ebook img

EECE 574 - Adaptive Control - Other Approaches to Adaptive Control PDF

64 Pages·2013·1.91 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview EECE 574 - Adaptive Control - Other Approaches to Adaptive Control

EECE 574 - Adaptive Control OtherApproachestoAdaptiveControl GuyDumont DepartmentofElectricalandComputerEngineering UniversityofBritishColumbia January2013 GuyDumont(UBCEECE) EECE574-OtherApproachestoAdaptiveControl January2013 1/64 Contents 1 Introduction 2 Youla-KuceraParametrization Open-LoopInversionRevisited AffineParametrization: TheStableCase AllStabilizingControllers 3 TheWindsurfer’sApproach 4 MultiModelAdaptiveControl 5 L1 AdaptiveControl 6 ChallengesinAdaptiveControl 7 L1 AdaptiveControlTheory 8 PerformanceMonitoring GuyDumont(UBCEECE) EECE574-OtherApproachestoAdaptiveControl January2013 2/64 Introduction GuyDumont(UBCEECE) EECE574-OtherApproachestoAdaptiveControl January2013 3/64 Youla-KuceraParametrization Outline Novelwayofexpressingcontrollertransferfunction Providesnewinsightintocontroldesign Thekeyfeatureofthenewparameterizationisthatitrenderstheclosed loopsensitivityfunctionslinearor(morecorrectly,affine)inadesign variable Wecallittheaffineparameterization Theso-calledYoula-Kuceraparametrizationnowplaysacentralrolein control,identificationandadaptivecontrol GuyDumont(UBCEECE) EECE574-OtherApproachestoAdaptiveControl January2013 4/64 Youla-KuceraParametrization Open-LoopInversionRevisited Open-Loop Inversion Revisited Recallthatcontrolimplicitlyandexplicitlydependsonplantmodel inversion. Thisisbestseeninthecaseofopenloopcontrol. Inopenloopcontroltheinput,U(s),isgeneratedfromthereference signalR(s),byatransferfunctionQ(s),i.e.U(s)=Q(s)R(s). Thisleadstoaninput-outputtransferfunctionofthefollowingform: T (s)=P(s)Q(s) 0 GuyDumont(UBCEECE) EECE574-OtherApproachestoAdaptiveControl January2013 5/64 Youla-KuceraParametrization Open-LoopInversionRevisited Open-Loop Inversion Revisited Thissimpleformulahighlightsthefundamentalimportanceofinversion, asT (jω)willbe1onlyatthosefrequencieswhereQ(jω)invertsthe 0 model. Notethatthisisconsistentwiththeprototypesolutiontothe controlproblemdescribedearlier. AkeypointisthatT (s)=P(s)Q(s)isaffineinQ(s). 0 Ontheotherhand,withaconventionalfeedbackcontroller,C(s),the closedlooptransferfunctionhastheform P(s)C(s) T (s)= 0 1+P(s)C(s) TheaboveexpressionisnonlinearinC(s). GuyDumont(UBCEECE) EECE574-OtherApproachestoAdaptiveControl January2013 6/64 Youla-KuceraParametrization Open-LoopInversionRevisited Comparingthetwopreviousequations,weseethattheformeraffine relationshipholdsifwesimplyparameterizeC(s)inthefollowing fashion: C(s) Q(s)= 1+C(s)P(s) WecanthendesignintermsofQ(s)andthenobtainC(s)fromQ(s)and P(s) Thisistheessenceoftheideapresentedhere. GuyDumont(UBCEECE) EECE574-OtherApproachestoAdaptiveControl January2013 7/64 Youla-KuceraParametrization AllStabilizingControllers Affine Parameterization. The Stable Case WecaninverttherelationshipgivenonthepreviousslidetoexpressC(s) intermsofQ(s)andP(s): Q(s) C(s)= 1−Q(s)P(s) WewillthenworkwithQ(s)asthedesignvariableratherthanthe originalC(s). NotethattherelationshipbetweenC(s)andQ(s)isone-to-oneandthus thereisnolossofgeneralityinworkingwithQ(s). GuyDumont(UBCEECE) EECE574-OtherApproachestoAdaptiveControl January2013 8/64 Youla-KuceraParametrization AllStabilizingControllers Stability Actuallyaveryhardquestionisthefollowing: GivenastabletransferfunctionP(s),describeallcontrollers,C(s)that stabilizethisnominalplant. However,itturnsoutthat,intheQ(s)form,thisquestionhasavery simpleanswer,namelyallthatisrequiredisthatQ(s)bestable. Thisresultisformalizedinthelemmastatedonthenextslide. GuyDumont(UBCEECE) EECE574-OtherApproachestoAdaptiveControl January2013 9/64 Youla-KuceraParametrization AllStabilizingControllers All Stabilizing Controllers Lemma(Lemma15.1: Affineparameterizationforstablesystems) ConsideraplanthavingastablenominalmodelG (s)controlledinaone 0 d.o.f.feedbackarchitecturewithapropercontroller. Thenthenominalloopisinternallystableif,andonlyif,Q(s)isanystable propertransferfunctionwhenthecontrollertransferfunctionC(s)is parameterizedas Q(s) C(s)= 1−Q(s)P(s) GuyDumont(UBCEECE) EECE574-OtherApproachestoAdaptiveControl January2013 10/64

Description:
MultiModel Adaptive Control. Switiching MMAC - Hespanha, 2001. Guy Dumont (UBC EECE). EECE 574 - Other Approaches to Adaptive Control. January 2013. 31 / 64
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.