2014-12 Rasmus Tangsgaard Varneskov PhD Thesis Econometric Analysis of Volatility in Financial Additive Noise Models DEPARTMENT OF ECONOMICS AND BUSINESS AARHUS UNIVERSITY (cid:2) DENMARK ECONOMETRIC ANALYSIS OF VOLATILITY IN FINANCIAL ADDITIVE NOISE MODELS By Rasmus Tangsgaard Varneskov APhDthesissubmittedto SchoolofBusinessandSocialSciences,AarhusUniversity, inpartialfulfilmentoftherequirementsof thePhDdegreein EconomicsandBusiness August2014 CREATES Center for Research in Econometric Analysis of Time Series PREFACE ThisthesiswaswrittenintheperiodSeptember2010throughAugust2014during mygraduatestudiesattheDepartmentofEconomicsandBusinessatAarhusUni- versity,theDepartmentofEconomicsatBostonUniversity,theFinanceDepartment atKelloggSchoolofManagement,NorthwesternUniversity,andattheOxford-Man Institute,UniversityofOxford.Iwouldliketothankallfourinstitutionsforproviding mewithexcellentresearchenvironments.Iamalsogratefulforthefinancialsupport throughoutmystudiesprovidedbytheDepartmentofEconomicsandBusiness, AarhusUniversity,theCenterforResearchinEconometricAnalysisofTimeSeries (CREATES),fundedbytheDanishNationalResearchFoundation,KøbmandFerdi- nandSallingsMindefond,OticonFonden,KnudHøjgaardsFond,Statsautoriseret revisorOlufChristianOlsenoghustruJulieRasmineOlsensMindefond,andFonden JuliusSkrikesStiftelse. I would like to thank my supervisor Bent Jesper Christensenfor hisvaluable guidance,hishelpwithapplications,andhisinsightfulcontributionstoourjoint researchproject.Iwouldalsoliketothankmyco-supervisorAsgerLundeforhelping meoutwithdataissuesandNielsHaldrupforhisencouragement.Inaddition,Iam gratefultoValeriVoevforintroducingmetohigh-frequencyfinancialeconometrics, alwayshavinganopendoorpolicy,andhiscontinuingsupport. FromAugust2012throughJanuary2013,IhadthepleasureofvisitingNeilShep- hardattheOxford-ManInstitute,UniversityofOxford.IwishtothankNeilforinviting meandforsomeverystimulatingdiscussionsthathave,amongothers,improved thefirsttwochaptersofthisthesis.Furthermore,IamthankfultoOMIfortheir hospitalityandtoBentNielsenforinvitingmetoattendsomeinterestingseminars anddinnersatNuffieldCollege. IhavebeenveryfortunatetovisittheDepartmentofEconomicsatBostonUni- versitytwice.Firstduringthe2010fallsemesterandsubsequentlyfromApril2013 throughmid-June2013.IhavealwaysenjoyedthewelcomingatmosphereatBU.I amgratefultoPierrePerronforhisteachings,ongoingadvice,andhisdedicationto ourjointresearchpaper,whichIampleasedtohaveaspartofthisthesis.Working togetherhasbeenaninspiringlearningexperience. i ii Forthepastthreeyears,IhavehadthegreatpleasureofworkingwithTorbenG. Andersenontworesearchpapers,thefirstofwhichcomprisesthefourthchapter ofthisthesis.OurcollaborationpromptedmetovisittheFinanceDepartmentat KelloggSchoolofManagement,NorthwesternUniversity,fromOctober2013through December2013,whosehospitalityIamgratefulfor.Whetheritwasduringoneof ourweeklySkypemeetingsorourworkingsessionsinFlorence,London,Montreal andSanDiego,Ihavealwayslearnedalotfromourdiscussions.Icansafelysaythat mythesiswouldnothavebeenthesamewithoutthem.Iamtrulygratefulforour collaboration,andIhopethatwewillcontinueitintheyearstocome. NomatterwhereIhavebeen,Ihavehadtheprivilegetobesurroundedbygreat PhDcolleagues,andIhaveverymuchenjoyedyourcompanyduringthisendeavor. Thankyou.Tomyvariousofficemates,AndreasEmmertsen,FedericoCarlini,Diaa Noureldin,andDorLe,Iappreciateyourendurancewhenlisteningtometalkabout financialeconometrics,butmostlyforremindingmetotakeabreakonceinawhile. Inaddition,ManuelLukas,KasperV.Olesen,MartinSchultz-Nielsen,JesperWulff, YaseminSatır,AdamMcCloskey,JamesWolter,MathiasKruttli,andSigridKällblad deserveaspecialthanksformanyacademicandnon-academicdiscussions. Lastly,Iwishtothankmyfriends,myparents,CarstenandLone,andmybrother Tobiasforyourpatienceandsupportovertheyears,andforbearingoverwithme beingslightlyabsentmindedattimes. RasmusTangsgaardVarneskov Aarhus,August2014 UPDATED PREFACE ThepredefencemeetingwithanassessmentcommitteeconsistingofAndersRah- bek,UniversityofCopenhagen,OliverLinton,UniversityofCambridge,andKim Christensen,AarhusUniversity,tookplaceonOctober9th,2014.Iamthankfultothe membersofthecommitteefortheircarefulreadingofmythesisalongwithanumber ofconstructivecommentsandsuggestionsthatwillproveusefulintryingtopublish itsfourchapters,inadditiontoopenupinterestingavenuesforfutureresearch. RasmusTangsgaardVarneskov Aarhus,November2014 iii CONTENTS Summary ix DanskResumé xiii 1 EstimatingtheQuadraticVariationSpectrumofNoisyAssetPricesusing GeneralizedFlat-topRealizedKernels 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 ASemimartingaleSetupandAssumptions . . . . . . . . . . . . . . . 6 1.2.1 TheEfficientPriceProcess . . . . . . . . . . . . . . . . . . . . 7 1.2.2 TheNoiseProcess . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 TheRealizedKernelApproach . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.1 Flat-TopRealizedKernels . . . . . . . . . . . . . . . . . . . . . 13 1.3.2 AsymptoticVarianceandOptimalBandwidthSelection . . . 16 1.3.3 SelectingtheFlat-topShrinkage . . . . . . . . . . . . . . . . . 17 1.3.4 RelationtoJack-KnifeKernels . . . . . . . . . . . . . . . . . . 18 1.3.5 RelationtothePre-AveragingApproach . . . . . . . . . . . . 19 1.4 Flat-topRealizedKernelsandJumps . . . . . . . . . . . . . . . . . . . 21 1.4.1 TheObservablePriceProcesswithJumps . . . . . . . . . . . 21 1.4.2 BlockSamplingandJump-robustEstimation . . . . . . . . . 23 1.5 SimulationStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.5.1 SimulationDesign . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.5.2 SelectingBandwidthandFlat-topShrinkage. . . . . . . . . . 26 1.5.3 RelativeFiniteSamplePerformanceofRealizedEstimators . 27 ∗ ∗ 1.5.4 FiniteSampleBehaviorofBRK andMBRK . . . . . . . . . 29 1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.7 Appendix:FiguresandTables . . . . . . . . . . . . . . . . . . . . . . . 31 1.8 Appendix:ABias-CorrectedPre-AveragingEstimator . . . . . . . . . 37 1.9 Appendix:Proofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.9.1 ProofofTheorem1. . . . . . . . . . . . . . . . . . . . . . . . . 39 1.9.2 ProofofProposition1 . . . . . . . . . . . . . . . . . . . . . . . 45 v vi CONTENTS 1.9.3 ProofofProposition2 . . . . . . . . . . . . . . . . . . . . . . . 46 1.9.4 ProofofLemma2. . . . . . . . . . . . . . . . . . . . . . . . . . 46 1.9.5 ProofofTheorem2. . . . . . . . . . . . . . . . . . . . . . . . . 47 1.9.6 ProofofLemma3. . . . . . . . . . . . . . . . . . . . . . . . . . 51 1.9.7 ProofsofTheorems3and4 . . . . . . . . . . . . . . . . . . . . 52 1.10 Appendix:TechnicalResultsandDefinitions . . . . . . . . . . . . . . 56 2 Flat-TopRealizedKernelEstimationofQuadraticCovariationwithNon- SynchronousandNoisyAssetPrices 67 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.2 TheoreticalSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.2.1 TheSemimartingaleProcess . . . . . . . . . . . . . . . . . . . 71 2.2.2 SynchronizationSchemes. . . . . . . . . . . . . . . . . . . . . 73 2.2.3 AnEncompassingAdditiveNoiseModel . . . . . . . . . . . . 74 2.3 Flat-TopRealizedKernelEstimation . . . . . . . . . . . . . . . . . . . 76 2.3.1 MotivationforFlat-TopKernels . . . . . . . . . . . . . . . . . 78 2.3.2 CentralLimitTheory. . . . . . . . . . . . . . . . . . . . . . . . 80 2.4 FiniteSampleAdjustments,ApplicationsandImplementation . . . 81 2.4.1 APositiveDefiniteProjection. . . . . . . . . . . . . . . . . . . 82 2.4.2 Non-LinearTransformations . . . . . . . . . . . . . . . . . . . 83 2.4.3 TheChoiceofKernelandTuningParameters . . . . . . . . . 83 2.5 AnInitialGaugeatTick-by-TickTradeData . . . . . . . . . . . . . . . 84 2.6 SimulationStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 2.6.1 SimulationDesign . . . . . . . . . . . . . . . . . . . . . . . . . 86 2.6.2 SynchronizationEffectsandReturnAutocorrelation . . . . . 87 2.6.3 TheImpactofTruncatingEigenvalues . . . . . . . . . . . . . 89 2.6.4 RelatedandCompetingEstimators . . . . . . . . . . . . . . . 89 2.6.5 EstimatesofQuadraticCovariationandNon-linearTransfor- mations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 2.7 EmpiricalAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 2.7.1 AnalyzingIn-SampleInformation . . . . . . . . . . . . . . . . 93 2.7.2 Out-of-SampleForecasting . . . . . . . . . . . . . . . . . . . . 95 2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 2.9 Appendix:TablesandFigures . . . . . . . . . . . . . . . . . . . . . . . 97 2.10 Appendix:AdditionalTheory . . . . . . . . . . . . . . . . . . . . . . . 105 2.10.1 MatrixConcepts . . . . . . . . . . . . . . . . . . . . . . . . . . 105 2.10.2 AsymptoticVarianceofNon-linearTransformations . . . . . 105 2.11 Appendix:Proofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 CONTENTS vii 2.11.1 ProofsofLemmas1-2andTheorem1. . . . . . . . . . . . . . 105 2.11.2 ProofofTheorem2. . . . . . . . . . . . . . . . . . . . . . . . . 110 3 CombiningLongMemoryandLevelShiftsinModelingandForecasting theVolatilityofAssetReturns 113 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 3.2 TheStochasticVolatilityModel:MotivationandSpecification . . . . 117 3.2.1 Discrete-andContinuous-timeSVModels. . . . . . . . . . . 117 3.2.2 TheStochasticVolatilityProcess . . . . . . . . . . . . . . . . . 119 3.2.3 TheDataandConstructionoftheVolatilitySeries . . . . . . 121 3.2.4 AnInitialGaugeattheVolatilityDynamics. . . . . . . . . . . 122 3.3 EconometricMethodology . . . . . . . . . . . . . . . . . . . . . . . . . 127 3.3.1 StateSpaceRepresentation . . . . . . . . . . . . . . . . . . . . 128 3.3.2 MaximumLikelihoodEstimation . . . . . . . . . . . . . . . . 129 3.3.3 ForecastingwiththeRLS-ARFIMAModel . . . . . . . . . . . 131 3.4 HandlingMeasurementErrors . . . . . . . . . . . . . . . . . . . . . . 132 3.4.1 MeasurementErrorsandtheARFIMArepresentation . . . . 132 3.4.2 MotivationalEvidencefromanRLS-LMSV(1,d)Model . . . 133 3.5 SimulationStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 3.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 136 3.5.2 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . 136 3.6 EmpiricalAnalysisofAssetReturnVolatility. . . . . . . . . . . . . . . 138 3.6.1 Full-SampleParameterEstimates . . . . . . . . . . . . . . . . 139 3.6.2 ForecastingPerformanceEvaluation . . . . . . . . . . . . . . 141 3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 3.8 Appendix:FiguresandTables . . . . . . . . . . . . . . . . . . . . . . . 148 3.9 Appendix:AdditionalTheory . . . . . . . . . . . . . . . . . . . . . . . 160 3.9.1 TheFlat-topRealizedKernelApproach . . . . . . . . . . . . . 160 3.9.2 TheModelConfidenceSet . . . . . . . . . . . . . . . . . . . . 161 3.10 Appendix:Proofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 3.10.1 ProofofProposition1 . . . . . . . . . . . . . . . . . . . . . . . 162 3.10.2 ProofofProposition2 . . . . . . . . . . . . . . . . . . . . . . . 163 4 OntheInformationalEfficiencyofOption-ImpliedandTimeSeriesFore- castsofRealizedVolatility 165 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 4.2 TraditionalVolatilityForecastAnalysis . . . . . . . . . . . . . . . . . . 168 4.2.1 TheQuadraticReturnVariation . . . . . . . . . . . . . . . . . 168 4.2.2 RealizedVarianceMeasurementandForecasting . . . . . . . 169
Description: