbaermsboeftrw saorfetwwaarse uwsaesd fuosredre sftorra inreesdtrealiencetdro setlaetcitcropsotatetinct ipalo(tRenEtSiaPl) (cRhEarSgPe)- ficthtainrgge[-4f9it–ti5n1g] f[r4o9m–5t1h]e frreosmul ttshoef qreusaunlttsu mof cqhueamnitcuaml ccahlecmuliactailo cna.lcIunlatthioenp. Irne ptharea ptiroenpsarfaotriotnhse fosirm thuel astiimonusl,atbioionms, oblieocmuloel’escuatleo’ms aictocmhaicr gchesaragrees caarlec uclaaltceudlaotnecde oinncoen eins oolvneen ts,oil.ve.e,nint, wi.ea.t,e rins owlvaetnetr, isnolpvreontte,i nin,o prrinotveianc,u uorm inst avtea.cuWuhme nsctaatlec.u lWathinegn acaclocmulpaotiunngd a’s cforemepeonuenrgdy’si nfroecet aennoelr,ghyo iwn eovcetra,nboelt,t ehrorweseuvletsr,c baenttbeer orbetsauilntse dcauns ibneg othbetaaitnoemdi cuscihnagr gtehse caatlocmuliact ecdhaforgretsh ecaclocmulpaoteudn dfoirn thoect aconmolp. Touhenrde fionr eo,citnanthoils. Tsthuedrye,ftohree,a itno mthiics cshtuardgye,s tohfet ahteocmoimc pchouarngdess aonfd th1e-o ccotamnoplowunedres caanlcdu l1a-toecdtafonrotl hwreeeres tacatelsc:uilnatveadc ufourm th,irnee1 -sotcattaenso: li,na nvdaciunuwma,t einr. I1n-otchteancaollc, ualnatdio inn owfathteerf. rIene tehnee crgaylcuinlawtiaotne ro,ft htheet hfrreeee cehnaerrggey sient swwaeterre, uthseed thinredee pchenadrgeen tsleyt.sT woecarelc uuslaetde itnhdeefpreeenedneenrtglyy. iTnoo ccatalcnuolal,ten itnhee fsreetes eonfetrhgeya itno omcitcancohla, rngiense wseetrse ouf sthede :ataollmciocm chbainrgaetiso wnseroef uthseedt:h arlel ecosmetbsionfataitoonms iocf cthhaer tgherseeo fstehtse ocfo matopmouicn dch(a3rgseetss )ofa nthde occotmanpoolu(3nds e(t3s )s.eTtsh) eancodm opctoaunnodl (a3n sdetosc).t aTnhoel cpoamrapmoeutnedr saentsd coacltcaunlaotle dpawraitmhethteer astoetms iccaclhcuarlgateesdi nwoicttha ntohlei sadtoemfinice dchaasrPgoecsta nionl{ xo,cyt}a,ninolw ish idchefxinaendd ays( fPoorctcanoolm{xp, oyu},n idn awnhdicohc taxn oaln,dre syp e(cfotirv ecloym)aproeuenitdh earnvd(v aoccutaunmol),, or(eoscpteacntoivl)e,loyr) wa(rwe aetietrh)e.rT hve(vlaocguPumv),a lou(eosctbaansoeld), oonr ow twhe(wseaftreere). eTnheerg lioegsPwowe rveaclaulecsu lbaatseedd. Tohne tdheepsee nfdreeen ceyneorfgtihees cwalecruel actaeldcualtaotmedi.c Tchhaer dgeespeinndtheencdyif foefr etnhte ecnavlciurolantmede nattsoomnict hcehafrregeees niner gthyea dnidffleorgenPto wenvvailruoensmweenretse oxna mthine efdre.e energy and logPow values were examined. 3.2. InitialModelsofCompoundsinSolventBox 3.2. Initial Models of Compounds in Solvent Box We constructed the model systems as follows. All the compounds were hydrated using aTIP3WPe[ 3co7n]swtrautcetrebdo txhec omnosdisetil nsgysotefm72s3 aws faotlelorwmso. lAecllu tlhees ,caonmdpaolulnthdes cwoemrep ohuydnrdastewde uresinpgla ac eTdIPin3Pto [3a7n] owctaatnero lbbooxx coconnsissitsitningg oof f72130 0w1a-toecrt amnoollemcuolleesc,u alneds. all the compounds were placed into an octanol box consAistllintgh eofs 1y0s0te 1m-osctwaneroel mmoinleicmuilzeesd. by 10,000 steps of the steepest-descent method, first with constAraliln tthoen styhsetepmossi tiwoenrseo mftihneimheizaevdy abtyo m10s,,0a0n0d stthepens wofi tthhoeu tstceoenpsetsrta-idnet.scAefntte rmtheethmodin, imfiriszta twioitnh, constraint on the positions of the heavy atoms, and then without constraint. After the minimization, 7 ns MD simulation for the compound was performed with Gromacs 4.5.3 software suite in a periodic boundary condition, by using particle-mesh Ewald (PME) calculations [52,53] for coulombic interactions. The temperature was set at 298.15 K by using a stochastic dynamics algorithm, and pressure was maintained at 1 bar by scaling the box size in accordance with the

Description:
Abstract: The octanol–water partition coefficient (logPow) is an important index for measuring solubility the logPow values of 58 compounds were predicted by alchemical free energy calculation using . The RMSE and MAE values in the three parameter sets show opposite relations to the R values;.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.