ebook img

Econometric Analysis of Volatility in Financial Additive Noise Models PDF

252 Pages·2014·2.43 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Econometric Analysis of Volatility in Financial Additive Noise Models

2014-12 Rasmus Tangsgaard Varneskov PhD Thesis Econometric Analysis of Volatility in Financial Additive Noise Models DEPARTMENT OF ECONOMICS AND BUSINESS AARHUS UNIVERSITY (cid:2) DENMARK ECONOMETRIC ANALYSIS OF VOLATILITY IN FINANCIAL ADDITIVE NOISE MODELS By Rasmus Tangsgaard Varneskov APhDthesissubmittedto SchoolofBusinessandSocialSciences,AarhusUniversity, inpartialfulfilmentoftherequirementsof thePhDdegreein EconomicsandBusiness August2014 CREATES Center for Research in Econometric Analysis of Time Series PREFACE ThisthesiswaswrittenintheperiodSeptember2010throughAugust2014during mygraduatestudiesattheDepartmentofEconomicsandBusinessatAarhusUni- versity,theDepartmentofEconomicsatBostonUniversity,theFinanceDepartment atKelloggSchoolofManagement,NorthwesternUniversity,andattheOxford-Man Institute,UniversityofOxford.Iwouldliketothankallfourinstitutionsforproviding mewithexcellentresearchenvironments.Iamalsogratefulforthefinancialsupport throughoutmystudiesprovidedbytheDepartmentofEconomicsandBusiness, AarhusUniversity,theCenterforResearchinEconometricAnalysisofTimeSeries (CREATES),fundedbytheDanishNationalResearchFoundation,KøbmandFerdi- nandSallingsMindefond,OticonFonden,KnudHøjgaardsFond,Statsautoriseret revisorOlufChristianOlsenoghustruJulieRasmineOlsensMindefond,andFonden JuliusSkrikesStiftelse. I would like to thank my supervisor Bent Jesper Christensenfor hisvaluable guidance,hishelpwithapplications,andhisinsightfulcontributionstoourjoint researchproject.Iwouldalsoliketothankmyco-supervisorAsgerLundeforhelping meoutwithdataissuesandNielsHaldrupforhisencouragement.Inaddition,Iam gratefultoValeriVoevforintroducingmetohigh-frequencyfinancialeconometrics, alwayshavinganopendoorpolicy,andhiscontinuingsupport. FromAugust2012throughJanuary2013,IhadthepleasureofvisitingNeilShep- hardattheOxford-ManInstitute,UniversityofOxford.IwishtothankNeilforinviting meandforsomeverystimulatingdiscussionsthathave,amongothers,improved thefirsttwochaptersofthisthesis.Furthermore,IamthankfultoOMIfortheir hospitalityandtoBentNielsenforinvitingmetoattendsomeinterestingseminars anddinnersatNuffieldCollege. IhavebeenveryfortunatetovisittheDepartmentofEconomicsatBostonUni- versitytwice.Firstduringthe2010fallsemesterandsubsequentlyfromApril2013 throughmid-June2013.IhavealwaysenjoyedthewelcomingatmosphereatBU.I amgratefultoPierrePerronforhisteachings,ongoingadvice,andhisdedicationto ourjointresearchpaper,whichIampleasedtohaveaspartofthisthesis.Working togetherhasbeenaninspiringlearningexperience. i ii Forthepastthreeyears,IhavehadthegreatpleasureofworkingwithTorbenG. Andersenontworesearchpapers,thefirstofwhichcomprisesthefourthchapter ofthisthesis.OurcollaborationpromptedmetovisittheFinanceDepartmentat KelloggSchoolofManagement,NorthwesternUniversity,fromOctober2013through December2013,whosehospitalityIamgratefulfor.Whetheritwasduringoneof ourweeklySkypemeetingsorourworkingsessionsinFlorence,London,Montreal andSanDiego,Ihavealwayslearnedalotfromourdiscussions.Icansafelysaythat mythesiswouldnothavebeenthesamewithoutthem.Iamtrulygratefulforour collaboration,andIhopethatwewillcontinueitintheyearstocome. NomatterwhereIhavebeen,Ihavehadtheprivilegetobesurroundedbygreat PhDcolleagues,andIhaveverymuchenjoyedyourcompanyduringthisendeavor. Thankyou.Tomyvariousofficemates,AndreasEmmertsen,FedericoCarlini,Diaa Noureldin,andDorLe,Iappreciateyourendurancewhenlisteningtometalkabout financialeconometrics,butmostlyforremindingmetotakeabreakonceinawhile. Inaddition,ManuelLukas,KasperV.Olesen,MartinSchultz-Nielsen,JesperWulff, YaseminSatır,AdamMcCloskey,JamesWolter,MathiasKruttli,andSigridKällblad deserveaspecialthanksformanyacademicandnon-academicdiscussions. Lastly,Iwishtothankmyfriends,myparents,CarstenandLone,andmybrother Tobiasforyourpatienceandsupportovertheyears,andforbearingoverwithme beingslightlyabsentmindedattimes. RasmusTangsgaardVarneskov Aarhus,August2014 UPDATED PREFACE ThepredefencemeetingwithanassessmentcommitteeconsistingofAndersRah- bek,UniversityofCopenhagen,OliverLinton,UniversityofCambridge,andKim Christensen,AarhusUniversity,tookplaceonOctober9th,2014.Iamthankfultothe membersofthecommitteefortheircarefulreadingofmythesisalongwithanumber ofconstructivecommentsandsuggestionsthatwillproveusefulintryingtopublish itsfourchapters,inadditiontoopenupinterestingavenuesforfutureresearch. RasmusTangsgaardVarneskov Aarhus,November2014 iii CONTENTS Summary ix DanskResumé xiii 1 EstimatingtheQuadraticVariationSpectrumofNoisyAssetPricesusing GeneralizedFlat-topRealizedKernels 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 ASemimartingaleSetupandAssumptions . . . . . . . . . . . . . . . 6 1.2.1 TheEfficientPriceProcess . . . . . . . . . . . . . . . . . . . . 7 1.2.2 TheNoiseProcess . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 TheRealizedKernelApproach . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.1 Flat-TopRealizedKernels . . . . . . . . . . . . . . . . . . . . . 13 1.3.2 AsymptoticVarianceandOptimalBandwidthSelection . . . 16 1.3.3 SelectingtheFlat-topShrinkage . . . . . . . . . . . . . . . . . 17 1.3.4 RelationtoJack-KnifeKernels . . . . . . . . . . . . . . . . . . 18 1.3.5 RelationtothePre-AveragingApproach . . . . . . . . . . . . 19 1.4 Flat-topRealizedKernelsandJumps . . . . . . . . . . . . . . . . . . . 21 1.4.1 TheObservablePriceProcesswithJumps . . . . . . . . . . . 21 1.4.2 BlockSamplingandJump-robustEstimation . . . . . . . . . 23 1.5 SimulationStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.5.1 SimulationDesign . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.5.2 SelectingBandwidthandFlat-topShrinkage. . . . . . . . . . 26 1.5.3 RelativeFiniteSamplePerformanceofRealizedEstimators . 27 ∗ ∗ 1.5.4 FiniteSampleBehaviorofBRK andMBRK . . . . . . . . . 29 1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.7 Appendix:FiguresandTables . . . . . . . . . . . . . . . . . . . . . . . 31 1.8 Appendix:ABias-CorrectedPre-AveragingEstimator . . . . . . . . . 37 1.9 Appendix:Proofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.9.1 ProofofTheorem1. . . . . . . . . . . . . . . . . . . . . . . . . 39 1.9.2 ProofofProposition1 . . . . . . . . . . . . . . . . . . . . . . . 45 v vi CONTENTS 1.9.3 ProofofProposition2 . . . . . . . . . . . . . . . . . . . . . . . 46 1.9.4 ProofofLemma2. . . . . . . . . . . . . . . . . . . . . . . . . . 46 1.9.5 ProofofTheorem2. . . . . . . . . . . . . . . . . . . . . . . . . 47 1.9.6 ProofofLemma3. . . . . . . . . . . . . . . . . . . . . . . . . . 51 1.9.7 ProofsofTheorems3and4 . . . . . . . . . . . . . . . . . . . . 52 1.10 Appendix:TechnicalResultsandDefinitions . . . . . . . . . . . . . . 56 2 Flat-TopRealizedKernelEstimationofQuadraticCovariationwithNon- SynchronousandNoisyAssetPrices 67 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.2 TheoreticalSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.2.1 TheSemimartingaleProcess . . . . . . . . . . . . . . . . . . . 71 2.2.2 SynchronizationSchemes. . . . . . . . . . . . . . . . . . . . . 73 2.2.3 AnEncompassingAdditiveNoiseModel . . . . . . . . . . . . 74 2.3 Flat-TopRealizedKernelEstimation . . . . . . . . . . . . . . . . . . . 76 2.3.1 MotivationforFlat-TopKernels . . . . . . . . . . . . . . . . . 78 2.3.2 CentralLimitTheory. . . . . . . . . . . . . . . . . . . . . . . . 80 2.4 FiniteSampleAdjustments,ApplicationsandImplementation . . . 81 2.4.1 APositiveDefiniteProjection. . . . . . . . . . . . . . . . . . . 82 2.4.2 Non-LinearTransformations . . . . . . . . . . . . . . . . . . . 83 2.4.3 TheChoiceofKernelandTuningParameters . . . . . . . . . 83 2.5 AnInitialGaugeatTick-by-TickTradeData . . . . . . . . . . . . . . . 84 2.6 SimulationStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 2.6.1 SimulationDesign . . . . . . . . . . . . . . . . . . . . . . . . . 86 2.6.2 SynchronizationEffectsandReturnAutocorrelation . . . . . 87 2.6.3 TheImpactofTruncatingEigenvalues . . . . . . . . . . . . . 89 2.6.4 RelatedandCompetingEstimators . . . . . . . . . . . . . . . 89 2.6.5 EstimatesofQuadraticCovariationandNon-linearTransfor- mations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 2.7 EmpiricalAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 2.7.1 AnalyzingIn-SampleInformation . . . . . . . . . . . . . . . . 93 2.7.2 Out-of-SampleForecasting . . . . . . . . . . . . . . . . . . . . 95 2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 2.9 Appendix:TablesandFigures . . . . . . . . . . . . . . . . . . . . . . . 97 2.10 Appendix:AdditionalTheory . . . . . . . . . . . . . . . . . . . . . . . 105 2.10.1 MatrixConcepts . . . . . . . . . . . . . . . . . . . . . . . . . . 105 2.10.2 AsymptoticVarianceofNon-linearTransformations . . . . . 105 2.11 Appendix:Proofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 CONTENTS vii 2.11.1 ProofsofLemmas1-2andTheorem1. . . . . . . . . . . . . . 105 2.11.2 ProofofTheorem2. . . . . . . . . . . . . . . . . . . . . . . . . 110 3 CombiningLongMemoryandLevelShiftsinModelingandForecasting theVolatilityofAssetReturns 113 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 3.2 TheStochasticVolatilityModel:MotivationandSpecification . . . . 117 3.2.1 Discrete-andContinuous-timeSVModels. . . . . . . . . . . 117 3.2.2 TheStochasticVolatilityProcess . . . . . . . . . . . . . . . . . 119 3.2.3 TheDataandConstructionoftheVolatilitySeries . . . . . . 121 3.2.4 AnInitialGaugeattheVolatilityDynamics. . . . . . . . . . . 122 3.3 EconometricMethodology . . . . . . . . . . . . . . . . . . . . . . . . . 127 3.3.1 StateSpaceRepresentation . . . . . . . . . . . . . . . . . . . . 128 3.3.2 MaximumLikelihoodEstimation . . . . . . . . . . . . . . . . 129 3.3.3 ForecastingwiththeRLS-ARFIMAModel . . . . . . . . . . . 131 3.4 HandlingMeasurementErrors . . . . . . . . . . . . . . . . . . . . . . 132 3.4.1 MeasurementErrorsandtheARFIMArepresentation . . . . 132 3.4.2 MotivationalEvidencefromanRLS-LMSV(1,d)Model . . . 133 3.5 SimulationStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 3.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 136 3.5.2 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . 136 3.6 EmpiricalAnalysisofAssetReturnVolatility. . . . . . . . . . . . . . . 138 3.6.1 Full-SampleParameterEstimates . . . . . . . . . . . . . . . . 139 3.6.2 ForecastingPerformanceEvaluation . . . . . . . . . . . . . . 141 3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 3.8 Appendix:FiguresandTables . . . . . . . . . . . . . . . . . . . . . . . 148 3.9 Appendix:AdditionalTheory . . . . . . . . . . . . . . . . . . . . . . . 160 3.9.1 TheFlat-topRealizedKernelApproach . . . . . . . . . . . . . 160 3.9.2 TheModelConfidenceSet . . . . . . . . . . . . . . . . . . . . 161 3.10 Appendix:Proofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 3.10.1 ProofofProposition1 . . . . . . . . . . . . . . . . . . . . . . . 162 3.10.2 ProofofProposition2 . . . . . . . . . . . . . . . . . . . . . . . 163 4 OntheInformationalEfficiencyofOption-ImpliedandTimeSeriesFore- castsofRealizedVolatility 165 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 4.2 TraditionalVolatilityForecastAnalysis . . . . . . . . . . . . . . . . . . 168 4.2.1 TheQuadraticReturnVariation . . . . . . . . . . . . . . . . . 168 4.2.2 RealizedVarianceMeasurementandForecasting . . . . . . . 169

Description:
Yasemin Satır, Adam McCloskey, James Wolter, Mathias Kruttli, and Sigrid Källblad . 3.2 The Stochastic Volatility Model: Motivation and Specification . Then, Ft is constructed using other filtrations Ht , the σ-algebra generated.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.