ebook img

Earthquakes and Water PDF

227 Pages·2009·7.401 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Earthquakes and Water

Lecture Notes in Earth Sciences 114 Editors: J.Reitner,Göttingen M.H.Trauth,Potsdam K.Stüwe,Graz D.Yuen,USA FoundingEditors: G.M.Friedman,BrooklynandTroy A.Seilacher,TübingenandYale · Chi-Yuen Wang Michael Manga Earthquakes and Water 123 Prof.Dr.Chi-YuenWang Prof.MichaelManga UniversityofCalifornia, UniversityofCalifornia, Berkeley Berkeley Dept.Earth&Planetary Dept.Earth&Planetary Science Science BerkeleyCA94720-4767 BerkeleyCA94720-4767 USA USA [email protected] [email protected] ISSN0930-0317 ISBN978-3-642-00809-2 e-ISBN978-3-642-00810-8 DOI10.1007/978-3-642-00810-8 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber:2009939567 ©Springer-VerlagBerlinHeidelberg2010 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign:IntegraSoftwareServicesPvt.Ltd.,Pondicherry Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Distantearthquakesarewellknowntoinduceawiderangeofresponsesinsurface water and groundwater. These responses are often viewed as mere curiosities as theiroccurrenceislimitedinspaceandtime.Thefrequentemphasisonearthquake precursorsinstudiesofthesephenomenaalsotendstopushthestudyof‘earthquake hydrology’ away from the mainstream of geoscience. The observed phenomena, however,probetheinteractionbetweenhydrogeologicalprocessesandmechanical deformation in the shallow crust. Hence they provide insight into the interaction among water cycle, tectonics, and properties of the crust. As such, the study of earthquake hydrology alsohasthepotentialtoprovideamorequantitativeandin- depth understanding of the nature of earthquake precursors and evaluate whether theyareinfactprecursors. The title of this book reflects the nature of the connections we address: we focus on how earthquakes affect hydrology. Water also influences earthquakes as it affects the strength of faults and the rheology of rocks. Our emphasis here, however, is not on the hydrology of earthquakes, but on understanding the hydrological phenomena induced or modified by earthquakes. The boundary between the ‘hydrology of earthquakes’ and the ‘earthquake-induced hydrological phenomena’, however, can sometimes be blurred. For example, triggered earth- quakes are sometimes explained by a re-distribution of pore pressure following the triggering earthquake. Hence, triggered seismicity may be an example of an earthquake-induced hydrological phenomenon. The study of the latter, therefore, canbeimportanttowardsabetterunderstandingofthemechanicsofatleastsome earthquakes. Therearemanystudents,postdocsandcolleagueswewishtothankforcollabo- ratingonresearchprojectsrelatedtothetopicsreviewedinthisbook,orparticipat- inginstimulatingdiscussionsintheclasswetaughtcalled‘Earthquakehydrology’. In particular, we wish to thank Emily Brodsky, Yeeping Chia, Douglas Dreger, Shemin Ge, Fu-qiong Huang, Tom Holzer, Chris Huber, Joel Rowland, Martin Saar, Yaolin Shi, Chung-Ho Wang, Kelin Wang, Pei-ling Wang and Alex Wong for enlightening exchanges. Hunter Philson helped with figures and the index. We v vi Preface alsothanktheNationalScienceFoundation,theMillerInstituteforBasicResearch inScience,andNASAforsupportingtheresearchandsynthesisinthisvolume. Berkeley,California Chi-YuenWang MichaelManga Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Liquefaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 ObservationsintheNearField . . . . . . . . . . . . . . . . . . 9 2.3 LaboratoryStudies . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1 CyclicLoadingExperiments. . . . . . . . . . . . . . . . 14 2.3.2 DissipatedEnergyforLiquefactionbyUndrained Consolidation . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 LiquefactionBeyondtheNearField . . . . . . . . . . . . . . . . 15 2.4.1 Seismic Energy Density as a Metric forLiquefaction Distribution . . . . . . . . . . . . . . . 16 2.4.2 MechanismforLiquefactionBeyondtheNearField . . . 18 2.5 ExperimentatWildlifeReserve,California . . . . . . . . . . . . 19 2.6 DependenceofLiquefactiononSeismicFrequency. . . . . . . . 24 2.6.1 FieldObservationfromTaiwan . . . . . . . . . . . . . . 24 2.6.2 LaboratoryStudies . . . . . . . . . . . . . . . . . . . . . 27 2.6.3 NumericalModels . . . . . . . . . . . . . . . . . . . . . 28 2.7 ConcludingRemarks. . . . . . . . . . . . . . . . . . . . . . . . 29 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3 MudVolcanoes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 ResponseofMudVolcanoestoEarthquakes . . . . . . . . . . . 34 3.3 InsightsfromTriggeredEruptionsofMagmaticVolcanoes . . . . 35 3.4 Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4.1 StaticorDynamicStresses? . . . . . . . . . . . . . . . . 37 3.4.2 MechanismsforInitiatingEruptions . . . . . . . . . . . 37 3.5 EffectofEarthquakesonAlready-EruptingMudVolcanoes . . . 40 3.6 ConcludingRemarks. . . . . . . . . . . . . . . . . . . . . . . . 41 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 vii viii Contents 4 IncreasedStreamDischarge . . . . . . . . . . . . . . . . . . . . . . 45 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3 CharacteristicsofIncreasedDischarge . . . . . . . . . . . . . . 48 4.3.1 RecessionAnalysis . . . . . . . . . . . . . . . . . . . . 49 4.3.2 EstimateExcessDischarge . . . . . . . . . . . . . . . . 51 4.4 ProposedMechanisms . . . . . . . . . . . . . . . . . . . . . . . 54 4.4.1 CoseismicElasticStrain . . . . . . . . . . . . . . . . . . 54 4.4.2 EnhancedPermeability . . . . . . . . . . . . . . . . . 54 4.4.3 CoseimicConsolidationandLiquefaction . . . . . . . . 55 4.5 DebateAboutMechanisms . . . . . . . . . . . . . . . . . . . . 56 4.5.1 GeochemicalandTemperatureConstraints . . . . . . . . 56 4.5.2 ConstraintsfromMultipleEarthquakes . . . . . . . . . . 57 4.5.3 ConstraintsfromRecessionAnalysis . . . . . . . . . . . 58 4.5.4 ConstraintsfromMultipleStreamGauges . . . . . . . . 59 4.5.5 RoleofAnisotropicPermeability . . . . . . . . . . . . 59 4.6 StreamflowIncreaseinHydrothermalAreas . . . . . . . . . . . 61 4.7 ConcludingRemarks. . . . . . . . . . . . . . . . . . . . . . . . 64 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5 GroundwaterLevelChange . . . . . . . . . . . . . . . . . . . . . . 67 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.2 Step-likeChangesintheNearField . . . . . . . . . . . . . . . . 70 5.2.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2.2 CausalMechanisms . . . . . . . . . . . . . . . . . . . . 73 5.3 SustainedChangesintheIntermediateField . . . . . . . . . . . 77 5.3.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3.2 CausalMechanisms . . . . . . . . . . . . . . . . . . . . 78 5.4 GroundwaterOscillationsintheFarField . . . . . . . . . . . . . 83 5.5 Role of S waves and Love Waves on Groundwater Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.6 Pore-PressureChangesontheSeaFloor . . . . . . . . . . . . . 87 5.7 PostseismicGroundwaterRecession . . . . . . . . . . . . . . . 89 5.7.1 RecessionAnalysis . . . . . . . . . . . . . . . . . . . . 89 5.7.2 InterpretationofthePostseismicRecession . . . . . . . . 91 5.8 ConcludingRemarks. . . . . . . . . . . . . . . . . . . . . . . . 92 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6 TemperatureandCompositionChanges . . . . . . . . . . . . . . . 97 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.2 Earthquake-InducedChangeinGroundwaterTemperature . . . . 98 6.2.1 HotSprings . . . . . . . . . . . . . . . . . . . . . . . . 98 6.2.2 Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.2.3 MarineHydrothermalSystems . . . . . . . . . . . . . . 101 6.2.4 Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 104 Contents ix 6.3 Earthquake-InducedChangesinWaterComposition . . . . . . . 106 6.3.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . 106 6.3.2 Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 112 6.4 ConcludingRemarks. . . . . . . . . . . . . . . . . . . . . . . . 113 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 7 Geysers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.2 ResponseofGeyserstoEarthquakes . . . . . . . . . . . . . . . 117 7.3 ResponseofGeyserstoOtherSourcesofStress . . . . . . . . . 119 7.4 Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.4.1 HowdoGeysersWork? . . . . . . . . . . . . . . . . . . 120 7.4.2 MechanismsforAlteringEruptions . . . . . . . . . . . . 120 7.5 ConcludingRemarks. . . . . . . . . . . . . . . . . . . . . . . . 121 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 8 EarthquakesInfluencedbyWater. . . . . . . . . . . . . . . . . . . 125 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8.2 FluidsandRockFailure . . . . . . . . . . . . . . . . . . . . . . 125 8.3 EarthquakesInducedbyFluidInjectionandExtraction . . . . . . 127 8.4 Reservoir-InducedSeismicity . . . . . . . . . . . . . . . . . . . 128 8.5 NaturalHydrologicalTriggeringofEarthquakes . . . . . . . . . 130 8.6 EarthquakeTriggeringofEarthquakesviaHydrologicalProcesses 131 8.7 ConcludingRemarks. . . . . . . . . . . . . . . . . . . . . . . . 135 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 9 HydrologicPrecursors . . . . . . . . . . . . . . . . . . . . . . . . . 141 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 9.2 WhatisaPrecursor? . . . . . . . . . . . . . . . . . . . . . . . . 143 9.3 IdentifyingHydrologicPrecursors . . . . . . . . . . . . . . . . 143 9.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9.4.1 China:Haicheng,1975andTangshan,1976 . . . . . . . 146 9.4.2 Kobe,Japan,1995 . . . . . . . . . . . . . . . . . . . . . 147 9.4.3 Nankaido,Japan,1946 . . . . . . . . . . . . . . . . . . . 147 9.4.4 KettlemanHills,California,1985 . . . . . . . . . . . . . 148 9.4.5 Chi-Chi,Taiwan,1999 . . . . . . . . . . . . . . . . . . . 148 9.4.6 Kamchatka,1992 . . . . . . . . . . . . . . . . . . . . . 150 9.4.7 Pyrenees,France,1996 . . . . . . . . . . . . . . . . . . 151 9.4.8 ReservoirInducedSeismicity,Koyna,India . . . . . . . . 151 9.4.9 CalistogaGeyser,California . . . . . . . . . . . . . . . . 154 9.4.10 PrecursoryChangesinSpringTemperature . . . . . . . . 154 9.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 10 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 10.1 AGeneralFramework . . . . . . . . . . . . . . . . . . . . . . . 161 10.2 DirectionsforFutureResearch . . . . . . . . . . . . . . . . . . 165 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 x Contents Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 AppendixA:Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 170 AppendixB:BasicEquationsforGroundwaterFlow . . . . . . . . . . 171 B.1 Darcy’slaw . . . . . . . . . . . . . . . . . . . . . . . . . . 171 B.2 PorosityandPermeability . . . . . . . . . . . . . . . . . . 172 B.3 ElementsinaGroundwaterSystem . . . . . . . . . . . . . 174 B.4 DrivingPotential . . . . . . . . . . . . . . . . . . . . . . . 174 B.5 TheContinuumApproach . . . . . . . . . . . . . . . . . . 174 B.6 GroundwaterFlowEquations . . . . . . . . . . . . . . . . 174 B.7 PhysicalMeaningoftheSpecificStorage . . . . . . . . . . 175 B.8 FlowEquationforIsotropicAquifer . . . . . . . . . . . . . 175 B.9 Calculating Permeability from Tidal Response ofGroundwaterLevel . . . . . . . . . . . . . . . . . . . 176 B.10 EquationDerivations . . . . . . . . . . . . . . . . . . . . 177 AppendixC:GroundwaterTransport . . . . . . . . . . . . . . . . . . 179 C.1 GoverningEquationsforHeatTransport . . . . . . . . . . 179 C.2 Relative Significance of Advective Versus ConductiveHeatTransport . . . . . . . . . . . . . . . . 180 C.3 GoverningEquationsforSoluteTransport . . . . . . . . . . 180 C.4 RelativeSignificanceofAdvectiveVersusDiffusive SoluteTransport . . . . . . . . . . . . . . . . . . . . . . 182 AppendixD:HydromechanicalCoupling . . . . . . . . . . . . . . . . 182 D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 182 D.2 EffectiveStressPrinciple . . . . . . . . . . . . . . . . . . 183 D.3 PoroelasticityandHydrodynamicCoupling . . . . . . . . . 184 D.4 Non-elasticDeformation . . . . . . . . . . . . . . . . . . . 187 D.5 DeformationUnderCyclicLoading . . . . . . . . . . . . . 188 AppendixE:DataforHydrologicResponsestoEarthquakes . . . . . . 192 E.1 StreamandSpringResponses . . . . . . . . . . . . . . . . 192 E.2 GroundwaterLevelResponses . . . . . . . . . . . . . . . . 196 E.3 HotSpringResponses . . . . . . . . . . . . . . . . . . . . 208 E.4 LiquefactionOccurrenceDuringEarthquakes . . . . . . . . 209 E.5 TriggeredMudVolcanoes . . . . . . . . . . . . . . . . . . 220 E.6 TriggeredEarthquakes . . . . . . . . . . . . . . . . . . . . 221 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 Chapter 1 Introduction For thousands of years, a variety of hydrologic changes has been documented following earthquakes. Examples include the liquefaction of sediments, increased stream discharge, changes in groundwater level, changes in the temperature and chemicalcompositionofgroundwater,formationofnewsprings,disappearanceof previouslyactivesprings,andchangesintheactivitiesofmudvolcanoesandgey- sers.Itisnotunexpectedthatearthquakescancausehydrologicchangesbecausethe stressescreatedbyearthquakescanbelarge.Whatissurprisingarethelargeampli- tudes of hydrologic responses and the great distances over which these changes occur. Following the 2004 M9.2 Sumatra earthquake, for example, groundwater erupted in southern China, 3200 km away from the epicenter, and the water foun- tain shown in Fig. 1.1 reached a height of 50–60 m above the ground surface when it was first sighted. Because earthquakes and water interact with each other throughchangesinbothstressandphysicalpropertiesofrocks,understandingthe origin of hydrological responses can provide unique insight into hydrogeologic and tectonic processes at spatial and temporal scales that otherwise could not be studied. Earthquakes cause both static and dynamic changes of the stresses in the crust. Bothtypesofstresschangedecreasewithincreasingdistancefromtheearthquake, butatdifferentrates.Figure1.2,fromKilbetal.(2002),illustrateshowstaticand dynamic stress change with increasing distance from the epicenter. The dynamic component of the Coulomb stress change, (cid:2)CFS(t), as defined in the caption of Fig. 1.2, is the time-dependent change in the Coulomb failure stress resolved onto a possible failure plane. The static stress change, denoted by (cid:2)CFS, dimin- ishes much more rapidly with distance than the transient, dynamic change. Thus at close distances the ratio (peak (cid:2)CFS(t))/(cid:2)CFS is approximately proportional to the source-receiver distance, r, and at larger distances proportional to r2 (Aki andRichards,1980).Atdistancesupto∼1rupturedfaultlength,thestaticandthe peakdynamicchangesarecomparableinmagnitude,whileatdistancesgreaterthan several ruptured fault lengths, the peak dynamic change is much greater than the static change. As discussed in later chapters, the relative magnitude of the static and dynamic stresses is reflected in the hydrologic responses to earthquakes and is critical to understanding the origin of hydrological changes. We thus hereafter use the expression ‘near field’ to denote distances within about one ruptured fault C.-Y.Wang,M.Manga,EarthquakesandWater,LectureNotesinEarth 1 Sciences114,DOI10.1007/978-3-642-00810-8_1,(cid:3)C Springer-VerlagBerlinHeidelberg2010

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.