ebook img

Econometric Analysis of Carbon Markets: The European Union Emissions Trading Scheme and the Clean Development Mechanism PDF

237 Pages·2012·2.706 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Econometric Analysis of Carbon Markets: The European Union Emissions Trading Scheme and the Clean Development Mechanism

Econometric Analysis of Carbon Markets Julien Chevallier Econometric Analysis of Carbon Markets The European Union Emissions Trading Scheme and the Clean Development Mechanism Dr.JulienChevallier CGEMP/LEDa DepartmentofEconomics UniversityParisDauphine PlaceduMarechaldeLattredeTassigny 75016Paris France [email protected] ISBN978-94-007-2411-2 e-ISBN978-94-007-2412-9 DOI10.1007/978-94-007-2412-9 SpringerDordrechtHeidelbergLondonNewYork LibraryofCongressControlNumber:2011938668 ©SpringerScience+BusinessMediaB.V.2012 Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorby anymeans,electronic,mechanical,photocopying,microfilming,recordingorotherwise,withoutwritten permissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecificallyforthepurpose ofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework. Coverdesign:VTeXUAB,Lithuania Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To myfamily. Preface The idea of writing this book naturally came after a discussion with my editor, whom I warmly thank for making this project possible. This book should be ex- tremelyusefulforresearchersandworkingprofessionals(tradingmanagers,energy and commodity traders, quantitative analysts, consultants, utilities) in the fields of econometrics and carbon finance. We define carbon markets as the environmen- talmarketscreatedtoregulatetheemissionsofgreenhousegases(includingCO ), 2 such as the European Union Emissions Trading Scheme (EU ETS) and the Kyoto Protocol(morepreciselytheCleanDevelopmentMechanism,CDM). Thisbookisintendedforreaderswithabasicunderstandingoftimeseriesecono- metrics(suchasthelinearregressionmodel,vectorautoregression,andcointegra- tion).UsefultextbookstorefreshconceptsonthismatterareGujarati(BasicEcono- metrics, McGraw-Hill) and Hamilton (Time Series Analysis, Princeton University Press).Itcanbeusedforteachingeconometricsappliedtocarbonmarketsatunder- graduateorpostgraduatelevels(M.Sc.,MBA),andasareferenceforprofessionals. Thecontentofthisbookhasbeenpresentedduringlecturesontheeconometrics of energy markets and on commodity finance at the University Paris Dauphine. It draws on feedback and practical exercises developed with former M.Sc. Students, towhomthisbookislikewisededicated. ThroughtheanalysisoftheEUETSandtheCDM,thebookshowshowtouse a variety of econometric techniques to analyze an evolving and expanding carbon marketsphereworldwide.Thebookoffersamixofknowledgeonemissionstrading withpracticalapplicationstocarbonmarkets.Itcoversthestylizedfactsoncarbon marketsfromaneconomicsperspective,aswellaskeyaspectsonpricingstrategies, riskandportfoliomanagement.Ontheonehand,itcontainsusefulinformationon how to interpret the historical development of the carbon price (until the present time). On the other hand, it is instructive to teach students (advanced undergradu- ates,M.Sc.,MBA)andresearchershowtousethesetechniquestoperformsimilar exercisesascarbonmarketsevolveandexpand.Therefore,thesetechniquesmaybe re-usedasnewnationalandregionalschemesappearinthenearfutureofenviron- mentalregulation(China,USA,etc.). Chapters1and2provideanaccessibleintroductiontothefundamentalsoftime series econometrics to support anyone new to the material in learning the princi- vii viii Preface plesofcarbonmarkets.StartinginChap.1withtheanalysisofdescriptivestatistics forcarbonprices,theeconometricslearningprocessisregularthroughoutthebook. Chapter1hasabroadcoverage,asthebookstartswiththereviewofinternational climatepolicies (and thus of nationaland regionalcarbon markets initiativesas in the US, Japan, China, Australia, etc.). In addition, it contains a brief introduction tothemechanismofemissionstrading,andthemainfeaturesoftheEuropeancar- bon market. It includes little econometric techniques (only a review of descriptive statistics),butitcontainsnonethelessusefulbackgroundinformationforthebook. Chapter2dealswithcarbonpricedrivers(mainlyinstitutionaldecisions,energy pricesandextremeweatherevents)inthecontextofthelinearregressionmodel.It covers perhaps the most interesting topic concerning CO prices, i.e. what are the 2 relevant price fundamentals on carbon markets? Starting with the use of dummy variablesandtheBai-Perronstructuralbreaktest,itreliesheavilyonthelinearre- gressionmodeltoshowtheinfluenceofotherenergyprices.Weathereventsareac- countedforbyusingthresholdvariables(aboveorbelowagiventemperature).The Appendix contains a useful review of the multivariate GARCH modelling frame- workappliedtoenergyandCO prices. 2 Chapters 3 to 6 offer a smooth transition from being taught the basics in time series econometrics to actively research carbon markets for term-papers or disser- tations for advanced undergraduate and/or postgraduate students (M.Sc., MBA). Chapter 3 deals with an equally important topic: what is the relationship between thenewlycreatedemissionsallowancesandthepre-existingmacroeconomicenvi- ronment?Thistopicistackledfirstbylookingatthelinkbetweentheequity/bond markets and the emissions market in a GARCH modeling framework. Then, the broadlinkswithmacroeconomic,financialandcommodityspheresarecapturedin factor models. Next, the link with industrial production is studied by resorting to nonlinearitytests,thresholdmodelsandMarkovregime-switching. Chapter4focusesontheCleanDevelopmentMechanism,whichmaybeseenas aproxyof‘world’carbonpricesintheabsenceofpost-Kyotoagreements.Besides the description of the contracts, this chapter details the use of vector autoregres- sion,Grangercausality,cointegrationtechniques(withtheEUcarbonprice)andthe Zivot-Andrewsstructuralbreaktest.ArbitragestrategiesbetweentheEuropeanmar- ketandtheCDMarestudiedinaGARCHmodelingframeworkwithmicrostructure variablesinordertoexplaintheexistenceofthe‘EUA-CERspread’.TheAppendix illustratestheuseoftheMarkovregime-switchingmodelswithEUAsandCERs. Chapter5dealswithrisk-hedgingstrategiesandportfoliomanagement.Themain riskfactorsrelatedtocarbonassetsaresummarized.Themeasureofriskpremiain CO spot and futures prices is detailed based on commodity markets models and 2 linear regressions. Besides, carbon price risk management strategies are described bythemeansofaneconometricanalysisofthefactorsinfluencingfuel-switchingin thepowersector.Finally,portfoliomanagementtechniqueswithcarbonpricesare explainedindetailswithstandardmean-varianceoptimizationtechniques.TheAp- pendixrecallshowtouseoptionpricesforriskmanagementbycomputingimplied volatilities. Chapter 6 contains more advanced econometric techniques. It investigates whetherornotthevolatilityofcarbonpricesshiftsasCO futurescontractsreach 2 Preface ix maturity.Threeapproachesareusedasaproxyforvolatilityinordertoshedlight on this issue: GARCH models, net cost-of-carry, and realized volatility. The so- calledSamuelsonhypothesisistestedinaregressionframework,byaccountingfor seasonalityandliquidityissues.TheAppendixcoversstatisticaltechniquesthatare usefulinordertodetectinstabilityinthevolatilityofcarbonprices. In order to replicate part of the empirical applications detailed in the vari- ous chapters, this book recommends the use of the R software. R is a free soft- waredesignedforstatisticalandeconometricanalysis.Itsinstallationisextremely easy under any operating software, and comes with a documentation. The pack- ages that are required to duplicate the results must be downloaded from the Com- prehensive R Archive Network (CRAN) and pre-installed by the user with the command install.packages() and by following the command prompt. Fi- nally, the necessary data and R codes can be found on the author’s website: http://sites.google.com/site/jpchevallier/publications/books/springer/. This companion website with hyperlinks to data and computer codes related to themodels,andthereplicationofexamplesdiscussedinthebook(whereitisrele- vant)ensurethatthereaderisabletodevelophis/herprogrammingskills.Besides, thisdatawarehousewithcomputercodesconstitutesanoriginalmeansofdissemi- natingknowledge.TheinterestedreaderwillalsofindaFrequentlyAskedQuestions (FAQ)sectiononthewebsite. For developing R packages used in this book, I wish to thank Achim Zeileis, Friedrich Leisch, Bruce Hansen, Kurt Hornik, Christian Kleiber, Patrick Brandt, Bernhard Pfaff, Harald Schmidbauer, Angi Roesch, Vehbi Sinan Tunalioglu, Di- ethelm Wuertz, Yohan Chalabi, Michal Miklovic, Chris Boudt, Pierre Chausse, Douglas Bates, Ladislav Luksan, as well as the R core development team: http:// www.r-project.org/. In terms of course use, this book may be appealing to courses in finance, such asprinciplesoffinancialmarkets,financialeconomicsandfinancialeconometrics. Itwillalsoberelevanttocoursesinenergy,environmentalandresourceeconomics, asitcoverstheEUETSandtheKyotoProtocolwhichconstitutelandmarkenviron- mental regulationpolicies.Since the carbon price constitutes a new commodity,it willalsobeeligibletocoursesoncommoditymarketsandriskmanagementonthese markets. Finally, empirical applications may be re-used in exercises for standard (introductory) applied econometrics courses (such as time series analysis). Prob- lem sets (with solutions manual) are presented at the end of the relevant chapters, andpresentationslidesforeachchapterareavailableforinstructorsontheauthor’s companionwebsite. Last but not least, I wish to thank many people with whom I have been in- teracting over the years, either in carbon finance or in academia, which led me to develop the skills and material necessary to write this book: Emilie Alberola, Benoit Cheze, Pascal Gastineau, Florian Ielpo, Maria Mansanet-Bataller, Morgan Herve-Mignucci, Benoit Leguet, Anais Delbosc, Raphael Trotignon, Benoit Sevi, YannickLePen,DerekBunn,ZongWeiLuo,ZhongXiangZhang,DennyEllerman, OlivierGodard,KathelineSchubert,NatachaRaffin,PhilippeQuirion,DavidNew- bery,FabienRoques,SamFankhauser,SimonDietz,EricNeumayer,LucaTaschini, x Preface IanLange,IbonGalarraga,MikelGonzalez,RalfAntes,BerndHansjurgens,Peter Letmathe, Massimiliano Mazzanti, Anna Montini, Simon Buckle, Walter Distaso, RobertKosowski,JanAhmerkamp,AndreasLoschel,DanielRittler,WaldemarRot- fuss,EmericLujan,ErikDelarue,WilliamD’haeseleer,ValerieMignon,AnnaCreti, Gilles Rotillon, Pierre-Andre Jouvet, Johanna Etner and Christian De Perthuis. At theCGEMPoftheUniversityParisDauphine,Iwishtothankalltheteamandmore particularlyJeanMarieChevalierandPatriceGeoffronwhohelpedmetofocuson myresearch. Paris,France JulienChevallier Contents 1 IntroductiontoEmissionsTrading . . . . . . . . . . . . . . . . . . . 1 1.1 ReviewofInternationalClimatePolicies . . . . . . . . . . . . . . 1 1.1.1 FromRiotoDurban . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 TheBurgeoningEUCO AllowanceTradingMarket . . . 3 2 1.2 MarketDesignIssues . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 InitialAllocationRules . . . . . . . . . . . . . . . . . . . 4 1.2.2 EquilibriumPermitsPrice . . . . . . . . . . . . . . . . . . 5 1.2.3 SpatialandTemporalLimits. . . . . . . . . . . . . . . . . 6 1.2.4 SafetyValve . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 KeyFeaturesoftheEUEmissionsTradingScheme . . . . . . . . 10 1.3.1 ScopeandAllocation . . . . . . . . . . . . . . . . . . . . 10 1.3.2 Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.3 Penalties . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.4 MarketPlayers . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 EUAPriceDevelopment . . . . . . . . . . . . . . . . . . . . . . . 13 1.4.1 StructureandMainFeaturesofEUETSContracts . . . . . 13 1.4.2 CarbonPrice . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4.3 DescriptiveStatistics. . . . . . . . . . . . . . . . . . . . . 15 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 CO PriceFundamentals . . . . . . . . . . . . . . . . . . . . . . . . 19 2 2.1 InstitutionalDecisions . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.1 DummyVariables . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 StructuralBreaks . . . . . . . . . . . . . . . . . . . . . . 26 2.2 EnergyPrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.1 LiteratureReview . . . . . . . . . . . . . . . . . . . . . . 30 2.2.2 Oil,NaturalGasandCoal . . . . . . . . . . . . . . . . . . 31 2.2.3 ElectricityVariables . . . . . . . . . . . . . . . . . . . . . 35 2.3 ExtremeWeatherEvents . . . . . . . . . . . . . . . . . . . . . . . 40 2.3.1 RelationshipBetweenTemperaturesandCarbonPrices . . 41 2.3.2 EmpiricalApplication . . . . . . . . . . . . . . . . . . . . 43 xi xii Contents Appendix BEKKMGARCHModelingwithCO andEnergyPrices . 45 2 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3 LinkwiththeMacroeconomy . . . . . . . . . . . . . . . . . . . . . . 55 3.1 StockandBondsMarkets . . . . . . . . . . . . . . . . . . . . . . 55 3.1.1 GARCHModelingoftheCarbonPrice . . . . . . . . . . . 55 3.1.2 RelationshipwithStockandBondMarkets . . . . . . . . . 60 3.2 Macroeconomic,FinancialandCommodityIndicators . . . . . . . 66 3.2.1 ExtractingFactorsBasedonPrincipalComponentAnalysis 67 3.2.2 Factor-AugmentedVARAnalysisAppliedtoEUAs . . . . 68 3.3 IndustrialProduction. . . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.2 NonlinearityTests . . . . . . . . . . . . . . . . . . . . . . 74 3.3.3 Self-excitingThresholdAutoregressiveModels . . . . . . 78 3.3.4 ComparingSmoothTransitionandMarkov-Switching AutoregressiveModels . . . . . . . . . . . . . . . . . . . 87 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4 TheCleanDevelopmentMechanism . . . . . . . . . . . . . . . . . . 105 4.1 CERsContractsandPriceDevelopment . . . . . . . . . . . . . . 105 4.2 RelationshipwithEUEmissionsAllowances . . . . . . . . . . . . 107 4.2.1 VARAnalysis . . . . . . . . . . . . . . . . . . . . . . . . 107 4.2.2 Cointegration . . . . . . . . . . . . . . . . . . . . . . . . 117 4.3 CERsPriceDrivers . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.3.1 Zivot-AndrewsStructuralBreakTest . . . . . . . . . . . . 124 4.3.2 RegressionAnalysis . . . . . . . . . . . . . . . . . . . . . 126 4.4 ArbitrageStrategies:TheCER-EUASpread . . . . . . . . . . . . 131 4.4.1 WhySoMuchInterestinThisSpread? . . . . . . . . . . . 131 4.4.2 SpreadDrivers . . . . . . . . . . . . . . . . . . . . . . . . 132 Appendix MarkovRegime-SwitchingModelingwithEUAsandCERs 133 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 5 Risk-HedgingStrategiesandPortfolioManagement . . . . . . . . . 147 5.1 RiskFactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.1.1 IdiosyncraticRisks. . . . . . . . . . . . . . . . . . . . . . 148 5.1.2 CommonRiskFactors . . . . . . . . . . . . . . . . . . . . 149 5.2 RiskPremia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.2.1 TheoryonSpot-FuturesRelationshipsinCommodity Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.2.2 Bessembinder and Lemmon’s (2002) Futures-Spot StructuralModel . . . . . . . . . . . . . . . . . . . . . . . 153 5.2.3 EmpiricalApplication . . . . . . . . . . . . . . . . . . . . 154 5.3 ManagingCarbonPriceRiskinthePowerSector. . . . . . . . . . 157 5.3.1 EconomicRationale . . . . . . . . . . . . . . . . . . . . . 157 5.3.2 UKPowerSector . . . . . . . . . . . . . . . . . . . . . . 158

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.