New Economic Windows Bikas K. Chakrabarti Arnab Chatterjee Asim Ghosh Sudip Mukherjee Boaz Tamir Econophysics of the Kolkata Restaurant Problem and Related Games Classical and Quantum Strategies for Multi-agent, Multi-choice Repetitive Games Econophysics of the Kolkata Restaurant Problem and Related Games New Economic Windows Series editors MARISA FAGGINI, MAURO GALLEGATI, ALAN P. KIRMAN, THOMAS LUX Series Editorial Board Jaime Gil Aluja Departament d’Economia i Organització d’Empreses, Universitat de Barcelona, Barcelona, Spain Fortunato Arecchi Dipartimento di Fisica, Università degli Studi di Firenze and INOA, Florence, Italy David Colander Department of Economics, Middlebury College, Middlebury, VT, USA Richard H. Day Department of Economics, University of Southern California, Los Angeles, USA Steve Keen School of Economics and Finance, University of Western Sydney, Penrith, Australia Marji Lines Dipartimento di Scienze Statistiche, Università degli Studi di Udine, Udine, Italy Alfredo Medio Dipartimento di Scienze Statistiche, Università degli Studi di Udine, Udine, Italy Paul Ormerod Directors of Environment Business-Volterra Consulting, London, UK Peter Richmond School of Physics, Trinity College, Dublin 2, Ireland J. Barkley Rosser Department of Economics, James Madison University, Harrisonburg, VA, USA Sorin Solomon Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel Pietro Terna Dipartimento di Scienze Economiche e Finanziarie, Università degli Studi di Torino, Torino, Italy Kumaraswamy (Vela) Velupillai Department of Economics, National University of Ireland, Galway, Ireland Nicolas Vriend Department of Economics, Queen Mary University of London, London, UK Lofti Zadeh Computer Science Division, University of California Berkeley, Berkeley, CA, USA More information about this series at http://www.springer.com/series/6901 Bikas K. Chakrabarti Arnab Chatterjee (cid:129) Asim Ghosh Sudip Mukherjee (cid:129) Boaz Tamir Econophysics of the Kolkata Restaurant Problem and Related Games Classical and Quantum Strategies for Multi-agent, Multi-choice Repetitive Games 123 BikasK.Chakrabarti and CondensedMatterPhysicsDivision SahaInstituteofNuclearPhysics RaghunathpurCollege Kolkata Purulia India India and SudipMukherjee DepartmentofPhysics EconomicResearchUnit BarasatGovernmentCollege IndianStatisticalInstitute Kolkata Kolkata India India and ArnabChatterjee CondensedMatterPhysicsDivision CondensedMatterPhysicsDivision SahaInstituteofNuclearPhysics SahaInstituteofNuclearPhysics Kolkata Kolkata India India and BoazTamir DepartmentofScienceTechnologyandSociety, TCSInnovationLabs FacultyofInterdisciplinaryStudies Delhi Bar-IlanUniversity India Ramat-Gan Israel AsimGhosh DepartmentofComputerScience and AaltoUniversitySchoolofScience Espoo Iyar,TheIsraeliInstituteforAdvancedResearch Finland ZikhronYaakov Israel ISSN 2039-411X ISSN 2039-4128 (electronic) NewEconomic Windows ISBN978-3-319-61351-2 ISBN978-3-319-61352-9 (eBook) DOI 10.1007/978-3-319-61352-9 LibraryofCongressControlNumber:2017945223 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface TheKolkata Restaurant ProblemormorespecificallytheKolkata PaiseRestaurant (KPR)problemisarepetitivemany-choiceandmany-agentgamewheretheplayers collectively learn from past experience, and the identification of successful strate- gieshelptoavoidthecrowdinordertograbthebest(minoritychoice)opportunity available. Although the binary-choice many-agent games, called minority games, havebeenstudiedearlier,thesemany-choicegameshavemanydimensions,andthe successful strategies here can have intriguing features. Detailed studies on several stochasticstrategies,whichensuremaximumutilizationoftheresources,havebeen made. These are mostly classical (using statistical physics tricks). Quantum strategies are also being formulated with interesting features. This book intends to give an introduction on this recent development. Along with the main text on these interdisciplinary developments, we have included six appendices for the benefit of the readers. Five of them are invited contributions from our colleagues: Statistical Physics: A Brief Introduction by Purusattam Ray (Institute of Mathematical Sciences, Chennai), Quantum Mechanics: A Brief Introduction by Parthasarathi Mitra (Saha Institute of Nuclear Physics, Kolkata), Game Theory (Classical): A Brief Introduction by Priyodorshi Banerjee (Indian Statistical Institute, Kolkata), Manipushpak Mitra (Indian StatisticalInstitute,Kolkata)andConanMukherjee(LundUniversity,Lund,Indian Institute of Technology Bombay, Mumbai), Minority Game: An Overview and Recent Results by V. Sasidevan (Frankfurt Institute for Advanced Studies, Frankfurt),andExtendingKPRProblemtoDynamicMatchinginMobilityMarkets byLaylaMartinandPaulKaraenke(TechnicalUniversityofMunich,Munich).We areextremely thankfulfor their contributions tothis volume. Another appendix on Econophysics: A Brief Introduction has also been added by us. Each chapter, including of course the appendices, contains sufficient introductory materials, with referencestootherchaptersorappendicesfordetails,sothatthereadercanchoose each chapter almost independently. We are grateful to our collaborators Soumyajyoti Biswas, Anindya S. Chakrabarti, Anirban Chakraborti, Damien Challet, Daniele De Martino, Deepak Dhar, Matteo Marsili, Tapan Naskar, V. Sasidevan, and Yi-Cheng Zhang for their v vi Preface collaborations in the development of this and related game models. We are also gratefultoMauroGallegatiandothereditorsoftheNewEconomicWindowsseries for their encouragement to publish this book in their esteemed series. This book is addressed to students and researchers in economics (game theory andmodelgames),physics(statisticalphysics,quantummechanics),andcomputer science (job scheduling, etc). We hope they will find material here sufficiently exciting and useful for inspiring researches in these directions. Kolkata, India Bikas K. Chakrabarti Delhi, India Arnab Chatterjee Espoo, Finland Asim Ghosh Kolkata, India Sudip Mukherjee Ramat-Gan, Israel Boaz Tamir March 2017 Acknowledgements We thank P. Banerjee, L. Martin, P. Karaenke, M. Mitra, P. Mitra, C. Mukherjee, P. Ray, and V. Sasidevan for contributing appendices to this book. We would like tothankourcollaboratorsS.Biswas,A.S.Chakrabarti,A.Chakraborti,D.Challet, D.DeMartino,D.Dhar,M.Marsili,T.Naskar,V.Sasidevan,andY.-C.Zhangfor collaborationsanddiscussionsatvariousstages.WearealsogratefultoS.Biswas, A.S.Chakrabarti,D.Ghosh,andL.Martinfortheirhelpbyprovidinguswiththeir yet unpublished results of investigations regarding extended Kolkata Restaurant problems in various contexts, through preprints and thesis copy (private commu- nication) and checking our summary of their results, given in Chap. 7. vii Contents 1 Introduction.... .... .... ..... .... .... .... .... .... ..... .... 1 1.1 Background .... .... ..... .... .... .... .... .... ..... .... 1 1.1.1 Minority Game ..... .... .... .... .... .... ..... .... 2 1.1.2 Kolkata Restaurant Problem ... .... .... .... ..... .... 2 1.2 Motivation of the Book .... .... .... .... .... .... ..... .... 3 1.3 Plan of the Book .... ..... .... .... .... .... .... ..... .... 5 2 Kolkata Paise Restaurant Problem .. .... .... .... .... ..... .... 7 2.1 Introduction .... .... ..... .... .... .... .... .... ..... .... 7 2.2 Stochastic Learning Strategies ... .... .... .... .... ..... .... 9 2.2.1 Random Choice Strategies .... .... .... .... ..... .... 9 2.2.2 Rank Dependent Strategies.... .... .... .... ..... .... 10 2.2.3 Strict Crowd-Avoiding Case... .... .... .... ..... .... 12 2.2.4 Stochastic Crowd Avoiding Case ... .... .... ..... .... 12 2.3 Convergence to a Fair Social Norm with Deterministic Strategies .. .... .... ..... .... .... .... .... .... ..... .... 13 2.3.1 A ‘Fair’ Strategy.... .... .... .... .... .... ..... .... 14 2.3.2 Asymptotically Fair Strategy... .... .... .... ..... .... 14 2.4 Summary and Discussion... .... .... .... .... .... ..... .... 14 3 Phase Transition in the Kolkata Paise Restaurant Problem.... .... 17 3.1 Introduction .... .... ..... .... .... .... .... .... ..... .... 17 3.2 The Models .... .... ..... .... .... .... .... .... ..... .... 18 3.3 Results from Numerical Simulations... .... .... .... ..... .... 21 3.3.1 Model A. .... ..... .... .... .... .... .... ..... .... 21 3.3.2 Model B . .... ..... .... .... .... .... .... ..... .... 22 3.4 Analytical Treatment of the Models in Mean Field Case .... .... 23 3.4.1 Approximate Analysis of the Critical Point and Faster-Is-Slower Effect.... .... .... .... ..... .... 26 3.4.2 Analysis of the Finite Size Effects on the Time to Reach the Absorbing State .. .... .... .... ..... .... 28 3.5 Summary and Discussions .. .... .... .... .... .... ..... .... 29 ix x Contents 4 Zipf’s Law from Kolkata Paise Restaurant Problem.... ..... .... 31 4.1 Introduction .... .... ..... .... .... .... .... .... ..... .... 31 4.2 Model. .... .... .... ..... .... .... .... .... .... ..... .... 33 4.3 Results .... .... .... ..... .... .... .... .... .... ..... .... 34 4.3.1 Distribution of Sizes. .... .... .... .... .... ..... .... 34 4.3.2 Utilization.... ..... .... .... .... .... .... ..... .... 37 4.3.3 Evolution with Fitness ... .... .... .... .... ..... .... 39 4.4 Empirical Evidences.. ..... .... .... .... .... .... ..... .... 40 4.5 Summary and Discussions .. .... .... .... .... .... ..... .... 41 5 Minority Game and Kolkata Paise Restaurant Problem . ..... .... 43 5.1 Introduction .... .... ..... .... .... .... .... .... ..... .... 43 5.2 Strategy of the Agents ..... .... .... .... .... .... ..... .... 44 5.2.1 Uniform Approximation in Guessing the Excess Crowd... .... ..... .... .... .... .... .... ..... .... 45 5.2.2 Nonuniform Guessing of the Excess Crowd... ..... .... 48 5.2.3 Following an Annealing Schedule... .... .... ..... .... 50 5.3 Effect of Random Traders... .... .... .... .... .... ..... .... 52 5.4 Summary and Discussions .. .... .... .... .... .... ..... .... 54 6 From Classical Games, the Kokata Paise Restuarant Game, to Quantum Games..... .... .... .... .... .... ..... .... 55 6.1 A Short Introduction to Classical Games ... .... .... ..... .... 55 6.1.1 Definitions and Preliminaries... .... .... .... ..... .... 56 6.1.2 Repeated Games.... .... .... .... .... .... ..... .... 62 6.1.3 Games and Evolution Theory .. .... .... .... ..... .... 66 6.2 KPR.. .... .... .... ..... .... .... .... .... .... ..... .... 69 6.2.1 Some Simple KPR Results .... .... .... .... ..... .... 70 6.2.2 Phase Transition .... .... .... .... .... .... ..... .... 72 6.2.3 Minority Games .... .... .... .... .... .... ..... .... 74 6.2.4 KPR Non-stochastic . .... .... .... .... .... ..... .... 79 6.3 Quantum Games. .... ..... .... .... .... .... .... ..... .... 79 6.3.1 Quantum Strategies.. .... .... .... .... .... ..... .... 84 6.3.2 Nash Equilibrium in Quantum Games.... .... ..... .... 84 6.3.3 Quantum Coin Tossing and Bit Commitment.. ..... .... 89 6.3.4 Strong and Weak Coin Tossing. .... .... .... ..... .... 91 6.3.5 Quantum Games and Semidefinite Programming .... .... 93 6.4 Quantum KPR .. .... ..... .... .... .... .... .... ..... .... 100 6.5 Summary .. .... .... ..... .... .... .... .... .... ..... .... 102 7 Some Recent Developments: A Brief Discussion.... .... ..... .... 105 7.1 KPR Under Dynamic Setting .... .... .... .... .... ..... .... 105 7.2 Reinforcement Learning.... .... .... .... .... .... ..... .... 106 7.3 KPR and Wealth Distribution in Society ... .... .... ..... .... 110 7.4 Summary and Discussions .. .... .... .... .... .... ..... .... 111
Description: