ebook img

Econ 623 Econometrics II Topic 7: ARCH Models 1 Forms and Properties of ARCH#type Models PDF

21 Pages·2012·0.17 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Econ 623 Econometrics II Topic 7: ARCH Models 1 Forms and Properties of ARCH#type Models

Econ 623 Econometrics II Topic 7: ARCH Models 1 Forms and Properties of ARCH-type Models 1.1 ARCH(q) model (Engle, 1982) It models the conditional variance as a deterministic function of past returns. Suppose y is the return of a (cid:133)nancial asset. t y = (cid:22)+(cid:27) " t t t : (cid:27)2 = (cid:11)+(cid:12) y2 + +(cid:12) y2 (cid:26) t 1 t 1 (cid:1)(cid:1)(cid:1) q t q (cid:0) (cid:0) A special ARCH(q) model that we will consider here is, iid y = (cid:27) " ; " N(0;1) t t t t : (cid:24) (cid:27)2 = (cid:11)+(cid:12) y2 + +(cid:12) y2 ( t 1 t 1 (cid:1)(cid:1)(cid:1) q t q (cid:0) (cid:0) 1 Properties: E(y I ) = 0 t t 1 (cid:15) j (cid:0) E(y2 I ) = (cid:27)2 = (cid:11)+(cid:12) y2 + +(cid:12) y2 (cid:15) tj t(cid:0)1 t 1 t(cid:0)1 (cid:1)(cid:1)(cid:1) q t(cid:0)q y2 AR(q) (cid:15) t (cid:24) Since (cid:27)2 is time variant, the model is called the Autoregressive Conditional Het- (cid:15) t eroskedasticity (ARCH) model. According to the model, the conditional variance is completely determined by (cid:15) the lagged squared returns. 2 The kurtosis of ARCH is bigger than 3. In particular, when q = 1, the kurtosis (cid:15) of y is given by 3(1 (cid:12)2)=(1 3(cid:12)2) > 1 as long as (cid:12) = 0. So ARCH models t (cid:0) 1 (cid:0) 1 1 6 have fatter tails than the normal distribution. If (cid:12) ; ;(cid:12) ;(cid:11) > 0, and (cid:12) + + (cid:12) < 1; the ARCH(q) model is covariance 1 q 1 q (cid:15) (cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1) stationary. If so, E(y2) = (cid:11)=(1 (cid:12) (cid:12) ) t (cid:0) 1 (cid:0)(cid:1)(cid:1)(cid:1)(cid:0) q E(y y ) = 0 for any t = s: t s (cid:15) 6 E(y2 y2) = 0 for some t = s: (cid:15) t s 6 6 In most empirical studies, we need many lags in the variance equation (ie q must (cid:15) be large). 3 1.2 GARCH(p,q) (Bollerslev, 1986) It models the conditional variance as a deterministic function of past returns and conditional variance y = (cid:27) " t t t ; (cid:27)2 = (cid:11) + q (cid:12) y2 + p (cid:11) (cid:27)2 (cid:26) t 0 j=1 j t(cid:0)j j=1 j t(cid:0)j P P Properties: E(y I ) = 0, E(y2 I ) = (cid:27)2 (cid:15) tj t(cid:0)1 tj t(cid:0)1 t y2 = (cid:11) + ((cid:11) + (cid:12) )y2 + + ((cid:11) + (cid:12) )y2 + w (cid:11) w (cid:11) w ; (cid:15) t 0 1 1 t(cid:0)1 (cid:1)(cid:1)(cid:1) m m t(cid:0)m t (cid:0) 1 t(cid:0)1 (cid:0) (cid:1)(cid:1)(cid:1) (cid:0) p t(cid:0)p where m = max p;q ; w = y2 (cid:27)2 f g t t (cid:0) t y2 ARMA(max p;q ;p) (cid:15) t (cid:24) f g According to the model, the conditional variance is the weighted average of (cid:15) the lagged squared returns (ARCH term) and the lagged conditional variance (GARCH term). 4 If (cid:11) ; ;(cid:11) > 0; (cid:12) ; ;(cid:12) > 0; (cid:11) > 0 and ((cid:11) +(cid:12) )+ +((cid:11) +(cid:12) ) < 1; the 1 p 1 q 1 1 m m (cid:15) (cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1) GARCH(p,q) model is covariance stationary. E(y2) = (cid:11)=(1 (cid:11) (cid:11) t (cid:0) 1 (cid:0) (cid:1)(cid:1)(cid:1) (cid:0) m (cid:0) (cid:12) (cid:12) ) 1 m (cid:0)(cid:1)(cid:1)(cid:1)(cid:0) In the GARCH (1,1) model, E(y2 I ) = (cid:11) + ((cid:11) + (cid:12) )y2 + w (cid:11) w ; so (cid:15) tj t 0 1 1 t(cid:0)1 t (cid:0) 1 t(cid:0)1 ((cid:11) +(cid:12) ) governs the persistence of volatilities. 1 1 To describe the real (cid:133)nancial time series, a parsimonious GARCH model is often (cid:15) doing the job as well as an ARCH model with a long lag length. In the empirical study, the GARCH(1,1) speci(cid:133)cation has been found to be adequate in most application. In (cid:133)nancial data, often ((cid:11) +(cid:12) ) is very found to be close to 1 in the 1 1 GARCH(1,1) model. Therefore, the volatility process is persistent, suggesting volatility is predictable. 5 1.3 IGARCH (Engle and Bollerslev, 1986) Volatility is as persistent as a unit root y = (cid:27) " t t t (cid:27)2 = (cid:11) + q (cid:12) y2 + p (cid:11) (cid:27)2 ; 8 tq (cid:11)0 + jp=1 (cid:12)j =t(cid:0)j1 j=1 j t(cid:0)j < j=1 j Pj=1 j P Properties: : P P A shock to the conditional variance remains forever. (cid:15) Unconditional expected value of y2 is in(cid:133)nite. Hence, the IGARCH model is not (cid:15) t covariance stationary. It is parsimonious compared with GARCH(p,q). (cid:15) 6 1.4 GJR-GARCH (Glosten, Jaganathan and Runkle, 1993) Conditional variance responds to good news in di⁄erent ways to bad news. y = (cid:27) " t t t (cid:27)2 = (cid:11) + q (cid:12) y2 +(cid:13)y2 d + p (cid:11) (cid:27)2 ; 8 dt =01 if yi=1 <i 0t(cid:0);id =t(cid:0)01 itf(cid:0)1y i=01 i t(cid:0)i < t 1 t 1 t 1 t 1 (cid:0) P(cid:0) (cid:0) (cid:0)P(cid:21) Properties: : d is a decision rule variable. The threshold is y = 0: t t 1 (cid:15) (cid:0) The model can lead to the leverage e⁄ect. When (cid:13) > 0; bad news (y < 0) has t 1 (cid:15) (cid:0) larger impact on volatility than good news (y 0): t 1 (cid:0) (cid:21) It is also known as the threshold ARCH (TARCH) model. (cid:15) 7 1.5 EGARCH (Nelson, 1991) Model the log-conditional volatility to ensure volatility is positive. y = (cid:27) " t t t ; ln((cid:27)2) = (cid:11) + p (cid:11) ln((cid:27)2 )+ q ((cid:12) yt i +(cid:13) yt i) ( t 0 j=1 j t(cid:0)j i=1 i (cid:27)t(cid:0)(cid:0)i i(cid:27)t(cid:0)(cid:0)i (cid:12) (cid:12) Properties: P P (cid:12) (cid:12) (cid:12) (cid:12) Conditional variance depends on both the size and the sign of lagged residuals. (cid:15) (cid:12) captures the asymmetric e⁄ect. When (cid:12) < 0; bad news (y < 0) has larger i i t i (cid:15) (cid:0) impact on volatility than good news (y 0): t i (cid:0) (cid:21) In the volatility equation, ln((cid:27)2) but (cid:27)2 is modeled such that no restriction on (cid:15) t t the parameters is needed. 8 1.6 Absolute Value ARCH (Schwert, 1989) p (cid:27) = (cid:11) + (cid:12) y + (cid:11) (cid:27) t 0 i t i i t i j (cid:0) j (cid:0) i=1;q i=1 X X 1.7 NARCH (non-linear ARCH) (Higgin and Bera, 1992) q (cid:27)(cid:13) = (cid:11) + (cid:12) y (cid:13) + (cid:11) (cid:27) (cid:13) t 0 i t i i t i j (cid:0) j (cid:0) i=1 i=1;p X X Nest the standard GARCH model. If (cid:13) = 2, it is a GARCH; if (cid:13) = 1, it is an (cid:15) absolute value ARCH. 1.8 Quadratic ARCH (Sentana, 1991) (cid:27)2 = (cid:11) +(cid:12)y2 +(cid:14)y +(cid:11)h t 0 t 1 t 1 t 1 (cid:0) (cid:0) (cid:0) (cid:14) < 0 means positive returns increase volatility less than negative returns. (cid:15) 1.9 Switching ARCH (Cai, 1994; Hamilton and Susmel, 1994) y = (cid:27) " t t t (cid:27)2 = (cid:13)(S )+ (cid:12) y2 8 t t i=1;q i t i ; (cid:0) (cid:13)(S ) = (cid:13) +(cid:13) S > t 0 1 t >< P(S = i S =Pj) = p t t ij j > > There are two ARCH: models and the economy switches from one to another (cid:15) following a Markov chain. 9 1.10 ARCH in Mean (Engle, Lilien and Robin(1987)) Allow inter-temporal risk-return trade-o⁄s y = (cid:14)(cid:27)2 +(cid:27) " t t t t ; (cid:27)2 = (cid:11)+(cid:12) y2 + +(cid:12) y2 (cid:26) t 1 t 1 (cid:1)(cid:1)(cid:1) q t q (cid:0) (cid:0) This model is the extension of the Capital Asset Pricing Model (CAPM). (cid:15) 10

Description:
Econ 623 Econometrics II. Topic 7: ARCH Models. 1 Forms and Properties of ARCH#type Models. 1.1 ARCH(q) model (Engle, 1982). It models the conditional variance as a deterministic function of past returns. Suppose y3 is the return of a financial asset. # y3 φ μ + σ3E3 σ&. 3 φ a + β%y&. 3-%. +.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.