ebook img

Ecological Networks in an Agricultural World PDF

514 Pages·2013·14.99 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ecological Networks in an Agricultural World

ADVANCES IN ECOLOGICAL RESEARCH Series Editor GUY WOODWARD Imperial College London Silwood Park Campus Ascot, Berkshire, United Kingdom AcademicPressisanimprintofElsevier 32JamestownRoad,LondonNW17BY,UK TheBoulevard,LangfordLane,Kidlington,Oxford,OX51GB,UK Radarweg29,POBox211,1000AEAmsterdam,TheNetherlands 225WymanStreet,Waltham,MA02451,USA 525BStreet,Suite1800,SanDiego,CA92101-4495,USA Firstedition2013 Copyright©2013ElsevierLtd.Allrightsreserved. Nopartofthispublicationmaybereproduced,storedinaretrievalsystem ortransmittedinanyformorbyanymeanselectronic,mechanical,photocopying, recordingorotherwisewithoutthepriorwrittenpermissionofthePublisher. PermissionsmaybesoughtdirectlyfromElsevier’sScience&TechnologyRights DepartmentinOxford,UK:phone(+44)(0)1865843830;fax(+44)(0)1865853333; email:permissions@elsevier.com.Alternativelyyoucansubmityourrequestonlineby visitingtheElsevierwebsiteathttp://elsevier.com/locate/permissions,andselecting ObtainingpermissiontouseElseviermaterial. Notice Noresponsibilityisassumedbythepublisherforanyinjuryand/ordamagetopersons orpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuse oroperationofanymethods,products,instructionsorideascontainedinthematerial herein.Becauseofrapidadvancesinthemedicalsciences,inparticular,independent verificationofdiagnosesanddrugdosagesshouldbemade. ISBN:978-0-12-420002-9 ISSN:0065-2504 ForinformationonallAcademicPresspublications visitourwebsiteatstore.elsevier.com PrintedandboundinUK 13 14 15 11 10 9 8 7 6 5 4 3 2 1 CONTRIBUTORS FarshidS.Ahrestani DepartmentofBiology,ThePennsylvaniaStateUniversity,UniversityPark,Pennsylvania, USA JuliaAstegiano UMR5175CEFE–Centred’EcologieFonctionnelleetEvolutive(CNRS),Montpellier Cedex05,France,andDepartamentodeEcologia,InstitutodeBiocieˆncias,Universidadede Sa˜oPaulo(USP),Sa˜oPaulo,Brazil Jean-Noe¨lAubertot INRA-Toulouse,UMRAGIR,CastanetTolosanCedex,andUniversite´Toulouse,INPT, UMRAGIR,Toulouse,France MichaelBahn Institutfu¨rO¨kologie,Universita¨tInnsbruck,Innsbruck,Austria Se´bastienBarot LaboratoireBIOEMCO,UMR7618,IRD,Paris,France NicoBluthgen EcologicalNetworks,Biology,TechnischeUniversita¨tDarmstadt,Darmstadt,Germany DavidA.Bohan UMR1347Agroe´cologie,AgroSup/UB/INRA,PoˆleEcologiedesCommunaute´set Durabilite´ deSyste`mesAgricoles,21065DijonCedex,France MichaelBonkowski Universita¨tzuKo¨ln,ZoologischesInstitut,TerrestrischeO¨kologie,Ko¨ln,Germany GeoffreyCaron-Lormier UniversityofNottingham,SuttonBoningtonCampus,SuttonBonington,United Kingdom DarrenM.Evans SchoolofBiological,BiomedicalandEnvironmentalSciences,UniversityofHull,Hull, UnitedKingdom SabrinaGaba INRA,UMR1347Agroe´cologie,PoˆleEcolDur,DijonCedex,France EwenGeorgelin LaboratoireEcoEvo,UMR7625,UPMC,andLaboratoireEcologiedesPopulationsetdes Communaute´s,USCINRA2031,Paris,France BryanS.Griffiths CropandSoilSystemsResearchGroup,Scotland’sRuralCollege,Edinburgh,United Kingdom ix x Contributors RannveigAnnaGuicharnaud LandResourceManagementUnit,SOILACTION,InstituteforEnvironmentand Sustainability(IES),EuropeanCommission—DGJRC,Ispra,Italy StefaniyaKamenova Centred’EtudesBiologiquesdeChize´,Villiers-en-Bois,Beauvoir-sur-Niort,and INRA/AgrocampusOuest/Universite´Rennes1,InstitutdeGe´ne´tique,Environnementet ProtectiondesPlantes(IGEPP),Rennes,France JensKattge MaxPlanckInstituteforBiogeochemistry,Jena,Germany PaulHenningKrogh DepartmentofBioscience,AarhusUniversity,Silkeborg,Denmark GrigoriosKylafis LaboratoireEcoEvo,UMR7625,UPMC,andLaboratoireEcologiedesPopulationsetdes Communaute´s,USCINRA2031,Paris,France ClaireLavigne LaboratoirePlantesetSyste`mesdecultureHorticoles,UR1115,INRA,AvignonCedex, France SandraLavorel Laboratoired’EcologieAlpine,CNRS,GrenobleCedex,France OwenT.Lewis DepartmentofZoology,UniversityofOxford,Oxford,UnitedKingdom NicolasLoeuille Universite´PierreetMarieCurie,LaboratoireEcologieetEvolution,UMR7625Ecologie despopulationsetcommunaute´s(USC2031,INRA),ParisCedex05;LaboratoireEcoEvo, UMR7625,UPMC,andLaboratoireEcologiedesPopulationsetdesCommunaute´s,USC INRA2031,Paris,France SarinaMacfadyen CSIROEcosystemSciences,Canberra,ACT,Australia GiorgioMancinelli DepartmentofBiologicalandEnvironmentalSciencesandTechnologies,Universityof Salento,Lecce,Italy Franc¸oisMassol UMR5175CEFE—Centred’EcologieFonctionnelleetEvolutive(CNRS),Montpellier Cedex05,France GhazalAfrooziMilani ComputationalBioinformaticsLaboratory,DepartmentofComputing,ImperialCollege London,London,UnitedKingdom Gre´goryMollot CIRAD–PRAM,Unite´ derecherchesyste`medeculturebananiers,plantainsetananas, QuartierPetitMorne,LamentinCedex2,andINRA,UR1115PlantesetSyste`mesde cultureHorticoles,DomaineSt.Paul,SiteAgroparc,AvignonCedex9,France Contributors xi StephenMuggleton ComputationalBioinformaticsLaboratory,DepartmentofComputing,ImperialCollege London,London,UnitedKingdom ChristianMulder DepartmentforEnvironmentalEffectsandEcosystems,CentreforSustainability, EnvironmentandHealth(DMG),NationalInstituteforPublicHealthandtheEnvironment (RIVM),Bilthoven,TheNetherlands ShahidNaeem DepartmentofEcology,Evolution,andEnvironmentalBiology(E3B),Columbia University,NewYork,USA SandrinePetit UMR1347Agroe´cologie,AgroSup/UB/INRA,PoˆleEcologiedesCommunaute´set Durabilite´ deSyste`mesAgricoles,21065DijonCedex,France JosepPen˜uelas CSIC,GlobalEcologyUnit(CREAF-CEAB-CSIC-UAB),UniversitatAutonomade Barcelona,andCREAF,CerdanyoladelVa`lles,Catalonia,Spain NathaliePeyrard INRA-Toulouse,Unite´ deMathe´matiquesetInformatiqueApplique´es,CastanetTolosan Cedex,France ManuelPlantegenest INRA/AgrocampusOuest/Universite´Rennes1,InstitutdeGe´ne´tique,Environnementet ProtectiondesPlantes(IGEPP),Rennes,France MichaelJ.O.Pocock CentreforEcology&Hydrology,Wallingford,Oxfordshire,UnitedKingdom HendrikPoorter PlantSciences(IBG-2),ForschungszentrumJu¨lich,Ju¨lich,Germany JuliaRadoszycki INRA-Toulouse,Unite´ deMathe´matiquesetInformatiqueApplique´es,CastanetTolosan Cedex,France AlanRaybould ProductSafety,Syngenta,Jealott’sHillInternationalResearchCentre,Bracknell,Berks, UnitedKingdom PeterB.Reich DepartmentofForestResources,UniversityofMinnesota,SaintPaul,Minnesota,USA,and HawkesburyInstitutefortheEnvironment,UniversityofWesternSydney,Penrith,New SouthWales,Australia LoretoRossi DepartmentofEnvironmentalBiology,FirstUniversityofRome“LaSapienza”,Rome, Italy LilianeRuess InstituteofBiology,Humboldt-Universita¨tzuBerlin,Berlin,Germany xii Contributors GracielaM.Rusch NorwegianInstituteforNatureResearch(NINA),Trondheim,Norway Re´gisSabbadin INRA-Toulouse,Unite´ deMathe´matiquesetInformatiqueApplique´es,CastanetTolosan Cedex,France JordiSardans CSIC,GlobalEcologyUnit(CREAF-CEAB-CSIC-UAB),UniversitatAutonomade Barcelona,andCREAF,CerdanyoladelVa`lles,Catalonia,Spain JuliaSeeber MountainAgricultureResearchUnit,InstituteofEcology,UniversityofInnsbruck, Innsbruck,Austria AlirezaTamaddoni-Nezhad ComputationalBioinformaticsLaboratory,DepartmentofComputing,ImperialCollege London,London,UnitedKingdom PhilippeTixier CIRAD–PRAM,Unite´ derecherchesyste`medeculturebananiers,plantainsetananas, QuartierPetitMorne,LamentinCedex2,France,andCIRAD–CATIE,Departamentode AgriculturayAgroforesteria,CATIE7170,Turrialba,CostaRica MichaelTraugott MountainAgricultureResearchUnit,InstituteofEcology,UniversityofInnsbruck, Innsbruck,Austria FabriceVinatier INRA,UMR1221LISAH,MontpellierCedex,France GuyWoodward ImperialCollegeLondon,SilwoodParkCampus,Ascot,Berkshire,UnitedKingdom IanJ.Wright DepartmentofBiologicalSciences,MacquarieUniversity,Sydney,NewSouthWales, Australia PREFACE Editorial Commentary: The Potential for Network Approaches to Improve Knowledge, Understanding, and Prediction of the Structure and Functioning of Agricultural Systems David A. Bohan*, Guy Woodward† *UMR1347Agroe´cologie,AgroSup/UB/INRA,PoˆleEcologiedesCommunaute´setDurabilite´deSyste`mes Agricoles,DijonCedex,France †ImperialCollegeLondon,SilwoodParkCampus,Ascot,Berkshire,UnitedKingdom Network science has made increasingly important contributions to the understanding of ecological interactions in complex, multispecies natural systems, such as food webs and plant–pollinator networks (Ings et al., 2009; Lafferty et al., 2008; Montoya et al., 2006; Olesen et al., 2010). Ourunderstandingoftheecologicalpropertiesthatconferstabilityandresil- iencetodisturbanceuponthesesystemshasacceleratedbyviewingthemas networks of interacting elements. Considerable advances have been made sincethefirstfoodwebstudieswereconductedbythepioneersofmodern ecology (e.g. Elton, 1927; May, 1973), with especially marked improve- ments in both data and models over the last two decades (e.g. Allesina and Tang, 2012; Cohen et al., 2009; Dunne et al., 2002; McCann et al., 1998). Previously, the poor quality of data threatened to undermine the credibility of the approach (Polis, 1991). This more holistic, system-based approach has had many significant impacts on fundamental ecology, from its contribution to the complexity–stability debate to providing a means oflinkingacrossdifferentorganisationallevelsandspatialandtemporalscales (Hagen et al., 2012; Kondoh, 2003). It is only far more recently that it has been adopted by the more applied, ecological sciences (Ings et al., 2009). The growing prominence of food web approaches is particularly evident in its influence on the management of human-exploited fish stocks (e.g. Barnes et al., 2008, 2010; Jennings and Brander, 2010; Jennings et al., 2002), where it is increasingly being used to underpin the ‘ecosystem approachtofisheries’thatisnowbeingadoptedonaglobalscale.Network approacheshavenotyethadthesamelevelofimpactinthesisterdiscipline ofagriculture, however,andaddressingthisgapistheprincipalmotivation behind the production of this thematic volume. xiii xiv DavidA.BohanandGuyWoodward Networks in agricultural ecosystems have been rather neglected, reflectingthelong-heldviewthattheseartificialsystemsaresomehowspe- cialcasesthatstandapartfrommainstreamecology.Indeed,therehasbeen relatively little exchange of ideas, with agroecology developing to a large extentasan isolated disciplineinits ownright, mirroringthesituationthat persisted in the relationship between fisheries science and general ecology throughout much of the twentieth century. Recently, however, there has been a noticeable change as the field has opened up: studies of networks of interacting species in agriculture, such as Pocock et al. (2012), are now not only shining new light on the structure and functioning of agroecosystems, but also contributing to, and extending, wider ecological understanding and theory. Thelongstandingseparationofagroecologyofmainstreamecologyissur- prising, given that early trophicand community ecology(sensuElton,1927; MacArthur, 1955) and more recent metapopulation theory (Levins, 1969) wereoriginallyinspiredbyagriculturalquestions,suchashowcropmonocul- tures seemed especially prone to pest outbreaks, just as size-structured food webs were recognised in early fisheries science (e.g. Hardy, 1924) but then network approaches largely ignored for most of the last century. The work inthisthematicvolumedemonstratesthatagricultureisonceagainsettodrive forwardecologicalresearchinmultispecies,interactivesystems,andthegrow- ingresurgenceofthefieldisreflectedinthecurrentworldwideconcernwith maintaining the ecosystem goods and services on which all human societies depend(Raffaelliand White,2013),and whichareattheheartofagroecol- ogy.Globally,wewillneedtoproducemoresustainableagroecosystemsthat are both biodiverse and able to feed the ever-growing human population— which is projected to exceed 9 billion people by 2050. Agroecosystems alreadyaccountformuchoftheEarth’ssurface,withcroplandsandpasture- landscoveringover40%ofthelandarea,andthisissettogrowrapidlyinthe comingdecades.Itisinevitablethatthisexpansionandencroachmentonwil- dernessareaswillleadtoincreasedinterdisciplinarityinthefuture,aspressures mountonbothnaturalandartificialsystemsandthegoodsandservicesthey supply to humanity. This combination of socioeconomic and ecological imperativessetsthescenefortheroleagriculturewillplayinthedeveloping theory and practice of network ecology. Theapparentdichotomybetweenthestudyofagroecosystemsandnat- uralecosystemsisafalsepremise,aseverysystemontheplanetcanbeplaced onagradientofartificialitytonaturalness,fromurbansystemsatoneendto theremotewildernessofAntarcticaattheother,butwithfew,ifany,being Preface xv trulypristinegiventheglobalreachofhumanimpacts(Bohanetal.,2013). Typically,agroecosystemsareviewedaslyingtowardsthemoreartificialend of this gradient, but in reality many exist in, and interdigitate with, natural and‘semi-natural’habitats(MassolandPetit,2013).Forinstance,heathland and moorland are agroecosystems in many parts of the world, as are many grasslands, although they are often managed with a lighter touch than industrial-scale, intensively farmed arable monocultures. All support many more species than the target crop alone, which has been the primary focus of agricultural research to date, and these ancillary systems are required for the healthy functioning and service provision of the ecosystem as a whole (including supporting agricultural yields). Together, these natural, semi- natural, and cropping systems form a patchwork of interaction networks, which are themselves connected to one another and to other elements in thesurroundinglandscapeinaspatialnetwork.Itistheseattributesthatform much of the focus of this volume. Networkapproachesdevelopedinmainstreamecologyandotherdisci- plinescanbereadilyadaptedandappliedtoagroecosystems,despitesomeof their apparently fundamental differences to natural systems, to help under- standhowlocalecologicalnetworks(e.g.foodwebs,plant–pollinatorwebs, host–parasitoid webs) are themselves nested as nodes (metawebs) within a larger spatial network. The chapters in this volume also explore how net- work approaches can be applied to other aspects of agroecology, including the decision-making processes in land management, and how eco- evolutionary dynamics can be used to understand system-level responses (e.g. the emergence of pesticide resistance) to those choices (Loeuille et al., 2013). Thisvolumethuscoversabroadcanvas,anditembracesmethodological issuesaswellasintroducenewempiricaldataandmodelstoprovideanew synthesis of the current state-of-play. In fact, the considerable depth and breadthcoveredbysevenchapterspresentedherehighlightjusthowrapidly thisnascentfieldisdeveloping.Acrossthisvolume,thereareseveralrecur- rent themes that have emerged from these chapters, which we have summarised in 10 key points: 1. Agroecosystems have important similarities to, and also differences from,naturalsystems,whichneedtobeborneinmindwhenmodel- ling their dynamics. 2. Temporalandspatialdynamicsandheterogeneityneedtobeconsid- ered together, over multiple scales (Loeuille et al., 2013; Massol and Petit, 2013; Tixier et al., 2013). xvi DavidA.BohanandGuyWoodward 3. Belowgroundandabovegroundnetworksneedtobeunited,andnot studied in isolation, as has been typical to date; one cannot be fully understood without knowledge of the other (Mulder et al., 2013). 4. Different types of antagonistic and mutualistic interactions can occur within the same community—and even within the same species pairs—and advances in understanding of this diversity of interaction inagroecologyarenowdrivingthoseinmoregeneralecology,which has traditionally focused on just one type of interaction network within a given community (Bohan et al., 2013; Loeuille et al., 2013; Mulder et al., 2013). 5. Diets are much harder to characterise in agroecosystems than they are in the highly resolved aquatic food webs that are dominated by gape-limited, engulfing consumers. Here, new technologies and techniques such as SIP, metasystematics, machine-learning, and text-miningarerevolutionisinghowfoodwebsandothernetworks can be constructed rapidly and realistically, and these promising novel approaches seem certain to be adopted in the near future by mainstream network ecology (Tamaddoni et al., 2013; Traugott et al., 2013). 6. There is a wide diversity of consumer behaviour and traits in agroecosystems, from suctorial fluid feeders through to spiders that use webs as tools to catch larger prey, such that the strength of body mass allometric constraints may need to be reassessed relative to the manyothersystemsinwhichtheyareparticularlypowerfulstructur- ing forces (Mulder et al., 2013; Tamaddoni et al., 2013). 7. Taxonomic and functional traits are both important determinants of network structure (Bohan et al., 2013; Mulder et al., 2013; Tamaddoni et al., 2013). 8. Eco-evolutionaryresponsescanbeextremelyrapidandprofound,due to the prevalence of powerful artificial selection (e.g. for pesticide resistance) that accelerates their manifestation (Loeuille et al., 2013). 9. Croptypeisamorepowerfuldeterminantofnetworkstructurethan biogeographicalsetting,largelybecauseofthebiotichomogenisation thatarisesfromfilteringthroughthesamesetofconstraintsandman- agementpractices,whichareoftenappliedonacontinentaltoglobal scale (Bohan et al., 2013). 10. Land-sharing and land-sparing approaches to management have very differentoutcomesforecologicalnetworksacrossdifferentlandscapes, withcompellingevidencethattheformerislikelytobefarmoresus- tainable than the latter in the future (Loeuille et al., 2013).

Description:
The theme of this volume is to discuss the Ecological Networks in an Agricultural World. The volume covers important topics such Networking Agroecology, Construction and Validation of Food-webs using Logic-based Machine Learning and Text-mining and Eco-evolutionary dynamics in agricultural networks.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.