This page intentionally left blank Economic Dynamics PhaseDiagramsandTheirEconomicApplication SecondEdition ThisisthesubstantiallyrevisedandrestructuredsecondeditionofRonShone’s successfulundergraduateandgraduatetextbookEconomicDynamics. The book provides detailed coverage of dynamics and phase diagrams in- cluding:quantitativeandqualitativedynamicsystems,continuousanddiscrete dynamics,linearandnonlinearsystemsandsingleequationandsystemsofequa- tions.ItillustratesdynamicsystemsusingMathematica,Mapleandspreadsheets. Itprovidesathoroughintroductiontophasediagramsandtheireconomicappli- cationandexplainsthenatureofsaddlepathsolutions. Thesecondeditioncontainsanewchapteronoligopolyandanextendedtreat- mentofstabilityofdiscretedynamicsystemsandthesolvingoffirst-orderdiffer- enceequations.DetailedroutinesontheuseofMathematicaandMaplearenow containedinthebodyofthetext,whichnowalsoincludesadviceontheuseof Excelandadditionalexamplesandexercisesthroughout.Thesupportingwebsite containsasolutionsmanualandlearningtools. ronaldshoneisSeniorLecturerinEconomicsattheUniversityofStirling.He istheauthorofeightbooksoneconomicscoveringtheareasofmicroeconomics, macroeconomics and international economics at both undergraduate and post- graduatelevel.HehaswrittenanumberofarticlespublishedinOxfordEconomic Papers, the Economic Journal, Journal of Economic Surveys and Journal of EconomicStudies. Economic Dynamics Phase Diagrams and Their Economic Application Second Edition RONALD SHONE UniversityofStirling Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge , United Kingdom Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambrid ge.org/9780521816847 © Ronald Shone 2002 This book is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2002 - ---- eBook (NetLibrary) - --- eBook (NetLibrary) - ---- hardback - --- hardback - ---- paperback - --- paperback Cambridge University Press has no responsibility for the persistence or accuracy of s for external or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Prefacetothesecondedition pagexi Prefacetothefirstedition xiii PARTI Dynamicmodelling 1 Introduction 3 1.1 Whatthisbookisabout 3 1.2 Theriseineconomicdynamics 5 1.3 Stocks,flowsanddimensionality 8 1.4 Nonlinearities,multipleequilibriaandlocalstability 12 1.5 Nonlinearityandchaos 15 1.6 Computersoftwareandeconomicdynamics 17 1.7 MathematicaandMaple 20 1.8 Structureandfeatures 24 Additionalreading 25 2 Continuousdynamicsystems 26 2.1 Somedefinitions 26 2.2 Solutionstofirst-orderlineardifferentialequations 37 2.3 Compoundinterest 39 2.4 First-orderequationsandisoclines 41 2.5 Separablefunctions 45 2.6 Diffusionmodels 53 2.7 Phaseportraitofasinglevariable 54 2.8 Second-orderlinearhomogeneousequations 59 2.9 Second-orderlinearnonhomogeneousequations 64 2.10 Linearapproximationstononlineardifferentialequations 66 2.11 SolvingdifferentialequationswithMathematica 70 2.12 SolvingdifferentialequationswithMaple 73 Appendix2.1Plottingdirectionfieldsforasingleequation withMathematica 77 Appendix2.2Plottingdirectionfieldsforasingleequation withMaple 79 Exercises 80 Additionalreading 84 vi Contents 3 Discretedynamicsystems 85 3.1 Classifyingdiscretedynamicsystems 85 3.2 Theinitialvalueproblem 86 3.3 Thecobwebmodel:anintroduction 87 3.4 Equilibriumandstabilityofdiscretedynamicsystems 88 3.5 Solvingfirst-orderdifferenceequations 99 3.6 Compoundinterest 105 3.7 Discounting,presentvalueandinternalratesofreturn 108 3.8 Solvingsecond-orderdifferenceequations 110 3.9 Thelogisticequation:discreteversion 118 3.10 Themultiplier–acceleratormodel 123 3.11 Linearapproximationtodiscretenonlineardifference equations 127 3.12 Solowgrowthmodelindiscretetime 130 3.13 SolvingrecursiveequationswithMathematica andMaple 131 Appendix3.1Two-cyclelogisticequationusingMathematica 135 Appendix3.2Two-cyclelogisticequationusingMaple 137 Exercises 138 Additionalreading 141 4 Systemsoffirst-orderdifferentialequations 142 4.1 Definitionsandautonomoussystems 142 4.2 Thephaseplane,fixedpointsandstability 145 4.3 Vectorsofforcesinthephaseplane 149 4.4 Matrixspecificationofautonomoussystems 156 4.5 Solutionstothehomogeneousdifferentialequation system:realdistinctroots 160 4.6 Solutionswithrepeatingroots 162 4.7 Solutionswithcomplexroots 164 4.8 Nodes,spiralsandsaddles 166 4.9 Stability/instabilityanditsmatrixspecification 178 4.10 Limitcycles 179 4.11 Euler’sapproximationanddifferentialequations onaspreadsheet 183 4.12 Solvingsystemsofdifferentialequationswith MathematicaandMaple 186 Appendix4.1Parametricplotsinthephaseplane: continuousvariables 194 Exercises 196 Additionalreading 200 5 Discretesystemsofequations 201 5.1 Introduction 201 5.2 BasicmatriceswithMathematicaandMaple 204 5.3 Eigenvaluesandeigenvectors 208 Contents vii 5.4 MathematicaandMapleforsolvingdiscretesystems 214 5.5 Graphingtrajectoriesofdiscretesystems 220 5.6 Thestabilityofdiscretesystems 223 5.7 Thephaseplaneanalysisofdiscretesystems 235 5.8 Internalandexternalbalance 239 5.9 Nonlineardiscretesystems 245 Exercises 247 Additionalreading 250 6 Optimalcontroltheory 251 6.1 Theoptimalcontrolproblem 251 6.2 ThePontryaginmaximumprinciple:continuousmodel 252 6.3 ThePontryaginmaximumprinciple:discretemodel 259 6.4 Optimalcontrolwithdiscounting 265 6.5 Thephasediagramapproachtocontinuoustime controlmodels 270 Exercises 283 Additionalreading 285 7 Chaostheory 286 7.1 Introduction 286 7.2 Bifurcations:single-variablecase 287 7.3 Thelogisticequation,periodic-doublingbifurcations andchaos 293 7.4 Feigenbaum’suniversalconstant 301 7.5 Sarkovskiitheorem 302 7.6 VanderPolequationandHopfbifurcations 304 7.7 Strangeattractors 307 7.8 Rationalchoiceanderraticbehaviour 312 7.9 Inventorydynamicsunderrationalexpectations 315 Exercises 319 Additionalreading 321 PARTII Appliedeconomicdynamics 8 Demandandsupplymodels 325 8.1 Introduction 325 8.2 Asimpledemandandsupplymodelincontinuoustime 326 8.3 Thecobwebmodel 332 8.4 CobwebswithMathematicaandMaple 338 8.5 Cobwebsinthephaseplane 339 8.6 Cobwebsintwointerrelatedmarkets 346 8.7 Demandandsupplywithstocks 349 8.8 Stabilityofthecompetitiveequilibrium 353 8.9 Thehousingmarketanddemographicchanges 358 8.10 Chaoticdemandandsupply 363 viii Contents Appendix8.1ObtainingcobwebsusingMathematica andMaple 367 Exercises 371 Additionalreading 374 9 Dynamictheoryofoligopoly 375 9.1 Staticmodelofduopoly 375 9.2 Discreteoligopolymodelswithoutputadjusting completelyandinstantaneously 377 9.3 Discreteoligopolymodelswithoutputnotadjusting completelyandinstantaneously 389 9.4 Continuousmodellingofoligopoly 398 9.5 Anonlinearmodelofduopolisticcompetition(R&D) 405 9.6 Schumpeteriandynamics 414 Exercises 419 Additionalreading 423 10 Closedeconomydynamics 424 10.1 Goodsmarketdynamics 425 10.2 Goodsandmoneymarketdynamics 429 10.3 IS-LMcontinuousmodel:version1 431 10.4 TrajectorieswithMathematica,MapleandExcel 437 10.5 Someimportantpropositions 442 10.6 IS-LMcontinuousmodel:version2 447 10.7 NonlinearIS-LMmodel 453 10.8 Tobin–Blanchardmodel 455 10.9 Conclusion 465 Exercises 467 Additionalreading 469 11 Thedynamicsofinflationandunemployment 470 11.1 ThePhillipscurve 470 11.2 Twosimplemodelsofinflation 472 11.3 Deflationary‘deathspirals’ 484 11.4 ALucasmodelwithrationalexpectations 490 11.5 Policyrules 493 11.6 Money,growthandinflation 494 11.7 Caganmodelofhyperinflation 500 11.8 Unemploymentandjobturnover 506 11.9 Wagedeterminationmodelsandtheprofitfunction 509 11.10 Labourmarketdynamics 513 Exercises 516 Additionalreading 518 12 Openeconomydynamics:stickypricemodels 519 12.1 Thedynamicsofasimpleexpendituremodel 519 12.2 Thebalanceofpaymentsandthemoneysupply 524