M , V . 1: ATEMÁTICAS AVANZADAS PARA INGENIERÍA OL E CUACIONES DIFERENCIALES M , V . 1: ATEMÁTICAS AVANZADAS PARA INGENIERÍA OL E CUACIONES DIFERENCIALES Tercera edición Dennis G. Zill Loyola Marymount University Michael R. Cullen (fi nado) Loyola Marymount University Revisión técnica: Natella Antonyan Gabriel Cervantes Bello Departamento de Matemáticas Escuela de Ingeniería y Arquitectura, Instituto Tecnológico y de Estudios Superiores Instituto Tecnológico y de Estudios Superiores de Monterrey, campus Ciudad de México de Monterrey, campus Toluca Andrés Basilio Ramírez y Villa José Abraham Balderas López Facultad de Ingeniería, Universidad Nacional Departamento de Matemáticas, Autónoma de México y Escuela de Ciencias Químicas, UPIBI, Instituto Politécnico Nacional Universidad La Salle MÉXICO (cid:129) BOGOTÁ (cid:129) BUENOS AIRES (cid:129) CARACAS (cid:129) GUATEMALA (cid:129) LISBOA MADRID (cid:129) NUEVA YORK (cid:129) SAN JUAN (cid:129) SANTIAGO (cid:129) AUCKLAND LONDRES (cid:129) MILÁN (cid:129) MONTREAL (cid:129) NUEVA DELHI (cid:129) SAN FRANCISCO (cid:129) SÃO PAULO SINGAPUR (cid:129) SAN LUIS (cid:129) SIDNEY (cid:129) TORONTO Director Higher Education: Miguel Ángel Toledo Castellanos Director editorial: Ricardo A. del Bosque Alayón Editor sponsor: Pablo E. Roig Vázquez Editora de desarrollo: Lorena Campa Rojas Supervisor de producción: Zeferino García García Traducción: Erika Jasso Hernán D’Borneville Carlos Roberto Cordero Pedraza MATEMÁTICAS AVANZADAS PARA INGENIERÍA, VOL. 1: ECUACIONES DIFERENCIALES Tercera edición Prohibida la reproducción total o parcial de esta obra, por cualquier medio, sin la autorización escrita del editor. DERECHOS RESERVADOS © 2008 respecto a la primera edición en español por McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V. A Subsidiary of The McGraw-Hill Companies, Inc. Edificio Punta Santa Fe Prolongación Paseo de la Reforma 1015, Torre A Piso 17, Colonia Desarrollo Santa Fe, Delegación Álvaro Obregón C.P. 01376, México, D. F. Miembro de la Cámara Nacional de la Industria Editorial Mexicana, Reg. Núm. 736 ISBN-10: 970-10-6514-X ISBN-13: 978-970-10-6514-3 Traducido de la tercera edición en inglés de la obra: ADVANCED ENGINEERING MATHEMATICS, by Dennis G. Zill and Michael R. Cullen. Copyright © 2006 by Jones and Bartlett Publishers, Inc., págs i-xxii, xxv-xxxiii, 1-298, 347-450, 567-794, App-1-App-8, Ans-1-Ans-41 e I-1-I-23. Se reservan todos los derechos. ISBN-10: 0-7637-4591-X ISBN-13: 978-0-7637-4591-2 1234567890 09765432108 Impreso en México Printed in Mexico Prefacio a la tercera edición en inglés A diferencia de un curso de “cálculo” o de “ecuaciones diferenciales”, donde el conte- nido del curso está muy estandarizado, el contenido de un curso titulado “matemáticas para ingeniería” algunas veces varía de forma considerable entre dos instituciones aca- démicas distintas. Por lo tanto, un texto sobre matemáticas avanzadas para ingeniería es un compendio de muchos temas matemáticos, todos los cuales están relacionados en términos generales por la conveniencia de su necesidad o utilidad en cursos y carreras subsiguientes de ciencia e ingeniería. En realidad, no hay un límite para la cantidad de temas que se pueden incluir en un texto como el que ahora nos ocupa. En consecuencia, este libro representa la opinión de los autores, en este momento, acerca de lo que consti- tuyen “las matemáticas para ingeniería”. Contenido del texto Los seis primeros capítulos constituyen un curso completo sobre ecuaciones diferencia- les ordinarias. El capítulo sobre Matrices constituye una introducción a los sistemas de ecuaciones algebraicas, los determinantes y el álgebra matricial con énfasis especial en aquellos tipos de matrices útiles en la resolución de sistemas de ecuaciones diferenciales lineales. Las secciones sobre criptografía, códigos para la corrección de errores, el método de los mínimos cuadrados y los modelos compartimentales discretos se presentan como aplicaciones del álgebra matricial. Posteriormente se abordan los Sistemas de ecuaciones diferenciales lineales en el capítulo 8 y el capítulo 9, los Sistemas de ecuaciones diferenciales no lineales. Ambos empatan fuertemente con el material sobre matrices que se presenta en el capítulo 7. En el capítulo 8, los sistemas de ecuaciones lineales de primer orden se resuelven aplicando los conceptos de valores propios, vectores propios, diagonalización y función exponen- cial por medio de una matriz. En el capítulo 9 se explican los conceptos de estabilidad mediante dos aplicaciones: flujo de fluido en un plano y movimiento de una cuenta sobre un cable. En el capítulo 10, Funciones ortogonales y series de Fourier, se presentan los temas fundamentales de conjuntos de funciones ortogonales y expansiones de funciones en términos de una serie infinita de funciones ortogonales. Estos temas se utilizan posterior- mente en los capítulos 11 y 12, donde los problemas de valor en la frontera en coordena- das rectangulares, polares, cilíndricas y esféricas se resuelven mediante la aplicación del v método de separación de variables. En el capítulo 13, Método de la transformada inte- gral, los problemas de valor en la frontera se resuelven por medio de las transformadas integrales de Laplace y Fourier. Principales características de Matemáticas avanzadas para ingeniería, Vol. 1: Ecuaciones diferenciales • Todo el texto se modernizó a fondo para preparar a los ingenieros y científicos con las habilidades matemáticas requeridas para estar a la altura de los desafíos tecnológicos actuales. • Se han agregado nuevos proyectos de ciencia e ingeniería aportados por importantes matemáticos. Estos proyectos están relacionados con los temas del texto. • Se han añadido muchos problemas nuevos al libro. Además, fueron reorganizados muchos grupos de ejercicios y, en algunos casos, se han reescrito por completo para seguir el flujo del desarrollo presentado en la sección y facilitar más la asignación de tareas. Los grupos de ejercicios también ponen un gran énfasis en la elaboración de conceptos. • Hay un gran énfasis tanto en las ecuaciones diferenciales como en los modelos ma- temáticos. La noción de un modelo matemático está entretejida a lo largo de todo el texto, y se analiza la construcción y las desventajas de diferentes modelos. • En la sección 5.3, Funciones especiales, se ha ampliado el análisis de las ecuaciones diferenciales que se pueden resolver en términos de las funciones de Bessel. También por primera vez se presentan las funciones de Bessel modificadas I(x) y K(x). v v • En la sección 8.4, Sistemas lineales no homogéneos, se cubre el método de los coefi- cientes indeterminados. • Otro método para resolver problemas no homogéneos de valor en la frontera fue agre- gado a la sección 11.6. • Se enfatiza más el problema de Neumann en los capítulos 11 y 12. • A lo largo de los capítulos 10, 11 y 12, la confusa mezcla de símbolos como l2 y 1(cid:2)l en la solución de problemas de valor en la frontera de dos puntos se ha reem- plazado por el uso consistente de l. Los tres casos l (cid:3)a2, l (cid:3) 0 y l (cid:3)(cid:2)a2 se enfatizan mediante el análisis. Diseño del texto Como resultará evidente, el texto tiene un formato más amplio y un diseño interior a dos tintas, con el fin de que la lectura y el aprendizaje de este libro sean más amenos y di- dácticos. Todas las figuras tienen textos explicativos. Se han agregado más comentarios y anotaciones al margen en todo el libro. Cada capítulo tiene una página de presentación que incluye una tabla de contenido y una breve introducción al material que se estudiará. Al final de cada capítulo se incluyen ejercicios de revisión. Después de los apéndices se proporcionan respuestas a los problemas impares seleccionados. Agradecimientos Deseo agradecer a las siguientes personas que generosamente destinaron tiempo de sus ocupadas agendas para proporcionar los proyectos incluidos en el texto: Anton M. Jopko, Departamento de Física y Astronomía, McMaster University. Warren S. Wright, Departamento de Matemáticas, Loyola Marymount University. vi PREFACIO A LA TERCERA EDICIÓN EN INGLÉS Gareth Williams, Departamento de Matemáticas y Ciencias Computacionales, Stetson University. Jeff Dodd, Departamento de Computación y Ciencias de la Información, Jacksonville State University. Matheus Grasselli, Departamento de Matemáticas y Estadística, McMaster University. Dmitry Pelinovsky, Departamento de Matemáticas y Estadística, McMaster University. También es un gusto poder agradecer a las siguientes personas por sus comentarios y sugerencias de mejora: Sonia Henckel, Loyola Technological University. Donald Hartig, California Polytechnic State University, San Luis Obispo. Jeff Dodd, Jacksonville State University. Victor Elias, University of Western Ontario. Cecilia Knoll, Florida Institute of Technology. William Criminale, University of Washington. Stan Freidlander, Bronx Community College. Herman Gollwitzer, Drexel University. Robert Hunt, Humboldt State University. Ronald Guenther, Oregon State University. Noel Harbertson, California State University. Gary Stoudt, Indiana University of Pennsylvania. La tarea de compilar un texto de esta magnitud fue, en pocas palabras, larga y difícil. A lo largo del proceso de pasar cientos de páginas manuscritas por muchas manos, sin lugar a dudas se nos pudieron haber escapado algunos errores. Por esto me disculpo de antemano, y desde luego, apreciaría saber acerca de cualquier error con el fin de corre- girlo a la mayor brevedad. Dennis G. Zill Los Angeles PREFACIO A LA TERCERA EDICIÓN EN INGLÉS vii