ebook img

Economic and Financial Modelling with EViews: A Guide for Students and Professionals PDF

293 Pages·2018·19.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Economic and Financial Modelling with EViews: A Guide for Students and Professionals

Statistics and Econometrics for Finance Abdulkader Aljandali · Motasam Tatahi Economic and Financial Modelling with EViews A Guide for Students and Professionals Statistics and Econometrics for Finance Series Editors David Ruppert, Cornell University, Ithaca, New York Jianqing Fan, Princeton University, Princeton, New Jersey Eric Renault, Brown University, Providence, Rhode Island Eric Zivot, University of Washington, Seattle, Washington More information about this series at http://www.springer.com/series/10377 Abdulkader Aljandali • Motasam Tatahi Economic and Financial Modelling with EViews A Guide for Students and Professionals Abdulkader Aljandali Motasam Tatahi Department of Accounting, Finance Department of Economics, Finance and Economics and Accounting Coventry University London Regent’s University London-European London, UK Business School London London, UK ISSN 2199-093X ISSN 2199-0948 (electronic) Statistics and Econometrics for Finance ISBN 978-3-319-92984-2 ISBN 978-3-319-92985-9 (eBook) https://doi.org/10.1007/978-3-319-92985-9 Library of Congress Control Number: 2018944692 © Springer International Publishing AG, part of Springer Nature 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer International Publishing AG part of Springer Nature. The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Contents 1 Introduction to EViews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Importing Data into EViews . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Reading Excel/IBM SPSS Data Variables . . . . . . . . . . . 5 1.2.2 Saving and Opening an EViews Data File . . . . . . . . . . . 7 2 A Guideline for Running Regression . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 EViews Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 Saving the Regression Equation . . . . . . . . . . . . . . . . . . 15 2.1.2 Editing and Saving Regression Graphics . . . . . . . . . . . . 16 2.2 The Cobb-Douglas Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.1 Estimation of the Cobb-Douglas Model . . . . . . . . . . . . . 21 2.2.2 Interpret the Regression Equation . . . . . . . . . . . . . . . . . 22 2.2.3 Testing the Coefficients . . . . . . . . . . . . . . . . . . . . . . . . 24 2 2 2.2.4 Comment on the Value of the R and Testing the R . . . 25 2.2.5 Multicollinearity and Residual Analysis . . . . . . . . . . . . . 25 3 Time Series Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1 Time Series One: The Real Money Demand (RMD) . . . . . . . . . . 38 3.1.1 Informal Method: Plot the Time Series and Generate a Correlogram . . . . . . . . . . . . . . . . . . . . . 38 3.1.2 Formal Method: Run the Augmented Dickey-Fuller (ADF) Test . . . . . . . . . . . . . . . . . . . . . . . 40 3.2 Time Series Two: The Real GDP (RGDP) . . . . . . . . . . . . . . . . . 42 3.2.1 Informal Method: Plot the Time Series and Generate a Correlogram . . . . . . . . . . . . . . . . . . . . . 42 3.2.2 Formal Method: Run the Augmented Dickey-Fuller (ADF) Test . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 Time Series Three: Interest Rates (INT) . . . . . . . . . . . . . . . . . . . 44 3.3.1 Informal Method: Plot the Time Series and Generate a Correlogram . . . . . . . . . . . . . . . . . . . . . 44 v vi Contents 3.3.2 Formal Method: Run the Augmented Dickey-Fuller (ADF) Test . . . . . . . . . . . . . . . . . . . . . . . 46 3.4 Time Series Four: The First Difference of the RMD-DRMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.1 Informal Method: Plot the Time Series and Generate a Correlogram . . . . . . . . . . . . . . . . . . . . . 47 3.4.2 Formal Method: Run the Augmented Dickey-Fuller (ADF) Test . . . . . . . . . . . . . . . . . . . . . . . 49 3.5 Time Series Five: The First Difference of the RGDP-DRGDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5.1 Informal Method: Plot the Time Series and Generate a Correlogram . . . . . . . . . . . . . . . . . . . . . 50 3.5.2 Formal Method: Run the Augmented Dickey-Fuller (ADF) Test . . . . . . . . . . . . . . . . . . . . . . . 51 3.6 Time Series Six: The First Difference of INT-DINT . . . . . . . . . . 52 3.6.1 Informal Method: Plot the Time Series and Generate a Correlogram . . . . . . . . . . . . . . . . . . . . . 52 3.6.2 Formal Method: Run the Augmented Dickey-Fuller (ADF) Test . . . . . . . . . . . . . . . . . . . . . . . 54 4 Time Series Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1 The Property of Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.1.1 Trend Differencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.1.2 Seasonal Differencing . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.1.3 Homoscedasticity of the Data . . . . . . . . . . . . . . . . . . . . 60 4.2 Time Series in Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5 Further Properties of Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.1 Stochastic and Deterministic Trends . . . . . . . . . . . . . . . . . . . . . . 73 5.2 The Lag Operator and Invertibility . . . . . . . . . . . . . . . . . . . . . . . 75 5.3 The Characteristic Equation and Stationarity . . . . . . . . . . . . . . . . 78 5.4 Unit Root Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Appendix 5.1: The Binomial Theorem . . . . . . . . . . . . . . . . . . . . . . . . 84 Appendix 5.2: The Quadratic Equation . . . . . . . . . . . . . . . . . . . . . . . . 85 6 Economic Forecasting Using Regression . . . . . . . . . . . . . . . . . . . . . 89 6.1 Forecasting with Regression Models . . . . . . . . . . . . . . . . . . . . . 90 6.2 Step One: Checking the Stationarity of the Series . . . . . . . . . . . . 90 6.3 Step Two: Making Series Stationary . . . . . . . . . . . . . . . . . . . . . 94 6.4 Step Three: The Cointegration Test . . . . . . . . . . . . . . . . . . . . . . 99 6.5 Step Four: Model Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.6 Step Five: Making a Joint Graph of the Dependent Variable and Its Forecast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.7 Step Six: Adding Autocorrelation of the Error Term . . . . . . . . . . 108 Contents vii 7 Economic Forecasting using ARIMA Modelling . . . . . . . . . . . . . . . 111 7.1 The Box-Jenkins Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.2 The ARIMA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.3 Autocorrelations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.3.1 Autocorrelation Functions . . . . . . . . . . . . . . . . . . . . . . 114 7.3.2 Partial Autocorrelation Functions (PACF) . . . . . . . . . . . 116 7.3.3 Patterns of the ACF and PACF . . . . . . . . . . . . . . . . . . . 117 8 Modelling Volatility in Finance and Economics: ARCH, GARCH and EGARCH Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 8.1 The ARCH Class of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 8.2 Testing for ARCH Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 8.3 Problems with ARCH Models in Practice . . . . . . . . . . . . . . . . . . 154 8.4 GARCH Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 8.5 Application: Modelling Volatility & Estimating a GARCH (1, 1) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 8.6 Cointegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 8.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 9 Limited Dependent Variable Models . . . . . . . . . . . . . . . . . . . . . . . . 197 9.1 The Linear Probability Model . . . . . . . . . . . . . . . . . . . . . . . . . . 198 9.2 The Logit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 9.3 Applying the Logit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 9.4 The Logit Model in EViews . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 10 Vector Autoregression (VAR) Model . . . . . . . . . . . . . . . . . . . . . . . . 211 10.1 The VAR Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 10.2 The Estimation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Appendix 10.1: The Wald Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 11 Panel Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 11.1 Panel Stationary Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 11.1.1 The LGDP Panel Data . . . . . . . . . . . . . . . . . . . . . . . . 239 11.1.2 The LGEX Panel Data . . . . . . . . . . . . . . . . . . . . . . . . 240 11.1.3 The First Difference of the Data . . . . . . . . . . . . . . . . . 241 11.1.4 The DLGDP Panel Data . . . . . . . . . . . . . . . . . . . . . . . 242 11.1.5 The DLGEX Panel Data . . . . . . . . . . . . . . . . . . . . . . . 243 11.2 The Panel ECM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 11.2.1 Pooled OLS regression . . . . . . . . . . . . . . . . . . . . . . . . 248 11.2.2 The Fixed Effects Least Squares Dummy Variable (LSDV) Model . . . . . . . . . . . . . . . . . . . . . . . 249 11.2.3 Model Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 11.2.4 Limitations of the Fixed Effects LSDV Model . . . . . . . 254 11.3 The Random Effects Model (REM) or Error Components Model (ECM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 11.4 Fixed Effects Model vs. Random Effects Model . . . . . . . . . . . . 257 11.5 The Final Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 viii Contents 12 Capital Asset Pricing Model (CAPM) . . . . . . . . . . . . . . . . . . . . . . . 261 12.1 The CAPM Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 12.2 Residual Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 List of Figures Fig. 1.1 The EViews opening window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Fig. 1.2 Table read specification dialogue box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Fig. 1.3 HARMON data imported into EViews . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Fig. 1.4 The Workfile structure dialogue box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Fig. 1.5 Appropriate set up for the Workfile Structure dialogue box . . . . . 6 Fig. 1.6 The correctly dated data file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Fig. 1.7 Selecting variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Fig. 1.8 The Show dialogue box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Fig. 1.9 EViews output showing models variables . . . . . . . . . . . . . . . . . . . . . . . . . 9 Fig. 1.10 Descriptive Statistics in EViews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Fig. 2.1 The Equation Estimation dialogue box . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Fig. 2.2 The EViews regression equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Fig. 2.3 The Jarque-Bera test of normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Fig. 2.4 The Breusch-Godfrey test of serial autocorrelation . . . . . . . . . . . . . . . 14 Fig. 2.5 White’s heteroscedasticity test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Fig. 2.6 The observed, fitted values and the residuals . . . . . . . . . . . . . . . . . . . . . 16 Fig. 2.7 The Graph Options dialogue box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Fig. 2.8 An edited plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Fig. 2.9 The Generate Series by Equation dialogue box . . . . . . . . . . . . . . . . . . . 19 Fig. 2.10 A monthly listing of the standardised residuals . . . . . . . . . . . . . . . . . . . 19 Fig. 2.11 A plot of the standardised residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Fig. 2.12 Scatter plot of Log (Y) Log (K) data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Fig. 2.13 Scatter plot of Log (Y) and Log (L) data . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Fig. 2.14 Estimate a regression equation dialogue box . . . . . . . . . . . . . . . . . . . . . . 24 Fig. 2.15 Regression equation residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Fig. 2.16 Graph Options dialogue box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Fig. 2.17 Plot of the E residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Fig. 2.18 Actual, fitted and residuals data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Fig. 2.19 Testing for Multicollinerarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Fig. 2.20 Testing for Normality of the residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ix x List of Figures Fig. 2.21 The White test statistic in EViews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Fig. 2.22 Correlogram of residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Fig. 2.23 Serial correlation LM test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Fig. 3.1 Plot of the RMD series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Fig. 3.2 Correlogram of RMD series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Fig. 3.3 RMD unit root test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Fig. 3.4 RGDP plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Fig. 3.5 Corrlogram of RGDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Fig. 3.6 RGDP unit root test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Fig. 3.7 INT plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Fig. 3.8 Correlogram of INT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Fig. 3.9 INT unit root test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Fig. 3.10 DRMD plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Fig. 3.11 Correlogram of DRMD .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Fig. 3.12 DRMD unit root test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Fig. 3.13 DRGDP plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Fig. 3.14 Correlogram of DRGDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Fig. 3.15 DRGDP unit root test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Fig. 3.16 DINT plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Fig. 3.17 Correlogram of DINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Fig. 3.18 DINT unit root test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Fig. 4.1 Stock levels over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Fig. 4.2 Regression model using the RMD, RGDP and INT variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Fig. 4.3 Plot of U residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Fig. 4.4 Correlogram test for U residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Fig. 4.5 U residuals unit root test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Fig. 4.6 Regression output using RMD, RGDP and INT . . . . . . . . . . . . . . . . . . 68 Fig. 4.7 DRMD’s ECM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Fig. 4.8 Breusch-Godfrey serial correlation LM test . . . . . . . . . . . . . . . . . . . . . . . 71 Fig. 5.1 A time series with a deterministic trend . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Fig. 5.2 An Argand plot of the complex number 2 + 3i . . . . . . . . . . . . . . . . . . . 86 Fig. 6.1 Data plot of PCE and PDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Fig. 6.2 Plot of the Natural Log of PCE (LPCE) . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Fig. 6.3 Correlogram of LPCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Fig. 6.4 LPCE Unit root test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Fig. 6.5 Plot of the Natural Log PDI-LPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Fig. 6.6 Correlogram of LPDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Fig. 6.7 LPDI unit root test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Fig. 6.8 Plot of the first difference (DLPCE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Fig. 6.9 Correlogram of DLPCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Fig. 6.10 DLPCE unit root test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Fig. 6.11 Plot of the first difference (DLPDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.