ebook img

Ecological metrics of diversity in understanding social media PDF

0.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ecological metrics of diversity in understanding social media

Ecological metrics of diversity in understanding social media ∗ CHRIS VON CSEFALVAY FRSA Abstract Topicaldiscussionnetworks(TDNs)arenetworkscenteredaroundadiscourseconcerningaparticular 5 concept, whetherinreallifeoronline. Thispaperanalogisesthepopulationofsuchnetworksto 1 0 populationsencounteredinmathematicalecology,andseekstoevaluatewhetherthreemetricsof 2 diversityusedinecology-Shannon’sH(cid:48),Simpson’sλandEvar proposedbySmithandWilsongive valuableinformationaboutthecompositionanddiversityofTDNs.Itconcludesthateachmetrichas n a itsparticularuse,andthechoiceofmetricisbestunderstoodinthecontextoftheparticularresearch J question. 9 2 I. INTRODUCTION bynomeansunknown. Indeed,thesameexpan- sionwascarriedout,independently,byHerfind- ] I In analysing a a topical discussion network ahlandHirschman,increatingthemathemati- S (TDN),3,6,8 suchastweetsmentioningthesame callyidenticalHerfindahl-Hirschmanindexused . s hashtag or same keyword, an important ques- in antitrust law as a proxy of market concen- c [ tionfortheunderstandingofinformationflows tration.4,5,7,15,20 This paper asks, principally, isthesourcediversityamongvariouscontribu- whethersuchanexpansionwouldyieldthesame 1 v tors to the conversation. In other words, what newinsightsthatityieldedineconomics. Inpar- 1 are the ’market shares’ attributable of individ- ticular,itaskswhetherthemetricsusedinmath- 2 ualsources? Istheconversationdominatedbya ematicalecologytranslatetotheratherdifferent 6 smallnumberofcontributorsorisitabalanced fieldofanalysingnetworksinhumaninteraction, 7 0 exchangewithalargenumberofactorsholding wherethenumberof’species’canoftenbequite . conversationsatrelativeparity? large. 1 0 Thispaperexaminestheutilityofthreemet- Thispaperconsidersaparticularmanifesta- 5 rics - Shannon’s H(cid:48), the Simpson λ metric and tion of TDNs, namely Twitter hashtags. This 1 the E metricproposedbySmithandWilson ispartlyowingtotheethicalissuesinvolvedin : var v (1996) - in understanding TDNs in social me- usingaprimafacieclosedsocialnetwork,such i X dia. Inparticular,itisattemptingtoascertain asFacebook,intheresearchofoftencontentious what each of these metrics reveal about infor- politicalissues,aswellasduetotherelativeease r a mation flows within a TDN, and to what ex- bywhichthedatanecessaryforsuchresearchis tentthesemetricscanbeadaptedtoTDNanal- availablefromTwitter’sAPI.Whiletheresults ysis. In this sense, a TDN is regarded as an do not indicate any prima facie source depen- analogueofanentireecosystem,witheachcon- dence,furtherresearchusingotherinformation tributorbeinga distinct’species’. Theircontri- sourcesisclearlywarranted. Insightsfromsuch butions - whether Facebook posts, tweets, Pin- studies may lead to a better understanding of terestpinsorInstagrams-areequivalenttoa how political discourse is acted out in the on- species’sweightinanecosystem. Analogousex- linepublicspaceandhowsuchdiscoursecanbe pansion of metrics in mathematical ecology is describedinstatisticalterms. ∗ MA(Oxon),BCL(Oxon),FellowoftheRoyalSocietyofArts.Technicalarchitect,RBplc,215BathRd,SloughSL14AA. E-mail:chris@chrisvoncsefalvay.com.Allopinionscontainedinthispaperaretheauthor’sownanddonotnecessarilyreflect thepositionsofanyinstitutiontheauthorisaffiliatedwith. 1 II. BACKGROUND -oneversion,whichhecreditstoBrillouin(1960), isusablewherethetotalnumberofindividuals, I. Defining metrics i.e. thesizeofV inourcase,aswellastherich- nessR ofthepopulation,isknown. Inthatcase, ConsideraTDN,denotedasΘ,withR contribu- thediversityofapopulationcanbeexpressedas torsC ···C andasetT ofV elementscompris- 1 R ibnugtiaolnlscobnytcroibnutrtiibonusto.rLCetntbheedneunmotbeedraosftcno.nWtrei- H= N1 lnN−(cid:88)R lntj (3) canthenconstructaprobabilityspaceinwhich j=1 Brillouin’sformula,however,doesnotavail 1. thesamplespaceΩcomprisesallcontribu- usinthealltoofrequentcasewherethesizeof tions,i.e. theentirepopulationisunknownorunknowable. Ω={ω|ω∈T} (1) In that scenario, the true population diversity cannot be calculated. It can, however, be esti- 2. the σ-algebra F the set of all subsets in matedfromasample. Forasampleofrichness Ω thesamplespace,i.e. 2 ,and (cid:48) R,theestimatedpopulationdiversityH isgiven by 3. the probability measure that a contribu- tionselectedatrandomwillbefromacon- R tributorCj as H(cid:48)=−(cid:88)pjlnpj (4) j=1 t P(ω )= j . (2) where p denotestheproportionofspecies j j i R (cid:80) t in the sample. From (2) follows that for a con- i i=1 tributor j, the proportion of his tweets can be representedas Inthefollowing,threemetricswillbedefined for any given TDN Θ consisting of R distinct t t j = j (5) contributorsandN distinctcontributionswhere R N (cid:80) t thenumberofcontributionsbycontributor jis i i=1 denotedast andtheproportionofthecontribu- j (cid:48) Consequently,H canbecalculatedas tionsbythatuserisdenotedas p . j R t t II. Shannon-Weaver index H(cid:48)=−(cid:88) j ln j (6) N N j=1 Measuring the diversity of multispecies popu- Shannon’sindexisoneofdiversity,i.e. itis lations using the concept of ’information con- stronglyrichness-dependentanditmeasurespri- tent’gainedtractioninthelate1950s,following marilytheentropicdissimilarityofthepopula- theworkofClaudeShannonontheinformation tionratherthantheevendistribution. Aderiva- entropy of communication.21 Under the ’infor- tiveoftheindex,knownsometimesasShannon’s mationcontent’understandingofspeciesdiver- (cid:48) evennessmetric J exists,whichisdefinedas sity, the diversity of a multispecies population isequivalenttotheuncertaintyoffindinganin- − (cid:80)R tj lntj daniviidnudaivlidofuasplefrcoiemstihwehpeonpurlaantidoonmPly.11s,e1l6e,1c7tinIng J(cid:48)= H(cid:48) = j=1N N (7) lnR R other words, the ’information content’ of an in- dividual within the population depends on the III. The Simpson lambda index population’sinformation(orspecies-occurrence) entropy. TheSimpsonindex,usuallydenotedbyλ,isthe Pielou(1966)distiguishestwodefinitionsof probability that two entities drawn at random informationcontentthatwereinitiallyprevalent fromthepopulation,withreplacement,willbe 2 ofthesamespecies.9 Fortheprobabilityspace (cid:115) associatedwiththeTDNΘasdescribedabove, R N− (cid:80) t2 itcanbecalculatedas i=1 i E (Θ)= (9) McI N−(cid:112)N λ=(cid:88)R p2=(cid:88)R (cid:179)tj(cid:180)2 (8) R j N SmithandWilson(1996)proposeanewmet- j=1 j=1 ric,E ,whichisintuitivelybasedonthevari- var ance of the logarithm of each species’s popula- In economics, this index is known as the tion.22 It uses a trigonometric transformation Herfindahl-HirschmanIndex(HHI),andserves firstusedbyAlatalo(1981)toreducetheresult toquantifymarketconcentration. Sinceitsincep- toavalueinradians.1 tionin1950,ayearafterSimpson’sindependent decisocloogvye,rtyheofHtherefisnadmahel-cHonircsecphtminanmIantdheexmhaatsicbael- Evar=1−π2arctanR1 i(cid:88)=R1ln(pi)−j(cid:88)=R1ln(Rpj)2 comethegoldstandardproxyformarketpower, (10) andformsthebasisoftheUSDepartmentofJus- SmithandWilsonhaveprovedthismetrictobe tice’sanalysisofpossibleanticompetitiveeffects independent of species richness for all values ofmergers. Theindex"accountsforthenumber of R, as well as its sensitivity to changing the offirmsinthemarket,aswellastheconcentra- abundanceofthemostminorspecies. TheE var tion, by inforporating the relative size (that is, metricwillbeconsideredalongsidetheShannon- marketshare)ofallfirmsinthemarket".20 Its Weaver and Simpson complement indices as a transferabilityindicatesthatthephenomenonit non-R sensitivemetric. measures,namelyrelativeconcentration,isnot specifictothedomainofitsorigin,butratherde- V. Adaptation of the indices: diver- scribesaccumulativerelationshipsanddiversity gences and challenges invariousdomains. A primary feature of these indices is that they IV. The E metric weredevelopedwithclassicalpopulationecology var in mind.10,13 Where they have been adapted, Ithasbeenobservedthatthenumberofdistinct theyhavegenerallyappliedonlytoasmallnum- species,knownasrichness(representedasR in berofentities-thus,forinstance,inthecontext theabovemodeloftheTDNΘ),hasasignificant oftheHerfindahl-Hirschmanindex,thetypical impactondiversitymetrics.1 Therichnessprob- numberofundertakingstoconsiderdoesnotex- lemscalesaswetransferthemetricsfrompop- ceedafewdozen.15 Assuch,theadaptationto ulation ecology to social interactions. In many theeconomiccontextwasreasonablyunproblem- ofthesamplesthatwillbediscussedinourre- atic,asgivennarrowindustrydefinitions,most search,R willbeinthethousands-indeed,the ofthecontributiontotheHerfindahl-Hirschman largestsamplesetthatwillbeconsideredhasa index was by a relatively small number of un- richnessofalmost150,000distinctcontributing dertakings,approximatelyonparwith(oreven entities. Furthermore,thepreviousindicespri- smallerthan)thenumberofdistinctspeciesin marily focused on diversity, whereas that only anecologicalstudy. Evenwherethatwasnotthe deliverspartofthepicture. Evenness,too,plays case, a capping mechanism was implemented, a significant role in understanding a TDN. To calculatingtheindexfor,conventionally,thetop take account of evenness, multiple approaches 20ortop50undertakings.2,12,23 havebeenproposed. Onewastoadapttheindex The issue of much higher richness - al- proposed by McIntosh (1967) for the measure- most 150,000 in our largest sample, from the mentofspeciesdiversity,14 intoanindexofeven- #gamergatehashtag-meansrichness-sensitive ness. The index proposed by Pielou would, for metrics, suchasSimpson’sλand H(cid:48), aremore theTDNΘasdescribedabove,becalculatedas at risk of not reflecting real diversity than the 3 same metrics would be in the relatively con- berofhashtagsselectedfortopicalunambiguity fineddomainofecologyorcompetitioneconomics, (asinglehashtagorsearchtermshouldretrieve where the upper bound of richness was much most,ifnotall,ofacommunitybutnotretrieve smaller. To alleviate any issues with adapta- resultsconcernedwithadifferentmeaningofthe tion,thepresentresearchemploystwomethod- word),aswellastocovereachtypologicalclass ologies. First,arichness-insensitivemetricE of’virtualcommunity’proposedbyPorter.19 The var isemployedinadditiontotherichness-sensitive samples were collected throughout the period metrics.22 Second,themetricswerecalculated, fromOctobertoDecember2014. alongsidetheentiresample,forthetopquintile The12hashtagsultimatelyselectedcomprise andthetopdecileofcontributors,byproportion arangeofsubjectareas,popularityandsample ofcontributions. sizes. ThesampleswerestoredinaMongoDBin- stance and queried by a custom Python script, III. METHODOLOGY whichthencalculatedthepertinentmetricsus- ing pandas as a data abstraction. The met- For the purpose of this research, a sample of rics were calculated by reference to individual twelveTDNscenteredaroundarangeoftopics Twitterusers’identifiers,ratherthantheiruser wereexamined. Usingahigh-throughputauto- namesor’screennames’,whicharebothmutable mated retrieval engine written in Python that whereasuseridentifiersareassignedatthetime interactswithTwitterusingaRESTfulAPI,sam- ofaccountcreationandaregloballyuniqueboth plesofvarioussizeswereobtainedfromanum- acrossTwitterusersandacrosstime. Table1: Hashtagsincludedintheresearch Hashtag Name Subjecttype N R p ×106 σp ×106 i i #auspol Politics 206,040 25,410 39.3544 18.0504 #blacklivesmatter Politics 216,097 101,539 9.8484 36.3133 #cashinin Politics 3,682 1,258 794.9212 2103.0147 #dataviz Professional 5,079 3,236 309.0175 641.6421 #ferguson Politics 354,548 128,800 7.7648 41.1617 #gamergate Entertainment 3,711,580 146,472 6.8273 247.8704 #mtvstars Entertainment 103,400 26,638 37.5406 76.3736 #p2 Politics 88,594 24,085 41.5660 23.4973 #rstats Professional 1,071 645 1,550.4202 2.3789 #startup Professional 36,100 7,550 132.4515 36.0704 #tcot Politics 567,763 85,717 11.6663 66.5921 #uniteblue Politics 59,280 15,496 64.5327 14.4400 Afterdeterminingthesamplesize(N),rich- Themetricswerethenseparatelycalculatedfor ness(R)andaverage p foreachhashtagsample, twosubpopulations,namelythetopquintileand i thethreemetricsthatformthebasisofthisstudy topdecileofusers,respectively,toassistwiththe havebeencalculatedforeachofthehashtagsus- estimationofeachmetric’ssensitivitytoR. ingaPythonimplementationofthecalculations. 4 0.015 0.8 9 Shannon entropy (H')6 l00..000150 Evar00..46 3 0.000 1,000 100,000 1,000 100,000 1,000 100,000 Richness Richness Richness (a)Shannon’sH(cid:48) (b)Simpson’sλ (c)Evar Figure1: MetricscalculatedforthesampledTDNs. Subsamplesderivedfromthesamehashtag(total, firstquintileandfirstdecile)areconnectedbylines. ThecoloursidentifytheTDN’sclassification(red =entertainment,green=politics,blue=professional). Inaddition,totesteachmetric’sdependence forcomparingbiomeswithsignificantlydi- on R, thePearsonproduct-momentcorrelation vergentnumbersofspecies. Thisisnotnec- was computed for each of three subsamples of essarily a drawback, however, where the each hashtag’s population, namely the whole comparisonrequiresrichnesstobetaken hashtag,thetopquintileandthetopdecile. The intoaccount. Totheextentthatoneiscon- (cid:48) examination of the correlations found that H cerned with the relative likelihood of en- stronglypositivelycorrelateswithR (r=0.692, counteringdivergentopinions,therichness 95%CI:0.471-0.832)andweaklynegativelycor- of a sample is hardly irrelevant. Indeed, relatestoeachofλ(r=−0.253,95%CI:−0.553 therichnessofaTDNmightbecomerele- - 0.059) and E (r=−0.275, 95% CI: −0.553 - vantwhenconsideringsuchquestionsas var 0.059). Ofthesecorrelations,onlythatbetween whethertheconversationissubjecttothe R and H(cid:48) isstatisticallysignificantat p<0.05. dominanceofafeworawidelyparticipa- This indicates that at the sample sizes consid- torymarketplace,evenifitdoesnotallow ered, both λ and E deliver accurate results comparisonofevennessindependentlyof var thatarenotstatisticallysignificantlyinfluenced richness. Itwould,therefore,bepremature by the richness of the sample. Figure 1 shows todiscarditasuseless-withintherealm (cid:48) the relationship between the selected metrics ofsocialmediaanalysis,H couldserveto andtherichnessofthesample. distinguishlow-participation,nicheTDNs InagreementwiththeresearchbySmithand fromTDNswhereparticipationiswideand Wilson(1996),thisexaminationoftheevenness relativelyeven,withthecaveatthatitwill anddiversitymetricsconcludesthatH(cid:48)issignifi- belesssensitivetounevennessasrichness cantlyaffectedbytherichnessRinthesample.22 increases. FollowingthedistinctiondrawnbyPielou(1977), a metric of diversity ought ideally to measure 2. Withtheexceptionofasingleoutlier(the onlyoneoftheconstituentcomponentsofdiver- #startuphashtag),Simpson’sλappears sity,namelyeitherrichnessorevenness,butnot to be the least affected by divergences in ofboth. Thus,ametricsignificantlyaffectedby richness, both in the case of subsamples richnesswouldbeanunsuitablemetricofeven- drawn from the same sample and in the ness,andviceversa.18 Basedonthis,amethod- caseofinter-sampledifferences. Thisindi- ologicalroleforeachofthemetricsemerges: catesthatλisagoodmetricformeasuring and comparing evenness and measuring (cid:48) 1. Shannon’s H is unsuitable for compar- dominanceinawaythatislesssensitive isonsbetweenTDNsofsignificantlydiver- to R and (quadratically) more sensitive gentR,justastheywouldnotbesuitable to the existence of entities with a larger 5 shareoftheconversation-inthisinstance, tributetoit? Asthediscussionintheprevious it excelled at identifying the outlier, the chapterhasshown,eachofthethreemetricscon- #mtvstarshashtag,whichwasmarkedby sideredinthispaperhasaparticularroleindis- the strong participation of a few signifi- cerningthediversityandevennessofasample cant sources (mainly media outlets and derived from a TDN. In mathematical ecology, celebritybloggers),adistinctionothermet- the concept of diversity, dominance and even- ricsdidnotpickupon. Assuch,wherethe nessservestounderstandtheinterrelationship researchquestionseekstoidentifyrelative betweenvariousspeciesofvariousabundances imbalances between the largest few and each. Do a few species dominate or do a large theremainderofthesampleandthereby numberofdifferentspeciessharetheresources pinpointsituationsofunusualdominance, availabletothepopulation? Doindividualsfall thequadraticamplificationofsuchdomi- intospecieswithrelativelyevenprobabilitiesor nancebytheλmetricisahelpfulmathe- isthereadistinct’fall-off’? Inthissense,therela- maticaltool. tivedominancerelationshipsbetweenindividual species within a population can be categorised 3. The E metric is also relatively unaf- var andunderstoodbasedpurelyonmathematical fectedbychangesinR,althoughnottothe indicators. In the context of a social network, extentthatSimpson’sλisinmostcases. It such as a TDN, the issue is slightly different. isinferiortoλindiscerningdominanceby For one, the constraining factor is slightly dif- a small number of highly dominant enti- ferent. In a TDN, voices compete for a share ties. Itdoes,however,deliversuperiorper- of the conversation. Each contribution comes formanceindiscerningtherelativeeven- at a cost in terms of time, energy and various ness between each contributor’s share in system-providedmaximaofdailyorhourlycon- the conversation in a way that is largely tributionrates(e.g. Twitter’smaximumof2,400 sensitivetochangesintheshareofthecon- messages). Assuch,thecontributionsrepresent versationheldbythelowest-contributing notmerelyhowmuchanindividualcontributor’s contributors. Assuch,aseachsubsample opinion adds to the whole of the conversation isexpanded,theexpansionyieldseitheran butalsoameasureofhisorherexpenditurein increase or a decrease in E , reflecting var termsoftimeandtherelativelylimitedresource theinfluenceofthelessdominantcontrib- ofdailytweetstotheconversation. Inthissense, utors’ shares on the index, whereas such higher p translatesnotonlytoalouder, more expansion does not affect λ as most of a i influential voice but also to a more significant sample’sλisdeterminedbyitsfirstdecile expenditure of a relatively scarce resource on (indeed,oftenonlyafractionthereof). participating in a TDN. Consequently, a TDN withhighconcentrationindicatesthepresenceof IV. RESULTS agentswhoareabletoexpendconsiderabletime andeffortinmakingtheirvoiceheardaswell. Whatdometricsofconcentrationandevenness teachusaboutaTDNandthepeoplewhocon- 6 Table2: Diversitymetricsforvarioushashtags Hashtag Fullsample Topdecile Name Subjecttype H(cid:48) λ×104 E H(cid:48) λ×104 E var var #auspol Politics 8.4148 8.6722 0.3919 5.6269 8.6143 0.6143 #blacklivesmatter Politics 10.6933 1.2001 0.7085 4.6908 1.1666 0.7069 #cashinin Politics 6.1643 63.5415 0.6245 2.8426 61.3470 0.6671 #dataviz Professional 7.6130 16.4942 0.8492 2.3283 15.0661 0.7112 #ferguson Politics 10.5688 2.2599 0.6730 5.2954 2.2405 0.6360 #gamergate Entertainment 8.6397 6.6783 0.3204 7.6901 6.6778 0.2919 #mtvstars Entertainment 6.9324 145.6970 0.7445 3.9151 145.6642 0.5407 #p2 Politics 8.6366 17.3569 0.5978 4.5832 17.2662 0.6249 #rstats Professional 6.0897 47.2607 0.8218 1.7600 39.3447 0.7980 #startup Professional 6.9181 76.6908 0.5778 3.8879 76.4920 0.4257 #tcot Politics 9.3136 8.8127 0.4223 6.2346 8.7970 0.5940 #uniteblue Politics 8.4368 9.8394 0.5576 4.4738 9.6779 0.6784 Thisstudyfocusedontwofundamentalques- tributorsregardlessofsize,E isthe var tions. First,aremetricsofpopulationdiversity bestmetric. Astheexpansionshowed,itis andevennessastheyareusedinpopulationecol- capableofindicatingsmallchangesinthe ogyusefulmetricsofthediversityofaTDN?Sec- proportionoftheleast-contributingmem- ond,whatdosuchmetricssayaboutaparticular bers as well, making it suitable for sen- TDN? sitiveassaysofchangesinapopulation’s participationrate. I. Validity of the metrics II. Interpretation Asdiscussedabove,eachofthemetricshadtheir own suitability spectrum. In other words, the Justaseachofthemetricshadaparticularas- metricsconsideredeachhadaparticularinfor- pectofvalidity, theirinterpretationinthecon- mationvalue. Assuch, thecrucialissueforre- textofTDNsissubtlydifferentforeach. searcherswillbetoselecttheappropriatemetric (cid:48) (cid:48) fortheresearchquestion. 1. InterpretingH : AhigherH indicatesa more vibrant conversation, either by in- 1. For research questions where rich- creasing diversity (fewer dominant par- (cid:48) nessisrelevant,Shannon’sH metricis ticipantsandlowerdominancerates), in- agoodwaytodifferentiaterichandvibrant creasing the number of participants or TDNs from TDNs that are either domi- both. Fortheeffectivenessassessmentof natedbyafewloudvoicesorarerelatively a TND, such as when evaluating the effi- small. ciencyofsocialmediainterventionstogen- 2. For near-complete independence eratediscoursearoundaparticulartopic, from R and a good way to highlight this metric is more valuable than the R- smallimbalances,theλmetricisasuit- independentmetrics,sincerichnessinand able indicator that the conversation is ofitselfactsasaproxyofreachandconsti- dominated by a few prominent partici- tutesanoptimisationgoal. pants. 2. Interpreting λ: λis anextremely sensi- 3. For the assessment of evenness sensi- tive measure of diversity that is largely tivetochangesintheshareofallcon- independent of R. It is a good metric to 7 measure evenness and dominance, and [2] Duncan Bailey and Stanley E Boyle. The very sensitive to even small increases in optimal measure of concentration. Jour- thedominanceofthelargestfewcontribu- naloftheAmericanStatisticalAssociation, tors. Assuch,wheretheresearchquestion 66(336):702–706,1971. seekstoidentifytherelativedominanceof themostprominentvoices,theλmetricis [3] Axel Bruns and Jean E Burgess. New methodologiesforresearchingnewsdiscus- mostappropriate. sionontwitter. 2011. 3. InterpretingE : Unlikeλ,E excels var var [4] Stephen Calkins. The new merger guide- at both ends of the user/frequency distri- linesandtheherfindahl-hirschmanindex. bution. Itismoresensitivetophenomena California Law Review, pages 402–429, such as the decreasing prominence of al- 1983. ready less prominent users, a ’silencing’ phenomenon that can indicate a TDN’s [5] Neil B Cohen and Charles A Sullivan. turn from discourse towards information Herfindahl-hirschman index and the new distributionwiththeoccasionalcomment antitrustmergerguidelines: Concentrating fromothercontributors. onconcentration. Tex.L.Rev.,62:453,1983. [6] Sandra Gonzalez-Bailon, Andreas V. CONCLUSION Kaltenbrunner, and Rafael E Banchs. The structure of political discussion net- Metricsofdiversityinpopulationecologyhave works: a model for the analysis of online beenusefullyappliedinotherfields,suchascom- deliberation. Journal of Information petitioneconomics. However,todate,theyhave Technology,25(2):230–243,2010. notbeenusedinthecontextofanalysingTDNs. [7] TimothyHHannan. Marketshareinequal- Thisisnottheleastduetotheapparentdiffer- ity,thenumberofcompetitors,andthehhi: ences,suchasthevastlylargerrichnessand,usu- Anexaminationofbankpricing. Reviewof ally,individualswithinTDNsamples. Thisstudy IndustrialOrganization,12(1):23–35,1997. concludedthatecologicalmetricsofdiversityare similarly useful in describing various features [8] TimHighfield,LarsKirchhoff,andThomas ofTDNs,butneedtobeappliedwithintheirdo- Nicolai. Challengesoftrackingtopicaldis- mains. Theconclusionislimitedontheevidence cussion networks online. Social Science fromarelativelysmallnumberofhashtags,but ComputerReview,29(3):340–353,2011. thesamplecanformanyreasonsberegardedas representative. Furtherresearchandvalidation [9] PaulRHunterandMichaelAGaston. Nu- ofecologicalmetricsofsocialmediainteractions mericalindexofthediscriminatoryability on TDNs is certainly required and justified, in oftypingsystems: anapplicationofsimp- particularwithaviewtoclassificationandclus- son’sindexofdiversity. Journalofclinical tering of TDNs and cross-correlation of value microbiology,26(11):2465–2466,1988. rangestoparticularpatternsofcentre-periphery [10] Anne E Magurran. Measuring biological distributions(suchascentralitymeasuresfrom diversity. 2004. SNA). [11] AnneEMagurranandAnneEMagurran. Ecological diversity and its measurement, REFERENCES volume168. Springer,1988. [1] RaunoVAlatalo. Problemsinthemeasure- [12] ChristianMarfels. Bird’seyeviewtomea- mentofevennessinecology. Oikos,pages sures of concentration, a. Antitrust Bull., 199–204,1981. 20:485,1975. 8 [13] Norman WH Mason, Kit MacGillivray, [18] EvelynChrisPielou. Mathematicalecology. John B Steel, and J Bastow Wilson. An Johnwileyetsons,1977. index of functional diversity. Journal of VegetationScience,14(4):571–578,2003. [19] Constance Elise Porter. A typology of virtualcommunities: Amulti-disciplinary [14] Robert P McIntosh. An index of diversity foundation for future research. Jour- andtherelationofcertainconceptstodiver- nalofComputer-MediatedCommunication, sity. Ecology,pages392–404,1967. 10(1):00–00,2004. [15] Richard A Miller. Herfindahl-hirschman [20] StephenARhoades. Herfindahl-hirschman index as a market structure variable: An index,the. Fed.Res.Bull.,79:188,1993. exposition for antitrust practitioners, the. AntitrustBull.,27:593,1982. [21] ClaudeShannon. Collectedpapers. 1993. [16] EC Pielou. Shannon’s formula as a mea- [22] Benjamin Smith and J Bastow Wilson. A sureofspecificdiversity: itsuseandmisuse. consumer’sguidetoevennessindices.Oikos, AmericanNaturalist,pages463–465,1966. pages70–82,1996. [17] ECJPielou. Themeasurementofdiversity in different types of biological collections. [23] David S Weinstock. Using the herfindahl Journaloftheoreticalbiology,13:131–144, indextomeasureconcentration. Antitrust 1966. Bull.,27:285,1982. 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.