EECE 574 - Adaptive Control OtherApproachestoAdaptiveControl GuyDumont DepartmentofElectricalandComputerEngineering UniversityofBritishColumbia January2013 GuyDumont(UBCEECE) EECE574-OtherApproachestoAdaptiveControl January2013 1/64 Contents 1 Introduction 2 Youla-KuceraParametrization Open-LoopInversionRevisited AffineParametrization: TheStableCase AllStabilizingControllers 3 TheWindsurfer’sApproach 4 MultiModelAdaptiveControl 5 L1 AdaptiveControl 6 ChallengesinAdaptiveControl 7 L1 AdaptiveControlTheory 8 PerformanceMonitoring GuyDumont(UBCEECE) EECE574-OtherApproachestoAdaptiveControl January2013 2/64 Introduction GuyDumont(UBCEECE) EECE574-OtherApproachestoAdaptiveControl January2013 3/64 Youla-KuceraParametrization Outline Novelwayofexpressingcontrollertransferfunction Providesnewinsightintocontroldesign Thekeyfeatureofthenewparameterizationisthatitrenderstheclosed loopsensitivityfunctionslinearor(morecorrectly,affine)inadesign variable Wecallittheaffineparameterization Theso-calledYoula-Kuceraparametrizationnowplaysacentralrolein control,identificationandadaptivecontrol GuyDumont(UBCEECE) EECE574-OtherApproachestoAdaptiveControl January2013 4/64 Youla-KuceraParametrization Open-LoopInversionRevisited Open-Loop Inversion Revisited Recallthatcontrolimplicitlyandexplicitlydependsonplantmodel inversion. Thisisbestseeninthecaseofopenloopcontrol. Inopenloopcontroltheinput,U(s),isgeneratedfromthereference signalR(s),byatransferfunctionQ(s),i.e.U(s)=Q(s)R(s). Thisleadstoaninput-outputtransferfunctionofthefollowingform: T (s)=P(s)Q(s) 0 GuyDumont(UBCEECE) EECE574-OtherApproachestoAdaptiveControl January2013 5/64 Youla-KuceraParametrization Open-LoopInversionRevisited Open-Loop Inversion Revisited Thissimpleformulahighlightsthefundamentalimportanceofinversion, asT (jω)willbe1onlyatthosefrequencieswhereQ(jω)invertsthe 0 model. Notethatthisisconsistentwiththeprototypesolutiontothe controlproblemdescribedearlier. AkeypointisthatT (s)=P(s)Q(s)isaffineinQ(s). 0 Ontheotherhand,withaconventionalfeedbackcontroller,C(s),the closedlooptransferfunctionhastheform P(s)C(s) T (s)= 0 1+P(s)C(s) TheaboveexpressionisnonlinearinC(s). GuyDumont(UBCEECE) EECE574-OtherApproachestoAdaptiveControl January2013 6/64 Youla-KuceraParametrization Open-LoopInversionRevisited Comparingthetwopreviousequations,weseethattheformeraffine relationshipholdsifwesimplyparameterizeC(s)inthefollowing fashion: C(s) Q(s)= 1+C(s)P(s) WecanthendesignintermsofQ(s)andthenobtainC(s)fromQ(s)and P(s) Thisistheessenceoftheideapresentedhere. GuyDumont(UBCEECE) EECE574-OtherApproachestoAdaptiveControl January2013 7/64 Youla-KuceraParametrization AllStabilizingControllers Affine Parameterization. The Stable Case WecaninverttherelationshipgivenonthepreviousslidetoexpressC(s) intermsofQ(s)andP(s): Q(s) C(s)= 1−Q(s)P(s) WewillthenworkwithQ(s)asthedesignvariableratherthanthe originalC(s). NotethattherelationshipbetweenC(s)andQ(s)isone-to-oneandthus thereisnolossofgeneralityinworkingwithQ(s). GuyDumont(UBCEECE) EECE574-OtherApproachestoAdaptiveControl January2013 8/64 Youla-KuceraParametrization AllStabilizingControllers Stability Actuallyaveryhardquestionisthefollowing: GivenastabletransferfunctionP(s),describeallcontrollers,C(s)that stabilizethisnominalplant. However,itturnsoutthat,intheQ(s)form,thisquestionhasavery simpleanswer,namelyallthatisrequiredisthatQ(s)bestable. Thisresultisformalizedinthelemmastatedonthenextslide. GuyDumont(UBCEECE) EECE574-OtherApproachestoAdaptiveControl January2013 9/64 Youla-KuceraParametrization AllStabilizingControllers All Stabilizing Controllers Lemma(Lemma15.1: Affineparameterizationforstablesystems) ConsideraplanthavingastablenominalmodelG (s)controlledinaone 0 d.o.f.feedbackarchitecturewithapropercontroller. Thenthenominalloopisinternallystableif,andonlyif,Q(s)isanystable propertransferfunctionwhenthecontrollertransferfunctionC(s)is parameterizedas Q(s) C(s)= 1−Q(s)P(s) GuyDumont(UBCEECE) EECE574-OtherApproachestoAdaptiveControl January2013 10/64
Description: