Economic analysis of large-scale wind energy conversion systems in central anatolian Turkey 131 Economic analysis of large-scale wind energy conversion systems in 07 central anatolian Turkey Economic analysis of large-scale wind energy Mustafa Serdar GENÇ conversion systems in central anatolian Turkey MustafaSerdarGENÇ ErciyesÜniversitesi,MühendislikFakültesi,EnerjiSistemleriMühendisligˇiBölümü, 38039,Kayseri Turkey 1. Introduction A political, economical and technological development is influenced by social events in all world. Increasingofindustrialproductionandraisingcompetitivenessispossiblebydevel- opmentoftechnology.Countrieswhichfailtodevelopatechnologywillbedifficulttosurvive in the new world order and they will take place in the class of very populated, poor coun- tries whose revenues do not increase. Today, the developing countries make research their ownenergysources,particularlyrenewableandcleanenergysourcesanddevelopstheirown technologiesaboutenergyconversionsystemsbecauseofdifficultiesonenergyinalloverthe world. Not only the converting most efficiently an energy source into useable energy but also it is extremely important that this source is clean and sustainable energy. Clean and renewable energiesobtainingfromsunlight,windorwateraroundtheearthdonotmakeanetcontribu- tionofcarbondioxidetotheatmosphere. Therefore,theseenergysourcesshouldbeusedto protectourworld,becauseofglobalwarmingandtheinjuriouseffectsofcarbonemissions. Pressure and temperature differences occurring in the atmosphere because of solar energy, and the earth’s rotation, and different forms of the earth’s surface create wind. People has beenusedthewindforvariouspurposessuchaswindmill,waterpumping,etc.forcenturies. Not only wind energy can be used as mechanical power but also mechanical energy of the windthroughageneratorcanbeconvertedintoelectricalenergy.But,interestinwindenergy have always been tied to oil prices. In the 1970s, oil prices raised suddenly and both this risingandtheinjuriouseffectsofcarbonemissionspushedpeopletoseekalternative,clean andrenewableenergysources. Duetothefactthatwindenergyisafuel-free, inexhaustible, andpollution-freesource, the roleofwindenergyinelectricitygenerationincreasedintheUnitedStates,AsiaandEurope. Inthepast25years,useofwindenergyinU.S.A.increased,andthewindenergypricewas80 cents/kWhin1980andthispricedecreasedto4cents/kWhin2002(Kakac,2006). Although wind produces only about 1.5% of worldwide electricity use, it is growing rapidly, having doubled in the three years between 2005 and 2009 (World Wind Energy Association, 2010). Inseveralcountriesithasadistribution, accountingforabout19%ofelectricityproduction inDenmark,10%inSpainandPortugal,and7%inGermanyandtheRepublicofIrelandin 2008. AndTurkeyisratherunsuccessfulinusingitspotentialandhas1002.35MWinstalled capacity (Electricity Market Regulatory Authority, 2010). Cumulative variation of installed www.intechopen.com 132 Clean Energy Systems and Experiences 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 0 150 300 450 600 750 900 1050 1200 InstalledpowercapacityinTurkey[MW] Fig.1.CumulativevariationofwindpowerinstalledinTurkey windpowerinTurkeyisshowninFig. 1(ElectricityMarketRegulatoryAuthority, 2010). It isexpectedthattheinstalledwindpowercapacityinTurkeywillreachabout3500MWupto endof2010year. Windenergypricesarebasedonlocalconditionsandrequiretoanalyzeforeachcountry.The characteristicsandthedistributionofwindspeedsofasitehavetobeinvestigatedindetailfor effectiveusingthisenergy.Whenawindenergyconversionsystemwillinstallinasite,many factorssuchasthewindspeed,windpower,thegeneratortypehavetobetakenintoaccount andafeasibilitystudymustbedone. Alotofstudiesrelatedtothewindcharacteristicsand windpowerpotentialhavebeenmadeinmanycountriesworldwidebyresearcherssuchas Rehman(2004),AhmetShataandHanitsch(2006),Ackeret. al(2007),Bagiorgasetal. (2007), Bouzidietal.(2009),Nounietal.(2007),ChangandTu(2007),Ngalaaetal.(2007),Zhouetal. (2010)etc. InTurkey,alotofstudiesoftheestimationofwindcharacteristicshavebeenachievedbyre- searchers.Bilgilietal.(2004)andSahinetal.(2005)investigatedthewindpowerpotentialfor selectedsevendifferentsites(Antakya,Samandag,Karatas,Adana,Yumurtalýk,Dortyoland Iskenderun)intheSouthernAnatolia. Theirresultsshowthatthecontoursofconstantwind speedandpowerpotentialcouldleadtheprivatepowerdeveloperstodecidethelocationsof appropriatewindfarms. BilgiliandSahin(2009),andSahinandBilgili(2009)studiedwind www.intechopen.com Economic analysis of large-scale wind energy conversion systems in central anatolian Turkey 133 energydensityinthesouthernandsouthwesternregionofTurkey.Thedominantwinddirec- 2010 tions,probabilitydistributions,Weibullparameters,meanwindspeeds,andpowerpotentials weredeterminedaccordingtothewinddirections,years,seasons,months,andhoursofday, 2009 separately. Itisobtainedthattheseregionshaveareasonablewindpowerpotentialandthey aresuitableforplantingwindenergyturbines.Inaddition,accordingtoauthorsBelen-Hatay 2008 isthemostpromisingandconvenientsiteforproductionofelectricityfromwindpower. Bil- 2007 gili et al. (2010) and Bilgili and Sahin (2010) investigated statistically wind energy density ofAkhisar,Bababurnu,Belen,Datca,Foca,Gelendost,Gelibolu,GokceadaandSokedistricts 2006 whicharelocatedinthesouthern,southwesternandwesternregionofTurkey. TheWeibull and Rayleigh probability density functions, and the Wind Atlas Analysis and Application 2005 Program (WAsP) packet program were used to analyze the measured data collected by the General Directorate of Electrical Power Resources Survey Administration. They concluded 2004 thattheWeibullprobabilitydensityfunctionandWAsPprogramprovidebetterpowerden- 2003 sityestimationsthanRayleighprobabilitydensityfunctionforallstationsenjoyingareason- ablewindpowerpotential.TheyfoundthatGokceadaandGeliboluwerethemostpromising 2002 andconvenientsitestoproducttheelectricityfromthewindenergy.Furthermore,Bilgiliand Sahin(2010)presentedtheelectricpowerplantsinTurkeyand,theircapacitiesandresources 2001 usedintheelectricitygenerationinordertoupdatetheelectricenergystatistics.Thestatusof thermal,hydro,wind,andgeothermalpowerplantsinTurkeywasclassifiedaccordingtothe 2000 electricityutilities. 1999 KurbanandHocaoglu(2010)studiedthepossiblewindenergypotentialinEskisehir,Turkey usingthedatacollectedintheobservationstationestablishedatIkiEylulCampusofAnadolu 1998 University. Andthey(2010)investigatedthewindstatisticsandenergycalculationsforEs- 0 150 300 450 600 750 900 1050 1200 kisehir region using the Wind Atlas Analysis and Application Program (WAsP) software. Theyselectedsuitablesitestolocatewindturbinesoptimallyaccordingtothecreatedwind InstalledpowercapacityinTurkey[MW] powerandwindspeedmaps.Eighteendifferentwindturbineswithnominalpowersbetween 200and2,000kWareconsideredtoproductenergy. KarsliandGecit(2003)determinedthe windpowerpotentialoftheNurdagi/GaziantepdistrictlocatedinthesouthofTurkeyusing Weibullparametersofthewindspeeddistribution. Theirresultsshowthatthedistricthasa meanwindspeedof7.3m/sat10mheightandmeanpowerdensityof222W/m2. Akpinar andAkpinar(2004)evaluatedthewindenergypotentialofMaden-ElazigineasternTurkey andobtainedthatthemeanspeedvariesbetween5and6m/sandyearlymeanpowerden- sityis244.65W/m2. Kose(2004)andKoseetal. (2004)determinedthepossiblewindenergy potentialattheDumlupinarUniversity-Kutahyamaincampususingtheirownobservation station. Celik(2003)analyzedthewindenergypotentialofIskenderunbasedontheWeibull andtheRayleighmodelsusing1-yearmeasuredhourlytime-serieswindspeeddata. Itcanbegeneratedmorepowerfromwindenergybyselectionofwindfarmsitewithsuitable wind electric generator and establishment of more number of wind stations. The selection andinstallingofsuitablewindelectricgeneratortoproduceelectricalenergyeconomicallyin thewindyareasrequiresanumberofactivitiesthatincludetheinvestigationofthesource, feasibilityassessmentetc. Ozerdemetal. (2006)carriedoutbothtechnicalandeconomical feasibilitystudyforawindfarminIzmir-Turkeyusingthreediversescenariosforeconomical evaluation. ItwasshownthatthegeneratingcostperkWhandinternalrateofreturnvalue for all three scenarios were promising. Celik (2007) analyzed economically suitable power generationusingwindturbineswhichhavenominalpowerrangeform0.6to500kW.This study showed that Iskenderun was amongst the possible wind energy generation regions, www.intechopen.com 134 Clean Energy Systems and Experiences andthelowestcostofelectricityat$0.15perkWhwasobtainedinthewindturbinewith500 kW. Gökçeketal. (2007a,2007b)studiedwindenergypotentialandenergycostanalysisofKirk- lareliintheMarmaraRegion,Turkey. TheresultsoftheirstudyindicatedthatKirklarelien- joyed well enough wind energy potential and the wind turbine with 2300 kW rated power realizedthehighestannualenergyproductionandtheelectricalenergycostperkWhwases- timatedasabout0.06$forturbinespecificcostas700$/kW.GençandGökçek(2009), and Gökçek and Genç (2009) investigated the evaluation of wind potential, and electricity gen- eration and cost of wind energy conversion systems in Central Anatolia Turkey. They has concludedthatPinarbasiamongconsideredsiteshasaremarkablepotentialofwindenergy forutilizationandcanbeevaluatedasmarginalareaforcost-effectiveelectricalenergygener- ationasthecostsofwindenergyconversionsystemsarelowered. Furthermore,accordingto theresultofthecalculations,itwasshownthatthewindenergyconversionsystemofcapacity 150kWproducetheenergyoutputabout121MWhperyearinthePinarbasiforhubheight30 mandalsoenergycostvariesintherangeof0.29-30.0$/kWhforallwindenergyconversion systemsconsidered. 2. WindCharacteristic 2.1 WindEnergyMeteorology Theatmosphereoftheearthabsorbssolarradiationduringtheday. Thenitdeliversheatto spaceatalowertemperatureatnighttime.Inthisprocess,theregionswheretheairpressure istemporarilyhigherorlowerthanaverageoccur. Thisdifferenceinairpressurecausesair mass to flow from the region of higher pressure to that of lower pressure. This flow of air massesiscalledaswind. Windhastwocharacteristics: windspeedandwinddirection. Windspeedisthevelocityof theairmasswhichtravelshorizontallythroughtheatmosphere. Windspeedisoftenmea- suredwithananemometerinkilometersperhour(kmph), milesperhour(mph), knots, or meters per second (mps) (Pidwirny, 2006). An anemometer (Fig. 2) consists of three open cups attached to a rotating spindle. Wind direction is called as the direction from where a windcomesfrom.Directionismeasuredbyaninstrumentcalledawindvanewhichisshown inFig. 2. Thewindvaneinstrumenthasabulletshapednoseattachedtoafinnedtailbya metalbar. Theanemometerandwindvanearepositionedintheatmosphericatastandard distanceof10metersabovetheground. Information on the direction of wind can be presented in the wind roses. The wind rose is a chart which indicates the distribution of wind in different direction. Fig. 3 describes the sixteen principal directions of wind. Meteorology reports the wind direction using one of these sixteen directions. And aeronautical meteorology uses the degree concept based on the360degreesfoundinacircleforthewinddirection,whileclimatologicalandsynoptical meteorologyusesthesixteenprincipaldirections. Wind always blows from high pressure region to low pressure region. High/low pressure regionisaregionwhosepressureishigher/lowerthanitssurroundings.Thevelocityofwind isbasedonpressuregradientforce. Ifthepressuregradientforceisgreater,thefasterwind willblow.Iftheisobarswhicharealinedrawnthroughpointsofequalpressureonaweather map (Fig. 4) are closely spaced, a meteorologist can forecast wind speed to be high due to thefactthatthepressuregradientforceisgreat.Inareaswheretheisobarsarespacedwidely apart,thepressuregradientislowandlightwindsnormallyexist.Forexample,whenthelow pressureregioninthenorthofBlackSeainthesurfaceweathercharttakenfromTurkishState www.intechopen.com Economic analysis of large-scale wind energy conversion systems in central anatolian Turkey 135 Fig.2.Anemometerusedtomeasurewindspeedanddirection(Pidwirny,2006) MeteorologicalService(TurkishStateMeteorologicalService,2010)isconsidered,thewinds intheAregionarefasterthanthewindsintheBregion.BecauseAregioninsideyellowcircle hasthefourisobarswhileBregioninsidebrowncircleenjoyingsamediameterwithyellow circlehasthetwoisobars. Therearethreeanotherforcesactingonwind: coriolisforcewhichtherotationoftheEarth creates, centrifugal force which is directed towards the center of rotation and friction force whichtheEarth’ssurfacecreates.Thecoriolisforceandcentrifugalforceonlyinfluencewind direction, whilefrictionalforcehaveanegativeeffectonwindspeedandarelimitedtothe loweronekilometerabovetheEarth’ssurface(Pidwirny,2006). 2.2 WindSpeedDistributioninTurkey TurkishWindAtlasshownforopenplainsinFigure5waspreparedusingWindAtlasAnal- ysisandApplicationProgrambyTurkishStateMeteorologicalServicesandElectricalPower Resources Survey and Development Administration in 2002 (Dündar et al., 2002). In this study, the observations have been done for 96 meteorological stations distributed homoge- neouslyoverTurkey,and45oftheseobservationstationswereusedforthepreparationofthe WindAtlas. InthisWindAtlas,thelegendforclosedplainswasgiveninTable1. Asshown inFigure5andTable1, therearemanysuitablesitesespeciallyincoastalareasandcentral region(Pinarbasi)ofTurkeytoproductelectricityfromwindenergy. www.intechopen.com 136 Clean Energy Systems and Experiences Fig.3.Windrose 2.3 WindSpeedVariationWithHeight Itisnecessarythatthewinddataextrapolatefortheturbinehubheightssincethewinddata aremeasuredat10mheightaboveground.Inordertocalculateofwindspeedsatanyheight, loglawcanbeused.Loglawboundarylayerprofile(ArcherandJacobson,2003)incorporates aroughnessfactorbasedonthelocalsurfaceroughnessscalezs(m), v=v ln(z/zs) (1) 0(cid:31)ln(z0/zs)(cid:30) wherevisthewindspeedtobedetermineforthedesiredheight(z),v isthewindspeedat 0 recordedatstandardanemometerheight(z ).Surfaceroughnessisbasedonlandusecategory 0 suchasurban,cropland,grassland,forest,water,barren,tundra,etc. Thelandusecategory can be selected from the Engineering Sciences Data Unit (Engineering Sciences Data Unit, 2010). 2.4 WeibullandRayleighWindSpeedStatistics Inordertodescribethewindspeedfrequencydistribution,thereareseveralprobabilityden- sityfunctions.Theprobabilitydensityfunctionspointoutthefrequencydistributionofwind speed, and which the interspace of the most frequent wind speed is, and how long a wind turbine is out and on of action. The Weibull and the Rayleigh functions are the two most www.intechopen.com Economic analysis of large-scale wind energy conversion systems in central anatolian Turkey 137 Fig.4.Thesurfaceweatherchart(TurkishStateMeteorologicalService,2010) Color Windspeed(m/s) Windpower(W/m2) Darkblue >6.0 >250 Red 5.0-6.0 150-250 Yellow 4.5-5.0 100-150 Green 3.5-4.5 50-100 Cyan <3.5 <50 Table1.ThewindspeeddistributionsforclosedplainsonTurkishWindAtlas(Dündaretal., 2002) known. TheWeibullisaspecialcaseofgeneralizedgammadistribution,whiletheRayleigh distributionisasubsetoftheWeibull(Johnson,2006). TheWeibullisatwoparameterdistri- butionwhiletheRayleighhasonlyoneparameterandthismakestheWeibullsomewhatmore versatileandtheRayleighsomewhatsimplertouse(Johnson,2006).TheWeibulldistribution functionisexpressedas k v k−1 v k fw(v)= exp − (2) c (cid:31)c(cid:30) (cid:29) (cid:31)c(cid:30) (cid:28) where v is the wind speed, c Weibull scale parameter in m/s, and k dimensionless Weibull shape parameter. These parameters can be determined by the mean wind speed-standard deviationmethod(Justusetal.,1977)usingEqs.3and4. σ −1.086 k= (1≤k≤10) (3) (cid:31)v(cid:30) www.intechopen.com 138 Clean Energy Systems and Experiences Fig.5.TurkishWindAtlas(Dündaretal.,2002) v c= (4) Γ 1+ 1 k (cid:31) (cid:30) wherevisthemeanwindspeedandσisthestandarddeviation. viscalculatedusingEq. 5 andσusingEq.6(Zhouetal.,2006). 1 n v= ∑v (5) n(cid:29)i=1 i(cid:28) 0.5 1 n σ= ∑(v −v)2 (6) (cid:27)n−1i=1 i (cid:26) wherenisthenumberofhoursintheperiodofthetimeconsideredsuchasmonth,seasonor year. Thedimensionlessshapeparameter,kofWeibulldistributionisassumedas2inRayleighdis- tributionfunctions.TheprobabilitydensityfunctionoftheRayleighdistributionisexpressed as πv π v 2 f (v)= exp − (7) R 2v2 (cid:25) (cid:31)4(cid:30)(cid:31)v(cid:30) (cid:24) www.intechopen.com Economic analysis of large-scale wind energy conversion systems in central anatolian Turkey 139 The wind power density of any windy site per unit area based on any probability density functiontoestimatethewindpowercanbeexpressedas ∞ 1 Pm = 2ρ(cid:31) v3f(v)dv (8) 0 where ρ is the standard air density, 1.225 kg/m3. When the Weibull function is chosen as distributionfunction f(v),theaveragewindpowerdensityiscalculatedas 1 Γ(1+3/k) Pmw = 2ρv3[Γ(1+1/k)]3 (9) 3. ElectricalPowerofWindEnergyConversionSystem Annualwindenergyoutput, Ewtforanywindysitecanbecalculatedusingthetime-series windspeeddataofthatsiteandthepowercurveofawindturbine. Inordertopredictthe windenergyoutputtobeobtainedfromthewindturbine,analgebraicequationofdegreen accordingtothepowercurveofthewindturbinebetweencut-inandratedspeedorcut-in speedandcut-outspeedcanbeexpressedasEq.10. 0, v<v ci anvn+an−1vn−1+...+a1v+a0 , vci ≤v<vR Pi(v)= (cid:26)PaRn,vn+an−1vn−1+...+a1v+a0(cid:25), vvRci≤≤vv<<vvccoo or (10) 0(cid:26), (cid:25) v≥vco wherean,an−1,a1anda0areregressionconstants,vciisthecut-inspeed,vRistheratedspeed, vco isthecut-outspeedand PR istheratedpowerandalso Pi(v)isthepowergeneratingin therelatedwindspeed. Thetotalenergygeneratedbytheoperationalturbineoveraperiodiscalculatedbyadding uptheenergyoutputofallpossiblewindspeeds.Inthisstudy,theenergyoutputfromawind turbinewasobtainedwithEq.11usingthehourlymeanwindspeeds. n Ewt = ∑Pi(v)t (11) i=1 wherenisthenumberofhoursintheperiodoftheconsideredtimesuchasyear,seasonor