ebook img

EE101: Op Amp circuits (Part 6) - Electrical Engineering - IIT Bombay PDF

74 Pages·2015·0.86 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview EE101: Op Amp circuits (Part 6) - Electrical Engineering - IIT Bombay

EE101: Op Amp circuits (Part 6) M. B. Patil [email protected] www.ee.iitb.ac.in/~sequel DepartmentofElectricalEngineering IndianInstituteofTechnologyBombay M.B.Patil,IITBombay xo =Axi(cid:48)=A(xi+xf)=A(xi+βxo) →A ≡ xo = A . f xi 1−Aβ SinceAandβ willgenerallyvarywithω,were-writeA as, f A(jω) →A (jω)= . f 1−A(jω)β(jω) AsA(jω)β(jω)→1,Af(jω)→∞,andwegetafinitexo evenifxi =0. Inotherwords,wecanremovexi andstillgetanon-zeroxo. Thisisthebasic principlebehindsinusoidaloscillators. Sinusoidal oscillators xi xx′i Amplifier Ax′i xo f Frequency−sensitive βxo network Consideranamplifierwithfeedback. M.B.Patil,IITBombay →A ≡ xo = A . f xi 1−Aβ SinceAandβ willgenerallyvarywithω,were-writeA as, f A(jω) →A (jω)= . f 1−A(jω)β(jω) AsA(jω)β(jω)→1,Af(jω)→∞,andwegetafinitexo evenifxi =0. Inotherwords,wecanremovexi andstillgetanon-zeroxo. Thisisthebasic principlebehindsinusoidaloscillators. Sinusoidal oscillators xi xx′i Amplifier Ax′i xo f Frequency−sensitive βxo network Consideranamplifierwithfeedback. xo =Axi(cid:48)=A(xi+xf)=A(xi+βxo) M.B.Patil,IITBombay SinceAandβ willgenerallyvarywithω,were-writeA as, f A(jω) →A (jω)= . f 1−A(jω)β(jω) AsA(jω)β(jω)→1,Af(jω)→∞,andwegetafinitexo evenifxi =0. Inotherwords,wecanremovexi andstillgetanon-zeroxo. Thisisthebasic principlebehindsinusoidaloscillators. Sinusoidal oscillators xi xx′i Amplifier Ax′i xo f Frequency−sensitive βxo network Consideranamplifierwithfeedback. xo =Axi(cid:48)=A(xi+xf)=A(xi+βxo) →A ≡ xo = A . f xi 1−Aβ M.B.Patil,IITBombay AsA(jω)β(jω)→1,Af(jω)→∞,andwegetafinitexo evenifxi =0. Inotherwords,wecanremovexi andstillgetanon-zeroxo. Thisisthebasic principlebehindsinusoidaloscillators. Sinusoidal oscillators xi xx′i Amplifier Ax′i xo f Frequency−sensitive βxo network Consideranamplifierwithfeedback. xo =Axi(cid:48)=A(xi+xf)=A(xi+βxo) →A ≡ xo = A . f xi 1−Aβ SinceAandβ willgenerallyvarywithω,were-writeA as, f A(jω) →A (jω)= . f 1−A(jω)β(jω) M.B.Patil,IITBombay Inotherwords,wecanremovexi andstillgetanon-zeroxo. Thisisthebasic principlebehindsinusoidaloscillators. Sinusoidal oscillators xi xx′i Amplifier Ax′i xo f Frequency−sensitive βxo network Consideranamplifierwithfeedback. xo =Axi(cid:48)=A(xi+xf)=A(xi+βxo) →A ≡ xo = A . f xi 1−Aβ SinceAandβ willgenerallyvarywithω,were-writeA as, f A(jω) →A (jω)= . f 1−A(jω)β(jω) AsA(jω)β(jω)→1,Af(jω)→∞,andwegetafinitexo evenifxi =0. M.B.Patil,IITBombay Sinusoidal oscillators xi xx′i Amplifier Ax′i xo f Frequency−sensitive βxo network Consideranamplifierwithfeedback. xo =Axi(cid:48)=A(xi+xf)=A(xi+βxo) →A ≡ xo = A . f xi 1−Aβ SinceAandβ willgenerallyvarywithω,were-writeA as, f A(jω) →A (jω)= . f 1−A(jω)β(jω) AsA(jω)β(jω)→1,Af(jω)→∞,andwegetafinitexo evenifxi =0. Inotherwords,wecanremovexi andstillgetanon-zeroxo. Thisisthebasic principlebehindsinusoidaloscillators. M.B.Patil,IITBombay * Thecondition,A(jω)β(jω)=1,foracircuittooscillatespontaneously(i.e., withoutanyinput),isknownastheBarkhausencriterion. * Forthecircuittooscillateatω=ω0,theβ networkisdesignedsuchthatthe Barkhausencriterionissatisfiedonlyforω0,i.e.,allcomponentsexceptω0 get attenuatedtozero. * Theoutputxo willthereforehaveafrequencyω0 (ω0/2π inHz),butwhatabout theamplitude? Sinusoidal oscillators xi xx′i Amplifier Ax′i xo f Frequency−sensitive βxo network M.B.Patil,IITBombay * Forthecircuittooscillateatω=ω0,theβ networkisdesignedsuchthatthe Barkhausencriterionissatisfiedonlyforω0,i.e.,allcomponentsexceptω0 get attenuatedtozero. * Theoutputxo willthereforehaveafrequencyω0 (ω0/2π inHz),butwhatabout theamplitude? Sinusoidal oscillators xi xx′i Amplifier Ax′i xo f Frequency−sensitive βxo network * Thecondition,A(jω)β(jω)=1,foracircuittooscillatespontaneously(i.e., withoutanyinput),isknownastheBarkhausencriterion. M.B.Patil,IITBombay * Theoutputxo willthereforehaveafrequencyω0 (ω0/2π inHz),butwhatabout theamplitude? Sinusoidal oscillators xi xx′i Amplifier Ax′i xo f Frequency−sensitive βxo network * Thecondition,A(jω)β(jω)=1,foracircuittooscillatespontaneously(i.e., withoutanyinput),isknownastheBarkhausencriterion. * Forthecircuittooscillateatω=ω0,theβ networkisdesignedsuchthatthe Barkhausencriterionissatisfiedonlyforω0,i.e.,allcomponentsexceptω0 get attenuatedtozero. M.B.Patil,IITBombay

Description:
Sinusoidal oscillators. Amplifier principle behind sinusoidal oscillators. The gain of the 741 Op Amp starts falling at rather low frequencies, with fc ≃ 10 Hz!
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.