ebook img

Eccentricity growth of planetesimals in a self-gravitating protoplanetary disc PDF

0.26 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Eccentricity growth of planetesimals in a self-gravitating protoplanetary disc

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed2February2008 (MNLATEXstylefilev2.2) Eccentricity growth of planetesimals in a self-gravitating protoplanetary disc M. Britsch1,2,4, C. J. Clarke1 and G. Lodato3,1 8 0 1InstituteofAstronomy,MadingleyRoad,Cambridge,CB30HA 0 2ITA,Zentrumfu¨rAstronomiederUniversita¨tHeidelberg,Albert-Ueberle-Str.2,69120Heidelberg 2 3DepartmentofPhysicsandAstronomy,UniversityofLeicester,Leicester,LE17RH n 4Presentaddress:Max-Planck-Institutfu¨rKernphysik,Saupfercheckweg1,69117Heidelberg,Germany a J 4 2February2008 1 ] h ABSTRACT p We investigate the orbital evolution of planetesimals in a self-gravitating circumstellar disc - in the size regime (∼ 1−5000 km) where the planetesimals behave approximately as test o particles in the disc’s non-axisymmetricpotential. We find that the particles respond to the r t stochastic,regenerativespiralfeaturesin the disc byexecutinglargerandomexcursions(up s a toafactoroftwoinradiusin∼1000years),althoughtypicalrandomorbitalvelocitiesareof [ orderonetenthoftheKeplerianspeed.Thelimitedtimeframeandsmallnumberofplanetes- imalsmodeleddoesnotpermitustodiscernanynetdirectionofplanetesimalmigration.Our 1 chiefconclusionisthatthehigheccentricities(∼ 0.1)inducedbyinteractionwithspiralfea- v turesinthediscislikelytobehighlyunfavourabletothecollisionalgrowthofplanetesimals 8 0 inthissizerangewhilethediscisintheself-gravitatingregime.Thusif,asrecentlyarguedby 1 Riceetal2004,2006,theproductionofplanetesimalsgetsunderwaywhenthediscisinthe 2 self-gravitatingregime (either at smaller planetesimal size scales, where gas drag is impor- . tant,or via gravitationalfragmentationof the solid component),then theplanetesimalsthus 1 producedwouldnotbeabletogrowcollisionallyuntilthediscceasedtobeself-gravitating. 0 8 It is unclear, however, given the large amplitude excursions undergone by planetesimals in 0 theself-gravitatingdisc,whethertheywouldberetainedinthediscthroughoutthisperiod,or : whethertheywouldinsteadbelosttothecentralstar. v i Key words: accretion, accretiondiscs: gravitation:instabilities: stars: formation:planetary X systems:formation:planetarysystems:protoplanetarydiscs r a 1 INTRODUCTION Once the disc is no longer self-gravitating in the dominant (gas)component,itisevidentlyimpossibletoformplanetsthrough Itiscurrentlyunclearwhethertheprocessofplanetformationbe- either gas phase Jeans instability or dust accumulation in spi- ginsduringtheearliestphasesofstarformation(i.e.incircumstel- ral arms and thus the most successful models invoke the colli- lardiscsthat arestrongly self-gravitating).Thehigh discmassat sional growth of dust (Pollacketal. 1996) followed possibly by this stage (with gas mass ∼ 10% of the central star’s mass (e.g. the accretion of a gaseous envelope. Despite the lower surface Eisner and Carpenter 2006) is favourable to this hypothesis and densities during later phases (estimates of gas disc mass from providestheonlyopportunityforgasgiantstoformvia(gasphase) sub-millimetre dust measurement suggest typical masses that are gravitationalinstability(Boss2000).Amoresubtleeffect-again around an order of magnitude lower than in the self-gravitating stronglyfavouredduringtheself-gravitatingcase-arisesthrough case; Andrews&Williams 2005), the great advantage for planet theinterplaybetweenpressuregradientsinspiralarmsandgasdrag formation issimply the longer duration of this later phase. Discs onsolidparticlesandresultsintheaccumulationofdustinspiral with sufficient gas and dust to form planets typically survive arms(Riceetal.2004).Thisdustmaythenbeabletoaccumulate for 106 − 107 years (Haischetal. 2001; Armitageetal. 2003; further through the action of collisions and/or self-gravity in the Wyattetal. 2005), whereas the existence of dusty debris discs dustphase(Riceetal.2006).1 aroundolderstarssuggeststhat(potentiallyplanetbuilding)colli- 1 Notethatsuchrapidaccumulation,whichmightresultintherapidforma- tionoflargesizeplanetesimals,isrequiredinorderforthegrowingplan- jecttoveryfastmigrationdownintothehottestinnerdisc(Weidenschilling etesimals to escape the dangerous meter-size range, where they are sub- 1977). 2 M. Britsch,C. J. ClarkeandG. Lodato sionsbetweenrockyplanetesimalsproceedsfor108 yearsormore axisymmetric structure in a disc that is subject to the magneto- (Kenyon&Bromley 2004). These numbers should be contrasted rotational(MRI)instability.Inthisstudyitwasfoundthattheplan- with the brief window of opportunity (∼ 105 years) in the self- etesimalsunderwentstochasticmigration,butthatitwasnotpossi- gravitatingphase. bletodiscernthemeanmagnitude(orevensign)ofthemigration In summary, then, it is unclear without detailed calculation rateoverthelimitedtimeframeofthesimulation(afewhundredor- whichoftheseregimesisfavouredinthetrade-offbetweenlifetime bits).Inourexperimentalso,conductedoverasimilartimeframe anddiscmass. toNelson(2005),weareunabletodiscernanetdirectionofmigra- Theviabilityofplanetformationintheself-gravitatingregime tion,butwefind(perhapsunsurprisinglygiventhefactthatourdisc howeverrequiresthatanumberofconditionsaresatisfiedbeyond isabout anorderof magnitudelargerinmass)thattheamplitude theinitialphasesofaccumulationoutlinedabove.Inparticular,we ofthestochasticvariationsintheorbitalradiusismuchlarger,with needtounderstand thedynamical evolutionof theprotoplanetary severalplanetesimalsundergoingradialexcursionsofafactortwo components(whetheratthescaleofdustaggregates,planetesimals ormoreinbothdirections.Evidently,thisbehaviourhasimportant orproto-giantplanets)withaviewtoansweringthefollowingques- implicationsfortheabilityofplanetesimalstogrowbycollisions tions:(i)doesorbitalmigrationresultinsuchbodiesspirallinginto duringtheself-gravitatingphase. thecentralstar,orcantheyberetainedinthediscatleastoverthe Thestructureofthepaper isasfollows.InSection2wede- initialself-gravitatingphase, and(ii)(inthecaseof dust or plan- scribethemodelingoftheself-gravitatingdisc,whichismaintained etesimals) arethekinematics of suchbodies conducive tofurther ina’self-regulated’(i.e.nonfragmenting)statethroughtheimpo- collisionalgrowth? sition of an ad hoc cooling law for which the cooling time is a As afirst step inanswering thisquestion we here undertake suitably large multiple of the local dynamical time. In Section 3 pilot simulations of a small number of test particles in a self- weanalysetheorbitalresponseof12testparticlesplacedinadisc gravitatingdisc,withaviewtobothconsideringtheissueoftheir ofmass0.1and0.5M⊙.Wealsoanalysethelocationofthedomi- orbital migration and to establishing the velocity dispersion that nanttorquecontributionontheplanetesimalsandassesstherange is set up through interaction with spiral structure in the disc. It ofplanetesimalmassandsizescalesforwhichweexpect’testpar- should be stressed that the calculation differs in several impor- ticle’behaviourandforwhichgasdragcanbeignored.Insection tant ways from most calculations of orbital migration and plan- 4wediscusstheimplicationsofournumericalfindingsforthemi- etesimalkinematicsreportedintheliterature.Firstly,conventional grationandcollisionalgrowthof planetesimalsinself-gravitating planetary migration, whether classified as Type I or Type II, is discs.Section5containsourchiefconclusions. the consequence of the gravitational torque exerted on the planet (or planetesimal) by non-axisymmetric structure induced by the planet/planetesimals. Sincethis torque contribution can have sig- nificant contributions at the size scale of the Hill radius (or be- 2 NUMERICALSIMULATIONS low: Bateetal. 2003), it is evidently important that this scale is 2.1 Numericalcode well resolved innumerical calculations, which makes the model- ingofthemigrationoflowmassobjectsparticularlychallenging, In this paper we simulate the interaction of a gaseous self- especially with codes such as Smoothed Particles Hydrodynam- gravitatingdiscwithasmallnumber ofplanetesimalsusingSPH, ics(SPH)(deVal-Borroetal.2006).Inthepresentcase,however, a Lagrangian particle based method (Lucy 1977; Benz 1990; weareinterestedinaregimewherethedischaspronouncednon- Monaghan 1992). This allows the simulation of gaseous and N- axisymmetric structure in the absence of the planet/planetesimal bodyparticles,usingindividualtime-steps(Bateetal.1995),thus (duetothepresenceofself-gravitatingspiralmodesinthedisc)and resultinginalargesavingincomputationaltimewhenalargedy- wearethereforenotobliged toresolvetheHillradiusinorderto namicrangeoftimestepsisinvolved. capturethedominanttorquecontribution.Evidently,asthemassof The general setup of our simulations is similar to theplanetesimalisincreased,thecontributiontothetorquewhich Lodato&Rice(2004,2005).Weconsideramassivegaseousdisc it experiences from self-induced spiral structure becomes signifi- orbitingarounda1M⊙centralstar.Thediscistakentoextendini- cant and we will assess this a posteriori in order to set an upper tiallyfrom0.25to25AUandwehaveconsideredtwocases,where mass scale on the applicability of our calculations. Secondly, in thediscmassisequalto0.1M⊙(standardruns)and0.5M⊙(massive conventionalcalculationsofthekinematicsofplanetesimalswarms runs),respectively. (Kokubo&Ida 2000; Thommesetal. 2003), the velocity disper- OursimulationsemployanumberN =250,000particlesand sion of planetesimals is set by an equilibrium between what is arethusintermediate-highresolutionsimulations.Previoussimula- sometimestermed’viscousstirring’(i.e.thetransferofkineticen- tions(Lodato&Rice2004,2005)atthesameresolutionhavebeen ergy from larger bodies to the planetesimal swarm via two-body showntoreproducereasonablywelltheinternaldiscdynamics.In scattering) and eccentricity damping by gas drag. In the present particular,oncethediscreachesaquasi-steadyself-regulatedstate case,however,thevelocitydispersionofourparticlesissetbythe (seebelow),thediscthicknessH isresolvedwithanaverageof2 leveltowhicheccentricityispumpedthroughinteractionwiththe smoothinglengthsforthelowdiscmasscaseandwith4smoothing fluctuatingpotentialoftheself-gravitatingdisc.Inthispilotcalcu- lengthsforthehotter,highdiscmasscase. lationweomitgasdrag,whichplacesalowerlimittothesizescale Asmentionedabove, ourcodefollowsthedynamicsofboth ofobjectstowhichthecalculationisapplicable;again,wesetthis SPHparticles and of point masses, which are able to accrete gas lowerlimitaposteriori. particles, ifthey come closer thana given accretion radius tothe Althoughwehavestressedthequalitativedifferencesbetween point mass. For the central object, such accretion radius is set to thiscalculationandthatreportedinthelargebodyofliteratureon 0.25AU.Attheendofthesimulationstypicallyafractionnolarger planetarymigrationandplanetesimalkinematics,wepointoutthat than10%oftheinitialdiscmasshasbeenaccretedontothecen- it bears close comparison with the calculation of (Nelson 2005), tralstar. Theplanetesimals haveanominal mass equal to thede- whichstudiestheresponseofplanetesimalstothefluctuatingnon- fault gas particle mass, that is 4×10−7M⊙ for the standard runs Eccentricitygrowthof planetesimalsin a self-gravitatingprotoplanetarydisc 3 and2×10−6M⊙ forthemassiverun.Thischoiceensuresthatthe gravitational force of individual planetesimals does not influence theoveralldiscstructureandthedynamicsoftheplanetesimals.In ordertopreventplanetesimalsfromaccetinggaseousparticles,we havesettheiraccretionradiustoaverysmallvalue. The gas particles are allowed to heat up via pdV work and artificialviscosityandtocooldownwiththefollowingsimplepre- scription du u =− (1) dt(cid:12)(cid:12)cool tcool (cid:12) whe(cid:12)(cid:12)rethecoolingtime-scaletcool = βΩ−1 and βisfixedinspace andtime.Whilethisisnotarealisticprescriptionfor thecooling inactualprotostellardiscs,itprovidesaconvenientwayofparam- eterisingthecoolingphysicsinorderthatonecanensurethatone ismodelingdiscsthatremainintheself-gravitatingregimewithout fragmenting.Inparticular,ifthevalueoftheparameterβislarge enough(β & 5−6;Gammie2001;Riceetal.2005),itallowsthe realizationofafeedbackloopwherethediscevolvesintoaquasi- steady,self-regulatedcase,andismaintainedclosetomarginalsta- bility. For smaller values of β the disc undergoes fragmentation. Inoursimulationswehavesetβ = 7.5.Wenotethatsincethisis closetothecriticalvalueofβ,weexpectsuchadisctoberelatively Figure1. Initialpositionsoftheplanetesimalsintheevolvedquasi-steady ‘active’(inthesensethatthemaintenanceofthermalequilibrium spiral structure of the 0.1 M⊙ gas disc at the beginning ofthe run. The requiresspiralmodestobeofrelativelylargeamplitude).Werevisit dimensions are60AUineachdirection andthelogarithmic colourscale thispointinSection4. showsthesurfacedensityΣandgoesfrom10to105gcm−2. 2.2 Initialconditions Initiallythegasinthediscisrelativelyhot,withatemperaturepro- file T(R) ∝ R−1/2 and a minimum value of the stability parame- ter (Toomre 1964) Q = 2, attained at the outer disc edge. Since marginal stability corresponds to Q = 1, the whole disc is ini- tiallygravitationallystable.Weinitiallyfollowtheevolutionofthe gaseous disc only, as it cools down and becomes gravitationally unstable.Theinitialevolutionisverysimilartotheonedescribed in several other papers for example (Lodato&Rice 2004, 2005; Mejiaetal. 2005): when Q ≈ 1, the discdevelops a spiral struc- ture, inducing dissipation through compression and mild shocks andthereforeheatingupthediscandestablishingafeedbackloop whichkeepsthediscclosetomarginalstability,sothattheToomre Qparameterisclosetounityovertheradialrange∼1−20.Thisini- tialevolutiontakesroughly60outerdynamicaltimesforthestan- dardrunsand45outerdynamicaltimesforthemassiveruns.Inthis state,thesurfacedensitydistributionisdominatedbypronounced (oforderunityinamplitude)spiralfeatures,which,althoughregen- erative,areindividuallytransientstructures(i.e.withlifetimesthat areoforderthelocaldynamicaltimescale). Anensembleoftwelveplanetesimalswasthenintroducedbe- tween10.8and18.8AU,alignedinfourequispacedradialspokes (seeFigure1forthe0.1M∗discandFigure2forthe0.5M∗disc). Figure2. SameasFig1butforthe0.5 M⊙ gasdisc.Notethewarmer The default velocities were chosen to be Keplerian with a small conditions in the massive disc in the self-regulated state lead to broader correction for the gravitational potential of the disc, although we spiralfeaturesthaninthestandardcase(Fig1) alsoinvestigatedthecasewheretheplanetesimalswereintroduced withanon-zeroinitialeccentricity. planetesimals are initially set in nearly circular orbits. Although someplanetesimalsundergolargeamplitudeexcursions(factortwo 3 RESULTS or more), theaverageorbital radius of theensemble variesby no morethan10%duringthesimulation,indicatingthatplanetesimals 3.1 Orbitalevolutioninthe0.1solarmassdisccase inagivenregionareapparentlyaslikelytogoinwardsasoutwards. InFig.3weshowthetimeevolutionoftheorbitalradiiofallthe Thethickdashedlineinfig.4showsthemeaneccentricityofthe planetesimals for the case where M = 0.1M and where the planetesimalsasafunctionoftime,showingthate∼ 0.05istypi- disc ⋆ 4 M. Britsch,C. J. ClarkeandG. Lodato 0.4 3e+39 0.35 2.8e+39 0.3 2.6e+39 s citie 0.25 2.4e+39 eccentri 0.2 - E [J] 2.2e+39 an 0.15 2e+39 e m 1.8e+39 0.1 1.6e+39 0.05 1.4e+39 0 6e+47 6.5e+47 7e+47 7.5e+47 8e+47 8.5e+47 9e+47 0 50 100 150 200 250 300 J [kg m2 / s] t [yr] Figure4. Timeevolutionofthemeaneccentricityoftheplanetesimalsfor Figure6. Energyandangularmomentum(intheinertialframe)areplotted variousinitialeccentricities: e(t = 0) ≈ 0(bolddashedline),e(t = 0) = forthreeplanetesimalsinthemassivedisccaseoverthetimeinterval550− 0.06(boldsolidline), e(t = 0) = 0.03(thinsolidline)e(t = 0) = 0.37 700yr.Thenearlinearrelationship,withthesameslope,suggeststhatthese (thindashedline).Duringthecourseofthesimulationsaquasi-steadymean threeplanetesimals areinteracting withamodewithpatternspeedΩP = eccentricitye≈0.07isestablishedinallcaseswheretheinitialeccentricity 4−5×10−9s−1,i.e.withco-rotationat∼14A.U.. islessthan0.1. beconserved, andthatsince E isrelatedtotheenergy, E, inthe J cal(althoughindividualplanetesimalsmaytemporarilyattainstill inertialframe,andangularmomentum,L,via highereccentricities,∼0.3).Thusalthoughmuchofthefinestruc- E =E−LΩ (2) tureinFigure3issimplyaconsequenceofellipticalorbitalmotion, J p itisalsoevidentthatinadditionsomeplanetesimalsundergoabrupt (whereΩ isthepatternspeed),wecantestforsuchbehaviourby p and/orlargescalechangesinorbitalradius(forexample,oneplan- plotting E versus L. This exercise indicates that there are indeed etesimalmigratesover20AUin4000years,andanotherfollowsa periodswhencertainplanetesimalsappeartobeexhibitingthisbe- periodofrelativeorbitalquiescencebymigrating∼5AUinabout haviour.ThiscanbeevidencedbyalinearrelationbetweenEand 200years).Suchmigrationratesimplyradialvelocitieswhichare L,asshowninFigure6)forthreeofthesimulatedplanetesimals. attimesasignificantfractionoftheKeplerianspeed. Fromtheanalysisofthisrelation,wecanthendeterminethepattern InFigure4,wealsoshowtheresultsofstartingtheplanetes- speedofthedrivingpattern.TheplanetesimalsillustratedinFigure imal ensemble with non-zero initial eccentricity, and see that the 6appeartobeinteractingwithamodewithco-rotationataround14 results are unchanged for initial eccentricity less than ∼ 0.1. On AU:inspectionofananimatedseriesofsnapshotsofthesimulation theotherhand,ifalargerinitialeccentricityisemployed,themean indicatesthatthesethreeplanetesimalsareindeedroughlycorotat- eccentricityoftheensembleremainsaroundthisvalueforthedu- ingwithaspiralfeatureduringthisperiod,butthat,asthefeature rationoftheexperiment. dissolvesshortlythereafter,theythenmigrateandstallclosetoan- otherspiralarmatadifferentradius.Thisbehaviourisnotseenin thestandard(0.1M⊙disc)simulations,whichisconsistentwiththe 3.2 Orbitalevolutioninthe0.5solarmassdisccase expectation(see,forexample,Lodato&Rice2005)thatthemore massive discproduces rather morecoherent and long-lived spiral Figure5illustratestherichvarietyoforbitalhistoriesofplanetes- features.Nevertheless,wefindonlyoccasionalevidenceforplan- imals in the massive disc case. The amplitude of orbital migra- etesimalsthat are being driven by a dominant quasi-steady spiral tionissomewhat larger than inthe standard case, although again mode sothat theanalysis of orbital familiesin thissituation(see the change in average orbital radius for the ensemble is small, e.g.Vorobyov&Shchekinov2006)isoflimitedapplicabilityhere. < 20%. We note that, as in the standard case, the planetesimals undergostochasticmigrationeventsevenwhentheyarelocatedat radii(> 20AU)whereQisgenerallysomewhatlargerthanunity. 3.3 Planetesimal-planetesimalencountersandgasdensities Theseeventscoincidewithspiralstructurestemporarilyextending closetotheplanetesimals outintotheserelativelyquiescentregions. The mean eccentricity of the ensemble is about double its Inspectionofanimationsofthesimulationssuggestthatplanetes- value in the standard case ∼ 0.15, with individual planetesimals imals tend to spend time preferentially in spiral structures in the temporarilyattainingeccentrcitiesofupto0.5.Althoughsomeof disc.Assuchstructuresdissolveonaroughlydynamicaltimescale, thequasi-periodicstructureinFigure5issimplyattributabletoel- theplanetesimalsthenmigrateandfindfurthertemporarylodging lipticalorbitalmotion(i.e.atroughlyconstantangularmomentum), in a new spiral structure. (The strongly fluctuating nature of the we also see planetesimals in which, temporarily, the energy and spiral potential means that, asdiscussed above, theplanetesimals angular momentum aresubject tocorrelatedquasi-periodicvaria- usually have insufficient time to attain steady orbits in the frame tions.Suchbehavioursuggeststhattheseplanetesimalsareatthis co-rotatingwiththelocalspiralpattern).Thispredilectionforbe- stagebeingdrivenbyaquasi-steadyrotatingnon-axisymmetricpo- inginthespiralarmssuggeststhattheplanetesimalsareexpected tential.Wehaveinvestigatedthispossibilitybynotingthatinthis tocomeclosertoeachotherandtosamplehighergasdensitiesthan casetheJacobiconstant(E )oftheplanetesimal’smotion(i.ethe inthecaseofparticlesorbitinginanaxisymmetricdisc. J totalenergymeasuredintheframeoftherotatingpattern)should We illustrate the increased tendency for planetesimal- Eccentricitygrowthof planetesimalsin a self-gravitatingprotoplanetarydisc 5 35 30 25 20 U] A R [ 15 10 5 0 0 500 1000 1500 2000 2500 3000 3500 4000 t [yr] Figure3.EvolutionofthedistancetothestarofthreerepresentativeplanetesimalsfortheMdisc=0.1M⊙case.Whileindividualplanetesimalsmightmigrate significantlyoverthecourseofthesimulation,theaverageorbitalradiusonlyvariesbylessthan10%. 30 25 20 U] A 15 R [ 10 5 0 0 200 400 600 800 1000 1200 1400 1600 1800 t [yr] Figure5.EvolutionofthedistancetothestarofthreerepresentativeplanetesimalsfortheMdisc=0.5M⊙case. d<0.5 0.5<d<1 1<d<1.5 1.5<d<2 η= 2(ρp−ρR), (3) ρ +ρ p R 0.1 M⊙-disc 10 17 17 19 whereρ isthegasdensityinthevicinityoftheplanetesimaland non-self-grav. 0 17 13 16 p ρ istheazimuthallyaverageddensityattheinstantaneousorbital R Table1.Numberofencounterswithclosestapproachsmallerthand(mea- radiusoftheplanetesimal.Thisplanetesimalappearstospendmost suredinAU)betweenplanetesimalsduringthefirst15000timeunitsinthe ofitstimeinthespiralarmsandthusatlargergasdensities.This 0.1M∗discrunandthenon-self-gravitatingdiscrun. istypical,althoughsomeplanetesimalsalsoundergophaseswhere they sample lower gas densities as can be seen in Fig. ??. Such periodsinunder-denseregionsarelessapparentinthecaseofthe planetesimal encounters in Table 1, where we contrast the num- massivediscsimulation. berofencountersbetweentheplanetesimalsinvariousseparation WeseefromFigure7thatalthoughthisplanetesimalsamples rangeswiththecorrespondingstatisticsfromacontrolruninwhich gas densities larger than the local azimuthal average, η isalways theplanetesimalsorbitinasmooth, non-self-gravitatingdisc. We lessthanoroforderunity.Thisistobeexpected:theamplitudeof see that the number of encounters with closest approach smaller thespiralfeaturesinthegasisonlyoforderunityandthusevenif than 0.5 AU is significantly enhanced in the self-gravitating disc planetesimalsspent all theirtimeinspiralarms, theywouldonly case.Asexpected,theeffectofplanetesimalslingeringnearspiral experienceadensitythatexceededthelocalmeanbyamodestfac- featuresistodecreassetheminimumdistance betweenplanetesi- tor. malsinthesimulation.Westressthat,giventheverylow masses oftheplanetesimals(i.e.equalinmasstoasinglegasparticle),the 3.4 Numericalissues effectofmutualencountersontheplanetarydynamicsisnegligible -asintended-evenfortheclosestencountersinthesimulation. Firstly,ourexperimentshaveaimedtostudytheresponseofeach We illustrate the effect of non-axisymmetric structure in the planetesimal tothefluctuating disc potential and haveonly mod- disconthegasdensityfieldsampledbytheorbitingplanetesimals eledtheevolutionofanensemble ofplanetesimalsforreasonsof inFig.7.Weplot -foragivenplanetesimal -thedensityexcess, computationaleconomy.Therefore,weneedtobesatisfiedthatthe whichwedefineas stochastic behaviour we see is a result of planetesimal-disc and 6 M. Britsch,C. J. ClarkeandG. Lodato 0.5 1 0.4 0.3 0.8 0.2 0.1 que 0.6 η -0 .01 ated tor -0.2 egr 0.4 nt i -0.3 -0.4 0.2 -0.5 -0.6 0 500 1000 1500 2000 2500 3000 3500 4000 0 0 2 4 6 8 10 12 14 16 18 20 t [yr] R [AU] Figure7.Comparisonbetweenthedensityinthevicinityofoneplanetes- Figure9.Integrated zcomponentofthetorqueasafunctionofdistance imalsinthe0.1M∗discwiththemeangasdensityatthecurrentradiusof fromtheplanetesimal,normalisedtothetorquefromwithin20AUofthe theplanetesimal. planetesimal. M 1/3 0.4 Rh=Rp 3Mp ! , (4) ⋆ 0.2 where R is the radial coordinate of the planetesimal and M the 0 p p massoftheplanet,sincethisistheregionfromwhichthebulkof -0.2 thetorquesontheplanetesimalarise. -0.4 Inthepresentcase,bycontrast,whereweexaminemigration η -0.6 drivenbyspiralstructureintheself-gravitatingdisc,itisnolonger important toresolvetheHillradius andwecan thusexamine the -0.8 migration of low mass planetesimals for which resolution of the -1 Hillradiuswouldbeimpracticable.Nevertheless,weneedtocheck -1.2 thatourassumptioniscorrect,i.e.thatthedominanttorquesindeed -1.4 ariseatrelativelylargedistancesfromtheplanet.Fig.9illustratesa -1.6 typicalsnapshotofthecumulativedistributionforthezcomponent 0 500 1000 1500 2000 2500 3000 3500 4000 ofthetorqueofthediscontheplanetesimal asafunctionofdis- t [yr] tancefromtheplanetesimal.Weseethatthedominantcontribution Figure8. Evolutionofthedensityexcessη(seeequation(3)asinFigure tothetorqueisaround1AUfromtheplanetesimalandthatthecon- 7,butforadifferentplanetesimal. tributiontothetorquefromthepoorlyresolvedregionaroundthe planetesimal(i.e.fromwithinatypicalparticlesmoothinglengthin thatregion,around0.2AU)issmall(<20%).Wearethussatisfied not planetesimal-planetesimal interactions. We find, in fact, that thattheorbitalevolutionisnotdrivenbythedisc’sresponsetothe the torques experienced by the planetesimals due to other plan- planetesimalandthattheplanetesimalshouldbebehavingapprox- etesimalsaretypicallytwotothreeordersofmagnitudelessthan imatelyasatest particle. Weexamine thisassumption further by those arising from the disc. This is to be expected. The closest investigatinghow themigration depends on planetesimal massin planetesimal-planetesimal interactions occur at distances of ∼ 1 Section3.5. AU:giventhatatypicalsmoothinglengthinthediscis∼ 0.2AU Ontheotherhand,inthecaseofthecomponentofthetorque and that a smoothing kernel contains 50 particles, it follows that perpendicular toz,i.e.actingontheinclination,thecontributions evenatclosestapproachthereareabout6000gasparticlesthatare fromclosetotheplanetesimal actuallycanmakeupalargefrac- closer to a planetesimal than its nearest planetesimal neighbour. tionofthetorque(i.e.around40%ofthetorqueoriginatingfrom Giventhattheplanetesimalmassesinthesimulationsareequalto within a smoothing length). Thus the inclination development of thegasparticlemasses,itfollowsthatthegravitationaltorquesex- thesimulationscannotbetrusted.Neverthelesstheinclinationsstay ertedbetweenplanetesimalsarenegligible. relativelysmall(typicallylessthan0.02radiansinthestandardand Secondly, we are interested here in examining the regime 0.03forthemassivedisc).Thisissmallcomparedwiththeaxisra- where the dominant torques experienced by the planetesimal de- tioofthediscH/R ∼ 0.1andsotheplanetesimalsremainmainly rive from the non-axisymmetric density distribution that the disc confinedwithinthedisc. wouldhaveintheabsenceoftheplanetesimal(i.e.thatduetothe spiralstructureinthedisk)ratherthanthenon-axisymmetricstruc- 3.5 Validregime tureinducedinthediskbytheplanetesimal.Notethatinnon-self gravitatingdiscs,andthusinalldiscussionsofplanetesimalmigra- Wenowdiscusstherangeofplanetesimalmassesforwhichthecur- tionintheliterature(withtheexceptionofthatinNelson2005)itis rentcalculationisvalid.AsnotedinSection2.1,wearemodelling thelattereffectthatisresponsibleforplanetmigration.Inthiscase, theregimeinwhichtheplanetesimal behavesasatestparticlein itisessentialthatthecalculationproperlyresolvestheHillradius thegravitationalpotentialofthestar-discsystemandwherethere- oftheplanetesimal sultsshouldbeindependentofplanetesimalmass.Inreality,atlow Eccentricitygrowthof planetesimalsin a self-gravitatingprotoplanetarydisc 7 massestheeffect ofgasdrag(omittedinthepresent simulations) 4 wouldbreakthismassindependence, whereasathighmasses,the discresponsetothepresenceoftheplanetesimalaffectsthetorques 3 ontheplanetesimal.Weconsidereachoftheseissuesinturn. Alowerlimitforthemassrangeofoursimulationcanbeob- nits] 2 tainedbycalculatingthemassscaleatwhichthestoppingtimedue y u todragiscomparablewiththetimescaleonwhichtheplanetesimal bitrar 1 undergoesstochasticmigrationduetointeractionwithspiralstruc- ar tureinthedisc.FrominspectionofFigure3weseethatplanetesi- M [Pl 0 malstypicallyreversetheirdirectionofmigrationontimescalesof T/ about103years.Thusifwedemandthatthetimescaleforgasdrag -1 tosignificantlyperturbtheorbitshouldexceedsay104years(∼58 orbits),weshouldsafelybeintheregimewheregasdragplaysa -2 minorroleinthedynamicsofthesystem. 0 20 40 60 80 100 120 140 160 t [yr] ThedragforceonsolidbodieswithinaprotostellardiscF is D givenby(Weidenschilling1977;Whipple1972) Figure10.Thetorqueperunitplanetesimalmassasafunctionoftimefor runsinwhichthemassoftheplanetesimalisrespectively1/10(bolddashed 1 FD = 2CDπa2ρu2, (5) line),1(boldsolidline),10(thinsolidline)and100(thindashedline)times themassofagasparticle. where aisthe radiusof theplanetesimal, uisthe velocity of the planetesimalrelativetothegas,ρisthegasdensityandC isthe D dragcoefficient. 35 normal run Thusthetimescaleonwhichrelativemotionbetweentheplan- run with planets of 1/10th the mass etesimalandthediscgasisdampedbygasdragis 30 rurunn w w/ /p plalanneetst so of f1 1000 ttiimmeess tthhee mmaassss t = Mpu. (6) 25 e F D 20 Inthe case that weareconsidering here, therelativevelocity be- AU] tweentheplanetesimalandthediscgasdoesnotderive-asinthe R [ 15 caseusuallyconsidered(e.g.Weidenschilling1977)-fromthedif- ferencebetweenKeplerianplanetesimalmotionandsub-Keplerian 10 gasmotionsubjecttooutwardpressureforces.Instead,thisrelative 5 velocity,u,derivesfromtheeccentricityoftheplanetesimalorbits inducedbythespiralstructureinthedisc,sothatwehaveu=eVK, 0 whereV isthelocalKeplerianvelocity. 0 20 40 60 80 100 120 140 K t [yr] Assumingasphericalplanetesimalofdensityρ ,wecanthen p writeteas Figure11. Thedistancetothestarisplottedagainsttimeforoneplanetes- 8ρ R imalinthenormalrun(solidline),therunwithatenthplanetesimalmass t = p (7) (longdashedline),therunwith10timeshigherplanetesimalmasses(short e 3C ρeV D K dashedline)andtherunwith100timeshigherplanetesimalmasses(very or,equivalently(andadoptingC intherange0.5−1,whichis shortdashedline). D appropriatetothecaseconsideredherewheretheReynoldsnumber exceedsafewhundred) tothetorquesontheplanetesimalsonlyariseswhentheplanetesi- t ∼ 8 ρp aΩ−1 (8) malmassisraisedabovetentimestheoneusedinourstandardrun, e 1.32 ρ R e corresponding toabout 8×1027g.Wereachthesameconclusion frominspectionofFig.11,whereagainweseeamarkeddeviation whereRistheorbitalradiusoftheplanetesimal.Ifwethenrequire that t > 104 years (∼ 300Ω−1), and adopting typical values of inorbitalevolutionforthelargestmassplanetesimal. e∼0e.1,ρ∼afew×10−11 gcm−3 andρ ∼afewgcm−3,wethen Sosummarising,wehaveasaregionofvalidityofoursimu- p lations: obtaintherequirementthatamustbeatleastoforderakilometre orsobeforeonecanneglecttheeffectofgasdrag. 2·10−8M⊕ ∼1016g<Mp <8·1027g=1M⊕ (9) Wethusconcludethattheeffectofgasdragisnegligiblefor orinplanetesimalradii planetesimalsofkilometrescaleorabove(correspondingtobodies ofmasses∼1016g.) 1km<a<5000km. (10) Oursimulationsarevalidforallhighermassesaslongasthe accelerationsexperiencedbytheplanetesimalsremainindependent of mass. But theseaccelerations change as soon asthe planetesi- 4 DISCUSSION malshaveenoughmasstogravitationallyinfluencethegasdensity. Thusweget anupper limitfor thevalidityof our simulations by Wecansummariseournumericalfindingsasfollows.Planetesimals checkingatwhatmassscalethetorqueperplanetesimalmassT/M inthesize/mass rangetowhichour calculationsapply(seeequa- p changeswithmass.InFigure10weplottheevolutionofT/M for tion10)aresubjecttolargescalefluctuationsinorbitalradiusdue p asingleplanetesimal inthecase that ithas themassindicated in tointeractionwithregenerativespiralstructureinthedisc.Wecan eachofthecurves.ItcanbeseeninFig.10thatsignificantchanges discernnonet signtothemeanmigrationrateover thetimescale 8 M. Britsch,C. J. ClarkeandG. Lodato ofthesimulationandarethusunabletoansweroneofthegoalsof ρ2/3M1/3 t = p (11) thepresentstudy,i.e.whetherweexpectplanetesimalstomigrate grow Σ Ω(1+4GM /(R σ2)) p p p intothestarduringtheself-gravitatingphaseofthedisc.Sincethe whereΣ isthesurfacedensityofplanetesimals,σistheplanetes- disc’slifetimeintheself-gravitatingphaseexceedsthedurationof p imal velocity dispersion and Ω is the local Keplerian orbital fre- thepresentexperimentbyaboutafactor30itwillbecomputation- quency.Foraplanetesimalofdensity∼3g/cm3locatedat10A.U. allychallengingtoanswerthisquestion,especiallysince(giventhe inadiscwithsurfacedensityofplanetesimalsequalto0.4g/cm2, stochastic nature of the orbital evolution) it will be necessary to thegrowthtimescaleviatwobodycollisionsis: assessthefractionofplanetesimalsretainedinthediscthroughfol- lowingtheevolutionofalargeensembleofparticles. M˜1/3 t =5×109 yrs (12) grow 1+M˜2/3σ˜−2 We can however make some comments about how the dy- where M˜ = (Mp/610−4M⊕)andσ˜ = (σ/1kms−1).Evidentlythis namical evolution of our particles is likely to affect their col- timescaleisfartoolongtobeofinterestunlessthesecondtermon lisonalgrowthduringtheself-gravitatingphase.AsnotedbyNel- thedenominator(duetoenhancement ofthecollisionalcrosssec- son(2005)inthecontextoftheevolutionofplanetesimalsinadisc tionbygravitationalfocusing)islarge.Ifwesimplysetσtobethe subject to MRI, the fluctuations inorbital radius and eccentricity productoftheorbitaleccentricityandlocalKeplerianvelocity(an couldinprincipleeitheraidorhinderplanetesimalgrowth.Onthe assumptionwerevisitbelow),itfollowsthatatagivenlocationin positive side, orbital migration provides a mechanism for avoid- thediscandforagivenmassscaleofplanetesimal,thenthegrowth ing the self-limitation of planetesimal growth through the clear- timescaleinthegravitationallyfocusedregimescalesasthesquare ing out of a proto-planet’s “feeding zone”. In conventional mod- oftheeccentricitydividedbythesurfacedensitynormalisation.In els,thisimposesan“isolationmass”limitwhichmakesitdifficult otherwords,foraplanetesimalatagivenmassscaletobeableto togrowbeyondaterrestrialmassscaleintheinnerregionsofthe growsignificantlyoveradiscphaseofdurationt werequire life disc(Ida&Lin2004).Althoughthislimitationisby-passedinour t self-gravitatingmodels,sincethefeedingzonewouldbecontinu- grow <1 (13) ouslyreplenished by planetesimalsundergoing an orbitalrandom tlife walk,thisfactor isnotverysignificantsinceinanycasethehigh whichtranslatesintoalowerlimitontheproductt Σe−2(whereΣ life surfacedensityduringtheself-gravitatingphasemeansthatisola- isthesurfacedensitynormalisationofthedisc). tion masses are high (higher, that is, than the upper limit for the Wecan now return tothe issue raisedin theIntroduction of applicabilityof our calculations). Another potentiallypositiveas- whetherornotplanetesimalgrowthisfavouredinthehighdensity pectofevolutioninaself-gravitatingdiscisthepossibilityofcon- butshortlivedphaseduringwhichthediscisself-gravitating.As- centratingplanetesimalsinhighdensityspiralfeatures,wherethey suming for simplicitythat the self-gravitating phase lasts ∼ 10% mightbemorepronetoundergocollisionalgrowth.Inthecaseof ofthesubsequent lifetimeoftheprimordialgas/dust discbutthat the more massive – 0.5M⊙ – disc (see Section 4), there is some its surface density (mass) is typically ten times greater, we see evidenceforthedominanceattimesofspiralmodeswhichpersist that these two factors roughly cancel. Thus whether the growth overanumberofdynamicaltimes,allowingparticlestosettleinto of planetesimals is favoured during the self-gravitating phase ac- orbits which conserve a Jacobi integral in the co-rotating frame. tually boils down to the relative values of the eccentricity in the Some of these orbits involve a preference for particles to spend twophases. timeinthespiralarms,animpressionstrengthened byinspection Our simulations have shown that this factor is decisive in ofanimationswhichshowparticleswhichco-rotateforawhilein disfavouring the self-gravitating regime. In conventional mod- the vicinity of an arm and which then respond to changes in the els for the dynamical evolution of planetesimal swarms (e.g. spiral structure by passing rapidly to another spiral feature. This Kokubo&Ida2000)theequilibriumeccentricity(attainedthrough tendency will not lead to a significantly enhanced collision rate, thebalancebetweenstirringbylargerbodiesanddampingbygas however, unlessthereisastrongenhancement inthesolidtogas drag)isverylow(oforder0.01).Wehavehoweverseenthatinthe ratiointhespiralarms:sincetheamplitudeofthegaseousarmsis self-gravitatingphase,thetypicaleccentricityis0.1ormore.Since aroundafactortwoatmost,thenevenaparticlethatspentallits thegrowthtimescalesasthesquareoftheeccentricity,thismeans timeinthearmswouldonly,atfixedsolidtodustratio,experience that the self-gravitating phase is highly unfavourable (compared an enhancement in the local planetesimal density of a factor two withthelater morequiescent phase) for thecollisional growthof atmost.Sincewehaveonlystudiedtheevolutionoftenplanetesi- planetesimals. We note that the above estimates for conventional mals,wecannot,onthebasisofthepresentstudy,commentonthe proto-planetarydiscsassumealaminardiscstructure;eccentricity degreetowhichplanetesimalsaredifferentiallyconcentratedinthe drivingbyinteractionwithturbulentstructuresinadiscexhibiting arms.Nevertheless,theresultsofRiceetal.(2004)suggestthatthe MRI would further hinder collisional growth, whether or not the differentialaccumulationofsolidsinthearmsisweakatsizescales discisself-gravitating. wheregasdragisunimportant. There however remain two possible qualifiers of the above conclusion.Firstly,itisonlyvalidtosetthelocalvelocitydisper- Wenowturntothenegativeimplicationofstochasticmigra- sion equal to the product of the eccentricity and local Keplerian tionnotedbyNelson(2005),i.e.thegrowthofplanetesimalveloc- velocity inthe case that the kinematics iswell described as aset ity dispersion. This hinders planetesimal growth in two respects: ofellipticalorbitswhichareelongatedinarandomdirection.Such highercollisionalvelocitiesareassociatedwithdisruptionofparent adescriptiondoes not of course allow for thepossibilityof local bodiesinsteadofcollisionalgrowth(e.g.Leinhardtetal2007)and velocitycoherenceinaplanetesimalswarminwhichvelocitiesare alsosuppresstheroleofgravitationalfocusingineffectingphysi- significantly non-circular. In this sense, therefore, the above esti- calcollisions.Quantifyingthesecondeffect,thetimescaleforcol- matesarepessimistic.Furthercalculations,involvingalargeswarm lisionalgrowthofaplanetesimalofmassM ,densityρandradius of planetesimals from which one could derive the local velocity p R isgivenby: dispersion, are required in order to settle this issue. We however p Eccentricitygrowthof planetesimalsin a self-gravitatingprotoplanetarydisc 9 notethatourdifficultyinidentifyingcoherentorbitalfamilies,in- IdaS.,LinD.N.C.,2004,ApJ,604,388 teractingwithalonglivedspiralmode,probablyimpliesthatthis KenyonS.J.,BromleyB.C.,2004,AJ,127,513 effectisunlikelytoimprovetheprospectsforparticlegrowthsig- KokuboE.,IdaS.,2000,Icarus,143,15 nificantly.Thesecondpossiblequalifieristhat,asnotedinSection Leinhardt,Z.M.,Stewart,S.T.,Schultz,P.H.,2007,astroph0705.3943 LodatoG.,RiceW.K.M.,2004,MNRAS,351,630 2,oursimulationsemployacoolingtimescalewhichisclosetothe LodatoG.,RiceW.K.M.,2005,MNRAS,358,1489 critical one for disc fragmentation and therefore represent condi- LucyL.B.,1977,AJ,82,1013 tions where spiral modes are of relatively high amplitude. In the MejiaA.C.,DurisenR.H.,PickettM.K.,CaiK.,2005,ApJ,619,1098 innerregionsofprotoplanetarydiscs,however,coolingtimescales MonaghanJ.J.,1992,ARA&A,30,543 are longer than employed here and thus one would expect lower NelsonR.P.,2005,A&A,443,1067 amplitude spiral structures, with a correspondingly lower ampli- PollackJ.B.,etal.,1996,Icarus,124,62 tude of stochastic driving of planetesimal orbits. This possibility RiceW.K.M.,LodatoG.,ArmitageP.J.,2005,MNRAS,364,L56 needstobequantifiedthroughfurthernumericalinvestigation. RiceW.K.M.,LodatoG.,PringleJ.E.,ArmitageP.J.,BonnellI.A., Ifoneleavesasidethesepossibilities,thenwehaveshownthat 2004,MNRAS,355,543 theself-gravitatingphaseisunfavourableforcollisionalgrowthin RiceW.K.M.,LodatoG.,PringleJ.E.,ArmitageP.J.,BonnellI.A., 2006,MNRAS,372,L9 the regime of planetesimal scale studied. We have not ruled out ThommesE.W.,DuncanM.J.,LevisonH.F.,2003,Icarus,161,431 the possibility of collisional growth at smaller scales (where gas ToomreA.,1964,ApJ,139,1217 dragcaneffectasignificantenhancement ofthelocalsolidtogas VorobyovE.I.,ShchekinovY.A.,2006,NewAstronomy,11,240 ratioinspiralfeatures; Riceetal.2004) nor that (wheresuch en- WeidenschillingS.,1977,MNRAS,180,57 hancement exists) it may not be possible to produce much larger WhippleF.L.,1972,inElviusA.,ed.,FromPlasmatoPlanetsWiley, bodies through the gravitational fragmentation of the solid com- London ponent (e.g., Riceetal. 2006). We nevertheless consider it likely WyattM.C.,GreavesJ.S.,DentW.R.F.,CoulsonI.M.,2005,ApJ,620, that whatever the sizescaleattained inthisway, there willbe no 492 further collisional growth of planetesimals while the disc is self- gravitating. Thisobviouslylimitstheextenttowhichplanetformationcan getunderwayintheself-gravitatingphase.Eitheramassiveplanet isproducedviagasphaseJeansinstability(Boss2000),thusobvi- atingtheneedforcollisionalgrowth,orelse,ifself-gravityaidsthe initialaccumulationofsolidbodies(Riceetal.2004,2006),thenit isunlikelythatsuchbodiescanundergofurthercollisionalgrowth oncetheybecomelargeenoughforgasdragtobeunimportant.In this latter case, further growth of such bodies could only resume oncethedischadevolvedtothepoint whereitsself-gravity(and theassociatedpumpingupoftheplanetesimalvelocitydispersion) hasbecomeunimportant.Thevitalunansweredquestion,therefore, iswhetherorbitalmigrationwouldpreventtheplanetesimalsfrom remaining in the disc throughout the self-gravitating phase. This question can only be answered through further, computationally challenging,calculations. 5 ACKNOWLEDGMENTS M.BritschgratefullyacknowledgesthehospitalityoftheIOAand financialsupportviatheMarieCurieEARAEarlyStageTraining program.Wethankthereferee,PhilArmitage,forconstructivecrit- icism. REFERENCES AndrewsS.M.,WilliamsJ.P.,2005,ApJ,631,1134 ArmitageP.J.,ClarkeC.J.,PallaF.,2003,MNRAS,342,1139 BateM.R.,BonnellI.A.,PriceN.M.,1995,MNRAS,277,362 BateM.R.,LubowS.H.,OgilvieG.I.,MillerK.A.,2003,MNRAS,213, 341 BenzW.,1990,inBuchlerJ.,ed.,TheNumericalModelingofNonlinear StellarPulsationsKluwer,Dordrecht BossA.P.,2000,ApJ,536,L101 deVal-BorroM.,etal.,2006,MNRAS,370,529 EisnerJ.,CarpenterJ.,2006,ApJ641,1162 GammieC.F.,2001,ApJ,553,174 HaischK.,LadaE.,LadaC.,2001,ApJ,553,L153

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.