month,tisonehourtimeduration. Capacityfactor,C isanindicatorofboththeturbinetypeandthewindspeedinasitecon- f sidered.Thecapacityfactorisimportantforassessingtheperformanceofawindturbineina siteconsidered(Sathyajith,2006).Annualvalueofthecapacityfactorcanbecalculatedas C = Ewt (12) f E rated 4. EnergyCostAnalysisofWindEnergy Thefuelofwindenergymaybefree,buttheequipmentnecessarytousethewindenergycan beexpensive,soeconomicanalysisofthewindenergyisquiteimportant. Thewindturbine has to enjoy low operating cost. There are several factors affecting the unit energy cost of www.intechopen.com 140 Clean Energy Systems and Experiences electricityproducedinthewindturbines. Thesefactorsmayvaryfromacountrytoanother country. The total capital investment and operating cost for wind electric generators have to been knowntodeterminetheunitcostofelectricity. Ingeneral,thecostperunitenergyisfound bydividingtheamountofenergyproducedtothetotalexpendituresmadealongthecertain timeinterval.Allcostsofacquiring,owning,anddisposingofasystemmustbeconsideredto makesafelyeconomicdecisions. However,thevalueofmoneyduringtheusefullifetimeof windenergyconversionsystemconsideredshouldbetakenintoaccountinthecostanalysis. Thelevelizedcostofelectricitymethodisoneofthemostimportantindicatorsforevaluating fiscalperformanceofpowersupplysystemssuchaswindenergyconversionsystem(Gökçek and Genç, 2009). The levelized cost of electricity method can be used to calculate the unit costthroughouttheusefullifeofasystem. Thelevelizedcostofthewindenergyconversion systemistheratioofthetotalannualizedcostofthewindenergyconversionsystemtothe annual electricity produced by this system (Gökçek and Genç, 2009). The generation cost of the electrical energy of 1 kWh using a wind turbine system using the levelized cost of electricitymethodcanbedefinedas Cel = CwtFwt+CinFin+CciFci+ECbbFbb+CmiscFmisc+C(om)esc [$/kWh] (13) wt where Cel and C(om)esc are the cost of energy output and the cost of annual operation and maintenanceescalated,respectively.AndFwt,Fin,Fci,FbbandFmiscaretheannualchargerate oncapitalforwindturbine,inverter,civilworkandinstallation,batterybankandothermis- cellaneousequipments,respectively. Theannualchargerateoncapitalandcanbeexpressed bythefollowingequation; r F= (14) [1−(1+r)−n] wherenandraretheusefulsystemlifetime(year)andthediscountrate,respectively. Thetotalinvestmentcostofawindenergyconversionsystemisgivenas; Cwecs =Cwt+Cbb+Cci+Cin+Cmisc [$] (15) whereCwt, Cbb, Cci, Cin andCmisc arethecostofthewindturbine,thecostofbatterybank, thecostofcivilworkandinstallation, thecostoftheinverterandthecostofmiscellaneous equipments(connectingcables,controlpanelandothercomponents).Furthermore,whilethe awindenergyconversionsystemisbeingboughtfromacompany,thetotalinvestmentcost ofthesystem,Cwecs,canbealsoknownas; Cwecs = IwecsPr [$] (16) whereIwecsandPrarethespecificcostandratedpowerofthewindenergyconversionsystem. Adistributionofrelativecostsdifferentcomponentsofatypical5kWwindenergyconversion systemisthewindmachine74%,miscellaneouscomponents10%,batterybank9%,civilwork andinstallation4%,inverter3%(Nounietal. 2007). Inthisstudy,theevaluationofcostwas consideredasthiscostbreak-upforallwindenergyconversionsystems.Thetotalinvestment cost of any wind energy conversion system in terms of rated power was taken as mean of valuereadfromTable2(Sathyajith2006). Andthecostsofthewindturbine, batterybank, civil work and installation cost, inverter and miscellaneous equipments were calculated by usingEqs.15and16andusedinEq.13. www.intechopen.com
Description: