ebook img

Early during Myelomagenesis Alterations in DNA Methylation That Occur Myeloma Is ... PDF

153 Pages·2013·2.47 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Early during Myelomagenesis Alterations in DNA Methylation That Occur Myeloma Is ...

Myeloma Is Characterized by Stage-Specific Alterations in DNA Methylation That Occur Early during Myelomagenesis Christoph J. Heuck, Jayesh Mehta, Tushar Bhagat, Krishna This information is current as Gundabolu, Yiting Yu, Shahper Khan, Grigoris Chrysofakis, of March 3, 2019. Carolina Schinke, Joseph Tariman, Eric Vickrey, Natalie Pulliam, Sangeeta Nischal, Li Zhou, Sanchari Bhattacharya, Richard Meagher, Caroline Hu, Shahina Maqbool, Masako Suzuki, Samir Parekh, Frederic Reu, Ulrich Steidl, John Greally, Amit Verma and Seema B. Singhal DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD J Immunol published online 13 February 2013 oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww http://www.jimmunol.org/content/early/2013/02/13/jimmun nlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlonlo ol.1202493 adadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadadad eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro fro mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h SuppleMmaetnetraiarly 3h.tDtpC:/1/www.jimmunol.org/content/suppl/2013/02/13/jimmunol.120249 ttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://wttp://w wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww .jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim.jim mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm Why The JI? Submit online. uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn • Rapid Reviews! 30 days* from submission to initial decision ol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.orgol.org b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy • No Triage! Every submission reviewed by practicing scientists g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss • Fast Publication! 4 weeks from acceptance to publication t ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot ot o nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M *average arcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarcarc hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Subscription Information about subscribing to The Journal of Immunology is online at: , 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 http://jimmunol.org/subscription 191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919191919 Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published February 13, 2013, doi:10.4049/jimmunol.1202493 The JournalofImmunology Myeloma Is Characterized by Stage-Specific Alterations in DNA Methylation That Occur Early during Myelomagenesis Christoph J. Heuck,* Jayesh Mehta,† Tushar Bhagat,* Krishna Gundabolu,* Yiting Yu,* Shahper Khan,‡ Grigoris Chrysofakis,* Carolina Schinke,* Joseph Tariman,† Eric Vickrey,† Natalie Pulliam,† Sangeeta Nischal,* Li Zhou,* Sanchari Bhattacharya,* Richard Meagher,† Caroline Hu,* Shahina Maqbool,* Masako Suzuki,* Samir Parekh,* Frederic Reu,‡ Ulrich Steidl,* John Greally,* Amit Verma,* and Seema B. Singhal† Epigeneticchangesplayimportantrolesincarcinogenesisandinfluenceinitialstepsinneoplastictransformationbyalteringge- nomestabilityandregulatinggeneexpression.Tocharacterizeepigenomicchangesduringthetransformationofnormalplasma cellstomyeloma,wemodifiedtheHpaIItinyfragmentenrichmentbyligation–mediatedPCRassaytoworkwithsmallnumbersof purifiedprimarymarrowplasmacells.Thenano-HpaIItinyfragmentenrichmentbyligation–mediatedPCRassaywasusedto D analyze the methylome of CD138+ cells from 56 subjects representing premalignant (monoclonal gammopathy of uncertain o w significance),early,andadvancedstagesofmyeloma,aswellashealthycontrols.Plasmacellsfrompremalignantandearlystages nlo ofmyelomawerecharacterizedbystriking,widespreadhypomethylation.Gene-specifichypermethylationwasseentooccurinthe ad e advancedstages,andcelllinesrepresentativeofrelapsedcaseswerefoundtobesensitivetodecitabine.Aberrantdemethylationin d monoclonal gammopathyof uncertain significance occurred primarily in CpG islands, whereas differentially methylated loci in fro m cases of myeloma occurred predominantly outside of CpG islands and affected distinct sets of gene pathways, demonstrating h qualitative epigenetic differences between premalignant and malignant stages. Examination of the methylation machinery ttp revealed that the methyltransferase, DNMT3A, was aberrantly hypermethylated and underexpressed, but not mutated in mye- ://w w loma.DNMT3Aunderexpressionwasalsoassociatedwithadverseoverallsurvivalinalargecohortofpatients,providinginsights w into genesis of hypomethylation in myeloma. These results demonstrate widespread, stage-specific epigenetic changes during .jim myelomagenesis and suggest that early demethylation can be a potential contributor to genome instability seen in myeloma. m u We also identify DNMT3A expression as a novel prognostic biomarker and suggest that relapsed cases can be therapeutically n o targeted byhypomethylatingagents. TheJournalofImmunology,2013, 190: 000–000. l.o rg b/ D espitetherapeuticadvances,multiplemyeloma(MM)re- thedevelopmentofariskmodelthatremainsrobustevenintheage y g mains incurable and needs newer insights into the path- ofnewertherapies(1).Theuseofgeneexpressionprofiling by ue s ogenicmechanismsthatcausethisdisease.Geneexpres- different groups has also led to the identification of distinct mo- t o sionprofilinghasbeenusedextensivelyinmyelomaandhasledto lecular subgroups that show defined clinical features (2, 3). How- n M ever, pathogenic mechanisms driving these differences in gene a rc expressionhavenotbeenwelldescribed,especiallyforearlystages h 3 *AlbertEinsteinCollegeofMedicine,Bronx,NY10461;†NorthwesternUniversity, inmyelomagenesis(4). , 2 FeinbergSchoolofMedicine,Chicago,IL60611;and‡ClevelandClinic,Cleveland, Recentstudiesoftheepigenomeandinparticularthemethylome 01 OH44195 haveshownthatcancerischaracterizedbywidespreadepigenetic 9 ReceivedforpublicationSeptember7,2012.Accepted forpublicationJanuary9, changes. These changes lead to altered gene expression that can 2013. result in activation of oncogenic pathways. Furthermore, methyl- ThisworkwassupportedbyNationalInstitutesofHealthImmunooncologyTraining ome profiling has shown greater prognostic ability than gene ex- Program GrantT32 CA009173,Gabrielle’s Angel Foundation,the Leukemiaand LymphomaSociety,theAmericanCancerSociety,theDepartmentofDefense,and pressionprofilinginacutemyeloidleukemia(AML)andhasledto aPartnershipforCuresgrant. identification of newer molecular subgroups with differences in ThemethylationdatapresentedinthisarticlehavebeendepositedintheNational overall survival (5). We have shown that methylome profiling is InstitutesofHealthGeneExpressionOmnibus(NationalCenterforBiotechnology abletoidentifychangesthatoccurearlyduringcarcinogenesisin Information,http://www.ncbi.nlm.nih.gov/geo/)underaccessionnumberGSE43860. solid tumors such as esophageal cancer (6). These studies have AddresscorrespondenceandreprintrequeststoDr.AmitVerma,Dr.ChristophJ. been conducted with the use of the HpaII tiny fragment enrich- Heuck,andDr.SeemaB.Singhal,AlbertEinsteinCollegeofMedicine,Bronx,NY 10461(A.V.andC.J.H.)andFeinbergSchoolofMedicine,NorthwesternUniversity, ment by ligation–mediated PCR (HELP) assay, which is a ge- Chicago,IL60611(S.B.S.).E-mailaddresses:[email protected](A.V.), nome-wide assay that provides a reproducible analysis of the [email protected](C.J.H.),[email protected](S.B.S.) methylome that is not biased toward CpG islands (7). Analyzing Theonlineversionofthisarticlecontainssupplementalmaterial. the methylome of myeloma can help identify changes that can Abbreviationsusedinthisarticle:AML,acutemyeloidleukemia;HAF,HpaII-amplifi- define disease subsets and lead to identification of newer thera- ablefragment;HELP,HpaIItinyfragmentenrichmentbyligation–mediatedPCR;MM, multiplemyeloma;MGUS,monoclonalgammopathyofuncertainsignificance; peutic targets. Recent sequencing studies in myeloma have also NEWMM,newlydiagnosedmyeloma;NL,normal;REL,relapsedmyeloma;REM, revealed mutations in enzymes that are involved in epigenetic completeremission;SMM,smolderingmyeloma;TF,transcriptionfactor. machinery, again reinforcing the need to study the epigenetic Copyright(cid:1)2013byTheAmericanAssociationofImmunologists,Inc.0022-1767/13/$16.00 alterationsinthisdisease(8).Wehaveconductedagenome-wide www.jimmunol.org/cgi/doi/10.4049/jimmunol.1202493 2 METHYLOME OFMULTIPLEMYELOMA analysis of changes in DNA methylation in monoclonal gamm- tativeformethylationandanalyzedasacontinuousvariable.Formostloci, opathyofuncertainsignificance(MGUS),newlydiagnosedMM, each fragment was categorized as either methylated, if the centered log HpaII/MspIratiowasgenerally,0,orhypomethylated,if,incontrast,the aswellasrelapsedMM,andcomparedthemwithnormalplasma logratiowas.0. cell controls. We used a modification of the HELP assay (nano- HELP)thatwasdevelopedtoworkwithlowamountsofDNAto QuantitativeDNAmethylation analysisbyMassArray interrogate the methylome of sorted CD138+ cells from patient Epityping samples. We report that widespread alterations in DNA methyla- ValidationofthefindingsoftheHELPassaywascarriedoutbyMALDI- tion are seen in myeloma and have the power to discriminate TOFmassspectrometryusingEpiTyperbyMassArray(Sequenom,CA)on between MGUS and new/relapsed cases. We report that hypo- bisulfite-convertedDNA,aspreviouslydescribed(6).Validationwasdone methylation is the predominant early change during myeloma- onallsampleswithsufficientavailableDNA.MassARRAYprimerswere designedtocovertheflankingHpaIIsitesforagivenHAF,aswellasfor genesis that is gradually transformed to hypermethylation in anyotherHpaIIsitesfoundupto2000bpupstreamofthedownstreamsite relapsed cases, thus providing the epigenetic basis for the differ- andupto2000bpdownstreamoftheupstreamsite,tocoverallpossible entiation betweenthese differentstages of myeloma. alternativesitesofdigestionwithinourrangeofPCRamplification. Microarraydataanalysis Materials and Methods Patientsamples Unsupervised clustering of HELP data by hierarchical clustering was performedusingthestatisticalsoftwareRversion2.6.2.Atwo-samplettest Bonemarrowaspirateswereobtainedwithsignedinformedconsentfrom was used for each gene to summarize methylation differences between 11 patients with MGUS, 4 patients with smoldering myeloma (SMM), groups.Geneswererankedonthebasisofthisteststatistic,andasetoftop 13patientswithnewlydiagnosedmyeloma(NEWMM),16patientswith differentially methylated genes with an observed log fold change of .1 relapsedmyeloma(REL),including2patientswithserialsamples,and2 between group means was identified. Genes were further grouped D patients in clinical complete remission (REM) who are followed at the accordingtothedirectionof themethylationchange (hypomethylated o w myeloma clinic at the Robert H. Lurie Cancer Center at Northwestern versus hypermethylated), and the relative frequencies of these changes n University. All specimens underwent CD138+ microbead selection (Mil- were computed among the top candidates to explore global methylation lo a tenyiBiotec).PuritywasconfirmedbyflowcytometrystainingforCD38 patterns.ValidationwithMassArrayshowedgoodcorrelationwiththedata d andCD45.Sampleswithapurity,90%byflowcytometrywerenotused generated by the HELP assay. MassArray analysis validated significant ed for this study.Eight samplesfrom normaldonorswithoutknown malig- quantitativedifferencesinmethylationfordifferentiallymethylatedgenes fro nancieswereobtainedcommerciallyfromAllCells(Emeryville,CA).All selectedbyourapproach. m normaldonorsampleshadapurityof$85%. h Sequencing ofDNMT3A ttp DNAmethylation analysisusingthenano-HELPassay ScreeningformutationsintheDNMT3Acatalyticdomainwascarriedout ://w GenomicDNAwasextractedusingtheGentraPureGenekitusing13105 usingdirectgenomicsequencing.PCRprimersweredesignedtoamplify ww atoss5ay,3as10d5esccerilblse.dDpNreAviomuestlhyy(l7a,ti9o)n.analysis was done using the HELP a2n0dnsgeqgueennocmeiccoDdiNngAewxoanssu1s8e–d2f3or(aPvCaiRlabalmepulpiofincarteioqnu,esfto)l.lFoworeedacbhyPpCurRi-, .jim m Inbrief,100nggenomicDNA(nano-HELPmodification)wasdigested ficationusingMontageCleanupkit(Millipore,Billerica,MA).Sequencing u overnight using the two isoschizomers HpaII and MspI. The digestion was performed using ABI 3730xl DNA analyzer (Applied Biosystems, n o productswerethenpurifiedoncewithphenol-chloroform.Afterovernight FosterCity,CA).PCRwascarriedoutusingthefollowing:94˚C,4min, l.o adapterligation,theHpaIIandMspIproductswereamplifiedinatwo-step followed by 35 cycles of 94˚C, 30 s, specific annealing temperature for rg protocol,aspreviouslydescribed(7).HpaII-andMspI-generatedgenomic eachprimer,30s,andextension72˚C,30s,final72˚C,5min.Resultswere b/ fragments between 200 and 2000 bp in length were labeled with either comparedwithreference(NM_175629)andSNPdatabases(dbSNP;http:// y g Cy3-orCy5-labeledrandomprimersandthencohybridizedontoahuman www.ncbi.nlm.nih.gov/projects/SNP).Ifchromatogramssuggestedapos- u e (HG17)custom-designedoligonucleotidearray(50mers)covering25,626 siblemutation,bidirectionalresequencingwasperformed. s HpaII-amplifiablefragments(HAFs)annotatedto14,214genepromoters. t o HAFsaredefinedasgenomicsequencescontainedbetweentwoflanking Pathwayanalysisandtranscriptionfactorbindingsiteanalysis n M HpaII sites found 200–2,000 bp apart. Each HAF on the array is repre- a sented by a probe set consisting of 14–15 individual probes, randomly TheIngenuityPathwayAnalysissoftware(IPA,RedwoodCity,CA)was rc used to determine biological pathways associated with differentially h distributedacrossthemicroarrayslide.Methylationdatapresentedinthis 3 articlehavebeendepositedintheNationalInstitutesofHealthGeneEx- methylatedgenes,as performedpreviously(6,10).Enrichmentofgenes , 2 associatedwithspecificcanonicalpathwayswasdeterminedrelativetothe 0 pressionOmnibus(NationalCenterforBiotechnologyInformation,http:// 1 Ingenuityknowledgedatabaseforeachoftheindividualplatformsandthe 9 www.ncbi.nlm.nih.gov/geo/)underaccessionnumberGSE43860. integratedanalysisatasignificancelevelofp,0.01.Biologicalnetworks HELP dataanalysisandqualitycontrol capturedbythemicroarrayplatformsweregeneratedusingIPAandscored basedontherelationshipbetweenthetotalnumberofgenesinthespecific Allmicroarrayhybridizationsweresubjectedtoextensivequalitycontrol networkandthetotalnumberofgenesidentifiedbythemicroarrayanal- using the following strategies. First, uniformity of hybridization was ysis. The list of differentially methylated genes was examined for en- evaluatedusingamodifiedversionofapreviouslypublishedalgorithm(10, richment of conserved gene-associated transcription factor (TF) binding 11) adapted for the NimbleGen platform, and any hybridization with sitesusingIPAaswellasotherpublishedgenesetsavailablethroughthe strongregionalartifactswasdiscardedandrepeated.Second,normalized MolecularSignaturesDatabase(MSigDB)(12). signalintensitiesfromeacharraywerecomparedagainsta20%trimmed mean of signal intensities across all arrays in that experiment, and any Meta-analysisofmyelomageneexpressionstudies arraysdisplayingasignificantintensitybiasthatcouldnotbeexplainedby WeobtainedgeneexpressiondatafromtheArkansasdatasetsGSE5900and thebiologyofthesamplewereexcluded.SignalintensitiesateachHpaII- GSE2658(4)fromNationalCenterforBiotechnologyInformation’sGene amplifiablefragmentwerecalculatedasarobust(25%trimmed)meanof ExpressionOmnibus database.Thedatasetswere quantilenormalizedto theircomponentprobe-levelsignalintensities.Anyfragmentsfoundwithin ensurecross-studycomparability,basedonourpreviousapproach(13,14). the level of background MspI signal intensity, measured as 2.5 mean- AnalyseswereperformedusingSAS(SASInstitute,Cary,NC)andtheR absolute-differences above the median of random probe signals, were language (http://www.r-project.org). The final database had 22 normal categorizedasfailed.Thesefailedlocithereforerepresentthepopulation controls,44MGUS,and559newMMsamples. offragmentsthatdidnotamplifybyPCR,whateverthebiological(e.g., genomic deletions and other sequence errors) or experimental cause. In Cell linesandcultureconditions contrast, methylated loci were so designated when the level of HpaII signal intensity was similarly indistinguishable from background. PCR- Cell lines U266 and RPMI8226 were purchased from American Type amplifying fragments (those not flagged as either methylated or failed) CultureCollection(Manassas,VA).CelllinesMM1.SandMM1.Rwere were normalized using an intra-array quantile approach wherein HpaII/ providedbyS.Rosen(NorthwesternUniversity,Chicago,IL).Allcelllines MspI ratios are aligned across density-dependent sliding windows of wereculturedinRPMI1640medium(Invitrogen,Carlsbad,CA)supple- fragmentsize-sorteddata.Thelog (HpaII/MspI)wasusedasarepresen- mentedwith10%heat-inactivatedFBSandpenicillin(100U/ml),strep- 2 TheJournal ofImmunology 3 tomycin(100mg/ml),and4mMglutamine.Cellsweremaintainedat37˚C markers in tumor models (5). To determine whether there was andhumidifiedwith95%airand5%CO2forcellculture.Fortheviability aberrant differential methylation in different stages of multiple assays, the cells were cultured in 0.5, 1, and 5 mM decitabine (Sigma- myeloma,weusedthenano-HELPassay(7)onCD138+selected Aldrich)for5d.Decitabinewasaddedtotheculturedaily;DMSOwas bonemarrowcellsfrom11patientswithmonoclonalgammopathy servedascontrol.Viabilitywasmeasuredonday6usingMTS(Promega), accordingtothemanufacturer’sinstruction. of uncertain significance (MGUS), 4 patients with SMM, 13 patients with NEWMM, and 16 patients with REL, which also included 2 patients with serial samples. We also included 2 my- Results eloma patients in REM. CD138+ selected bone marrow plasma Genome-wide analysisofDNAmethylation revealsepigenetic cells from 8 healthy donors (normal [NL]) served as controls. alterations inplasmacellsfrompatientswithmyelomaand Clinical characteristics of the 48 patients with plasma cell dys- MGUS crasias are listed in SupplementalTable 1. Extensivestudyofgeneexpressionprofilingofmyelomacellshas Atfirstweperformedanunsupervisedanalysisofthegenerated led to several molecular models that allow the classification of methylation profiles with hierarchical clustering and the nearest myelomaindifferentriskcategories,whichhasledtosignificant shrunkencentroidalgorithm.Bothmethodsshowedthatthehealthy improvements in treatment strategies and outcomes (1, 15). Epi- controlsformedatightclusterthatwasdistinctfromsampleswith genetic alterations including aberrant DNA methylation can reg- abnormal plasma cells, demonstrating epigenetic dissimilarity ulate gene expression and can also be used as better prognostic betweenthesegroups(Fig.1).Interestingly,MGUSsamplesalso D o w n lo a d e d fro m h ttp ://w w w .jim m u n o l.o rg b/ y g u e s t o n M a rc h 3 , 2 0 1 9 FIGURE1. DNAmethylationpatternscandifferentiatebetweendifferentstagesofplasmacelldyscrasias.(A)Unsupervisedhierarchicalclusteringof usingmethylationprofilesgeneratedbytheHELPassayseparatesthesamplesintwomajorclusterscontainingthemajorityofNEWMM(orange)andREL (red)samplesorthemajorityofNL(green)andMGUS(lightblue)samples,respectively.Thesetwoclusterswerealsoidentifiedbythepresence(dark green)orabsence(darkblue)ofabnormalitiesdetectedbyFISHorconventionalcytogenetics.Theclustersareeachfurtherseparatedintotwosubgroups, resultinginatotaloffourcohortsrepresentingthemajorityofNL,MGUS,NEWMM,andREL.ThebottomsixlinesrepresentFISHdata,green=not detectedbyFISH,pink=detectedbyFISH,gray=notdone.♦ordindicatespairedsamples.(B)Unsupervisedthree-dimensionalclusteringbasedon nearest shrunken centroid algorithm using methylation profiles also shows distinction between normal and myeloma samples. Among the myeloma samples,clusteringofMGUSsamplesisdistinctfromnewandrelapsedcases.Green,NL;blue,MGUS;yellow,SMM;orange,NEWMM;red,REL; purple,REM. 4 METHYLOME OFMULTIPLEMYELOMA clustered in a distinct group, suggesting definite alterations in inNEWMMsamples,yetthiswaslesspronouncedthaninMGUS DNA methylation that occur early during myelomagenesis. The (Fig. 2B, Supplemental Table 2C, 2D). Interestingly, in cases of new (NEW) and relapsed (REL) myeloma cases demonstrated relapsed myeloma, we observed increased hypermethylation, great epigenetic dissimilarity to the NL and MGUS samples and demonstrating that there was a trend toward predominant hypo- separatedintwosubgroupswiththemajorityofNEWMMinone methylation in MGUS to predominant hypermethylation in REL and the majority of REL samples in the other group (Fig. 1A). (Fig. 2C, 2D, Supplemental Table 2E, 2F). Overall, differential These findings show that methylation profiling can differentiate methylatedgenesatthetransitionbetweenstagesaredepictedin between NL, MGUS, NEWMM, and REL, in an unsupervised Supplemental Fig. 1A. When analyzing this differential methyl- manner. Included in our analysis were two sets of consecutive ationatthetransitionfromonediseasestatetothenext(i.e.,NLto samplestakenfromthesamepatientatdifferenttimepoints.Inthe MGUS, MGUS to NEWMM, and NEWMM to REL), we found first case, the initial sample (REL15) clusters with the group of that of the 2963 unique genes that were hypomethylated at the relapsedmyelomaandtheposttreatmentsampleclusterswiththe transition from NL to MGUS, 2472 became hypermethylated at NEWMM samples (REL9). The second case included samples the transition of MGUS to NEWMM. Of those, 2 were also sig- takenatdistincttimepointswithoutanytreatmentsintheinterval. nificantly hypermethylated at the transition from NEWMM to Both samples cluster together in the REL group (REL18, REL6) REL, albeit with a q value .0.05 (p , 0.05, Supplemental and thusshowthebiological validityof ouranalysis. Fig.1B).Alistofthedifferentiallymethylatedgenesbetweenthe differentdiseasestatescanbefoundinSupplementalTable2A–K. MGUS andNEWMMshowpredominanthypomethylation, The HELP assay has been validated quantitatively in many whereasRELarepredominantlyhypermethylated studies(5,6),andwealsovalidatedourfindingsbyanalyzingthe After demonstrating global epigenetic dissimilarity between nor- methylation status of differentially methylated genes, ARID4B D mal and myelomatous plasma cells, we wanted to determine the and DNMT3A, by bisulfite Massarray analysis. Examination of o w specific differences in DNA methylation between the different the promoter regions of these genes demonstrated a strong cor- n lo stagesofmyeloma.Weperformedasupervisedanalysiscomparing relation of quantitative methylation values obtained from Mas- a d the MGUS, NEWMM, or REL cases versus control samples. sArraywiththefindingsofHELPassay,demonstratingthevalidity ed Volcanoplotscomparingthedifferenceofmeanmethylationofall ofourfindings(SupplementalFig.2). fro individuallociwereplottedagainstthesignificance(log[pvalue] m Differentiallymethylatedgenesshowspecificfunctional and h abparpisseivndaglouanent,atbe0sso.t0)lu0ot5efwftohelerdedcuihfsafeenrdgeentocoefid$(eFn2igti(.f=y2l)od.giSf[ftHerirpneagnIetIin/aMtllcsypuItm-]oe.ftfhs1yc)laoatmnedd- gWeenonmeixctcahnaarlayczteedristhtiecsbiological pathways that were associated ttp://ww loci. All probes thus identified were significant after multiple withdifferentiallymethylatedgenesinmyelomaandobservedthat w testingwithBenjamini-Hochbergcorrectionwithafalsediscovery pathwaysinvolvedincellproliferation,geneexpression,cellcycle, .jim rate of ,5%. We observed that majority of differentially meth- and cancer were significantly involved by aberrantly methylated m u ylated loci in MGUS were found to be hypomethylated when genesinMGUS,NEWMM,aswellasrelapsedcasesofMM(Table no comparedwithnormalplasmacells(Fig.2A,SupplementalTable I).Thegenesaffectedbyaberrantmethylationofthesepathways l.o rg 2A,2B).Hypomethylationwasthepredominantchangealsoseen includedmanygenesthatwerehypomethylated(CEBPalpha,ILs, b/ y g u e s t o n M a rc h 3 , 2 0 1 9 FIGURE2. MGUSandNEWMMshowpredom- inant hypomethylation, whereas REL are predomi- nantly hypermethylated. Volcano plots showing difference of mean methylation (x-axis) and signifi- canceofthedifference(y-axis)demonstrateaberrant hypomethylation in MGUS (A) and both hypo- and hypermethylationinnew(B)andrelapsed(C)cases ofmyeloma.Thenumberofdifferentiallymethylated HAFsisindicatedaboveeachvolcanoplot.Numbers totheleftindicatehypomethylatedHAFs,andnum- bers to the right indicate hypermethylated HAFs. Aberrant hypermethylation is the predominant changeinrelapsedcases(D). TheJournal ofImmunology 5 TableI. Genesandpathwaysaberrantlymethylatedinmyeloma BiologicalFunctions Genes GenesHypomethylatedinMGUS 1 Cellmorphology,cellularassembly ADNP,AFF2,ARL15,B4GALT3,BRSK2,CASC3,DIS3L, andorganization,cellularfunction EBAG9,EXOSC1,EXOSC2,EXOSC8,FBXO9,FLNC,GDI2, andmaintenance IL15,MRPS15,NAGA,NGF,NR3C2,P2RX3,PLCG1,PRKCZ, PRPH,STARD10,STK11,TGFA,TNK1,TSPAN7,TUBE1, UPF3B,WDR6,ZNF74,ZNF83 2 Cellsignaling,moleculartransport, FFAR3,FZD1,FZD5,FZD10,GALR1,GPR6,GPR26,GPR44, nucleicacidmetabolism GPR68,GPR77,GPR84,GPR87,GPR132,GPR137,GPR149, GPR153,GPR161,GPR176,GPRASP2,GRM6,HRH2,LGR5, LPHN1,MC3R,NPY2R,NPY5R,OPRK1,PTGER1,PTGER3, QRFPR,SCTR,TAS1R2,VIPR1 3 Cellulardevelopment, ALOX5,ALX4,C12orf44,CEBPE,CLEC11A,COPB2,COPE, hematologicalsystemdevelopment COPG,COPG2,COPZ1,CXCL5,DDA1,ETS2,FARSB,FLI1, andfunction,hematopoiesis GFI1,GPX1,HMGB2,HSD17B4,IL6R,NAA15,NAA16, S100A9,SACM1L,SIPA1L3,SPI1,SPIB,SRGN,TARS,TDP2, UBA5,UQCRC2,ZXDC 4 Cellcycle,hairandskin BANF1,BLOC1S1,CCNE1,CHEK1,CHMP5,CHMP2A, developmentandfunction, CUL4A,CUL4B,DCAF11,DCAF16,DDB1,ERCC8,GRP, embryonicdevelopment KAT2A,LIN28B,MED20,NEK9,NUDCD1,PHIP,PKM2, PRPF31,SART3,TADA1,TBL3,USP4,USP5,USP8,USP35, D USP36,USP37,USP43,WDR5B,ZNF277 o 5 Aminoacidmetabolism,cellular ANKRD28,AP1G1,ATP2A3,CCDC47,CCT7,CLN3,CLPX, w n assemblyandorganization,genetic DDIT4L,DGKZ,DPM1,GAR1,GEMIN4,GEMIN5,HOOK1, lo disorder LOC100290142/USMG5,NECAP1,NHP2,NUP93,PFDN2, ad e SEC61A1,SH2D3C,SHC1,SLC25A10,SLC25A11,SLC25A22, d SMAP1,SNRPG,TNFRSF14,TSC22D1,UNC45A,VBP1,WDR8 fro GenesHypermethylatedinRelapsedMM m 1 Geneticdisorder,inflammatory AMH,ATF5,BATF,BTG2,CHPF,CHSY3,CTH,EXOSC1, h disease,respiratorydisease EXOSC3,EXOSC6,EXOSC10,FERMT3,GDF9,GET4,ILF3, ttp LMO2,LSM3,LSM7,LTBP4,MAGED1,NAA38,NOD1, ://w NOD2,NUDT21,PBK,RIPK2,SCLT1,SCRIB,SGTA, w SNAPC5,SUGT1,TRIB3,UNC5A w 2 Geneexpression,cellular ACY1,AKR1B1,BHLHE41,CSMD1,DLX4,ERG,EZH2, .jim development,cellulargrowthand FRZB,GNB4,GNB5,HEXIM2,HOXA11,HOXB2,HOXB4, m proliferation IER5L,KRT6A,LHX2,NPM3,RFTN1,RGS9,SLC29A1, u n SOX2,SOX4,SOX14,SYTL1,TNF,TNKS2,TNKS1BP1, o TTC1,ZBTB11 l.o 3 Cellsignaling,moleculartransport, ADRB1,BAI3,CCR6,CNR2,CXCR1,CYSLTR1,GAB1, rg vitaminandmineralmetabolism GABBR2,GNG7,GPER,GPR1,GPR15,GPR25,GPR44, b/ y GPR62,GPR88,GPR125,GPR146,GPR151,GPRC5A,LGR4, g u LPAR2,MC4R,NPY,PIK3CG,PTGDR,PTGER1,RXFP4,SSTR2 e s 4 Geneticdisorder,neurological APEX1,CDCA8,CDK16,CDK19,CDK5R1,CORO1C, t o disease,dermatologicaldiseases COX7A2L,EIF6,EIF4B,GDI1,GDI2,GNL1,HOXC13,LZTS1, n andconditions MSN,NOL3,NUDT5,OSGEP,PAICS,PLEK,RAB5C,RCC2, M a RPS6,RUFY1,SAP30BP,SCT,SET,TPM2,TUFM,ZNF212 rc 5 DNAreplication,recombination APLF,ARHGEF4,DLX2,DNTT,ERCC4,GATA6,HEYL, h 3 andrepair,cellmorphology, IKZF1,KIF5A,LIG4,MECOM,MSX2,PCNA,PDCD6, , 2 cellularfunctionandmaintenance PECAM1,POLI,RFC4,RPA1,SP8,TAOK3,VPS28,VPS37B, 0 1 WNT5B,WRN,XPA,XRCC2,XRCC6 9 GenesHypomethylatedinNewMM 1 Cellsignaling,carbohydrate ADORA1,BDKRB1,BDKRB2,CHRM2,FFAR1,FFAR3, metabolism,lipidmetabolism FPR1,GABBR2,GLP2R,GPR20,GPR32,GPR113,GPR120, GPR139,GPR161,GPR109B,GPRASP2,HBEGF,MC2R, MCHR1,MTNR1A,NMUR1,NPY5R,OPN1LW,OXGR1, RGR,RHO,TAC3,TACR2,TAS1R2,VN1R4 2 Neurologicaldisease, CAPN9,CAPN11,CDH4,CDH7,CDH17,CST3,DNAH1, immunologicaldisease, DNAH5,DNAH10,DNAH17,DNAI2,EDN3,EID1,EIF4EBP2, inflammatorydisease IL1R1,IL1RAPL1,LIG3,MAPK6,MBP,MYOZ1,NRAP, PDLIM2,PLP1,RNASE2,SIGIRR,STK39,TGM2 3 Agpresentation,cell-to-cell BGN,DOCK1,EFNA3,Hsp70,IFNA1/IFNA13,IgG,IL1,IL25, signalingandinteraction, IL12,IL17A,JPH3,KIR2DL3,KRT2,KRT3,KRT9,KRT14, hematologicalsystemdevelopment KRT20,KRT23,LBP,LGALS7/LGALS7B,MYLK2,POTEKP, andfunction S100A3,SELP,SERPINB3,SERPINB4,SH3GL2,Tlr, TNFRSF1B,TREM1,TUBA3C/TUBA3D 4 Cancer,connectivetissuedisorders, ACR,ACTG2,ADCY,ADCY8,cacn,CACNA1B,Cacng, reproductivesystemdevelopment CACNG1,CACNG3,CACNG5,CNGA3,CNR1,COTL1, andfunction GNAO1,GNG2,KIF23,LPO,MYLK3,MYO7A,PCP4,PDE6G, POU2F2,PPP3R2,PSCA,RIT2,SHROOM3,SPTB,TUBB8,VIL1 5 Lipidmetabolism,molecular ABCG5,ABCG8,ADAMTS13,Akt,AMPK,APOB,CD22, transport,smallmolecule CEBPA,COL15A1,COL5A3,COL6A3,CYP3A4,CYP4F2, biochemistry CYP8B1,FCAR,GRB10,HNF4adimer,KLK8,LIPE,MRC2, NR0B2,NR1H4,PCK1,PTPN3,SCARB1,SLC22A7,STAR, T3-TR-RXR,VWF (Tablecontinues) 6 METHYLOME OFMULTIPLEMYELOMA TableI. (Continued) BiologicalFunctions Genes GenesHypermethylatedinNewMM 1 Geneexpression,aminoacid ACTR3,ANP32E,BTAF1,CBX5,CDK9,DPYSL2,ERCC4, metabolism,posttranslational FUBP1,GTF2H1,HNRNPA0,HNRNPA1,HNRNPUL1, modification HOXA11,LSM7,MDFIC,MEPCE,NAA38,NNT,PLOD3, POU2AF1,PRMT5,PRUNE,SART3,TAF4,TAF11,TUBB 2 Geneticdisorder,inflammatory AATF,AIMP1,AIMP2,BARD1,EFNA1,EPHA5,FXC1, disease,respiratorydisease HNRNPC,HSF1,LMO3,LZTR1,NEDD9,NOD1,NOD2, NR1H3,SIRT1,SS18L1,STMN2,SUGT1,TIMM9,TIMM8A, TOMM40L,TOMM70A,TRIP6,XRCC6,ZNF584 3 DNAreplication,recombination, ACACB,AKT1S1,ARFIP2,ATF5,BTG2,CD34,CDKN2A, andrepair,cellcycle,cellular CDKN2B,CENPK,CHAF1A,CHTF18,GSC, development HIST1H2AB/HIST1H2AE,ID3,PCNA,PLEKHA8,POLD1, RFC4,RPS16,SLC3A2,TBX5,TCF19,UBR7,ULK1,WRN 4 Gastrointestinaldisease,organismal ANKS1A,APOB,BRMS1,C14orf156,DNAJA1,DNAJB11, injuryandabnormalities,genetic DNAJC9,EML1,EVX1,FOS,FTL,KCNQ4,KIAA1279,LCP1, disorder PDPK1,PIK3CA,PRKCB,RASSF5,SAP18,SET,SGK3, SLC4A10,SPTBN2,TPM2 5 Lymphoidtissuestructureand BIRC2,BPGM,C1orf56,CCDC71,CHAT,DHX15,FAM81A, development,tissuemorphology, GGA3,ID2,KCNC4,NDUFS3,NFKBIE,NOLC1,PECI,POGK, moleculartransport POLK,PTEN,PTPN2,SLC9A3R1,SLITRK1,SOX4,STC1, D TRAPPC3,ZNF264/ZNF805 o w n lo a d and their receptors, GFI1, etc.) and hypermethylated (EZH2, significantlyfoundtooccurwithinCpGislands,whereasbothnew e d variousHOXmembers,SOX,andWNTfamilymembers)thathave andrelapsedcasesofMMhadaberrantlymethylatedlocilocated fro not beenpreviouslyimplicated inmyelomagenesis. outside of CpG islands (Fig. 3). This shows that there are quali- m h Aberrant methylation was not distributed randomly across tative differences in epigenetic alterations between MGUS and ttp chromosomes.DifferentiallymethylatedHpaIIfragmentsshowed myeloma and is also consistent with recent findings that have ://w significant regional differences with positional association with highlightedthataberrantmethylationincancercanoccuroutside w chromosomes 1, 9, 11, 15, 17, 19, 20, and 21. Furthermore, to of CpGislands (16). w determinewhethertheseaberrantlymethylatedregionssharedany .jim common DNA elements, we performed a search for TF binding Genes involved inDNAmethylation machineryare m sites enriched in these loci. Significant overrepresentation of differentiallymethylatedandexpressedinmyeloma uno binding sites for TFs that have been implicated (PAX, MEF, and BecausewesawanoveralldecreaseinmethylationinMGUS,we l.o MAZ) in myelomagenesis was observed (Table II). Various TFs analyzedourdatasetforthemethylationstatusofgenesinvolvedin brg/ suchasHNF6,PAX4,STAT3,EVI1,andothersweresignificantly thisprocessandalsoevaluatedfortheexpressionofthesegenesin y g enriched in relapsed cases of MM, including some that have not large gene expression datasets (Arkansas datasets GSE5900 and u e been implicated inthepathophysiologyof MM previously. GSE2658)thathavebeenpublishedpreviously(4).Specifically,we st o Finally,wealsosoughttodeterminewhetherCpGislandswere analyzedthemethyltransferasesDNMT1,DNMT3a,andDNMT3b n M predominantly affected by differential methylation in myeloma. and observed that DNMT3a was significantly underexpressed in a We observed that aberrant methylation occurring in MGUS was a large independent cohort of myeloma gene expression profiles rc h 3 , 2 0 1 TableII. Transcriptionfactorbindingsitesenrichedindifferentiallymethylatedloci 9 TranscriptionFactor GenesinOverlap Motif MGUS ARNT 202 NDDNNCACGTGNNNNN ATF6 95 TGACGTGG E47 205 VSNGCAGGTGKNCNN USF 203 NNRNCACGTGNYNN LXR 55 TGGGGTYACTNNCGGTCA TCF1P 184 GKCRGKTT NewMM PAX2 36 NNNNGTCANGNRTKANNNN GATA 161 WGATARN MEF2 21 NNTGTTACTAAAAATAGAAMNN E2F 56 TWSGCGCGAAAAYKR CACCCbindingfactor 205 CANCCNNWGGGTGDGG RelapsedMM STAT3 113 NNNTTCCN PAX4 193 NAAWAATTANS EGR3 56 NTGCGTGGGCGK EVI1 44 AGATAAGATAA HNF6 189 HWAAATCAATAW MAZ 135 GGGGAGGG SREBP1 136 NATCACGTGAY TheJournal ofImmunology 7 The observation of global hypomethylation in MGUS builds upontworecentstudiesthatnoticedlossofmethylationinplasma cellneoplasms(18,19).ThefirststudybySalhiaetal.(19)reports hypomethylation as early as in MGUS and noted no difference between methylation of new and treated myeloma samples. The second study by Walker et al. (18) noticed hypomethylation in myeloma samples, butdid not seeanysignificantdifferences be- tween normal plasma cells and MGUS samples. Remethylation was seen in plasma cell leukemia samples in comparison with MM. In contrast to the latter study, which interrogated 27,578 CpGsites(correspondingto14,495genes),theformerstudyused an approach looking at a limited set of only 1,505 CpG sites (corresponding to 807 genes), thus limiting generalizability of those findings. The study presented in this work was able to dis- tinguish between normal, MGUS, and myeloma (new and re- lapsed)samplesonunsupervisedclusteringandrevealedclear-cut, widespreaddifferencesbetweenthesegroups.WeusedtheHELP FIGURE 3. Differential methylation in MGUS occurs mainly within assay, a high-resolution assay, that is not biased toward CpG is- CpG islands. The genomic location of differentially methylated regions lands and has been able to show stage-specific differences in wasmappedtoCpGislandsforeachsubcategoryofmyeloma.DMRsin various tumor models (5, 20). This assay analyzes 25,626 CpG D MGUSweresignificantlyenrichedwithinCPGislands(darkgray)com- sites and thus is comparable to the system used by Walker et al. o w paredwiththepercentageofprobesinthewholearray(proportionstest, (18). Just like Walker et al. (18), we observe relative hyper- n p,0.01).DMRsinNEWMMandRELweresignificantlylocatedoutside lo ofCpGislands(proportionstest,p,0.01). methylation in late stages of MM; however, we observe hypo- ad e methylation much earlier, that is, already at the level of MGUS, d andnotonlyMM,similartothereportsofSalhiaetal.(19).This fro m (Fig. 4A) and had a significant impact on survival. After sepa- discrepancymightbeduetothelimitednumberofNLandMGUS h rating patients into four quartiles according to their DNMT3A samples (3 and 4, respectively) used by Walker et al. (18). Our ttp expression, we found that high DNMT3A expression (Q4) at findingsofearlyhypomethylationinMGUS,whichismaintained ://w baseline conveyed a significantly overall survival compared with throughouttheearlyMMstage,butthenconvertstopredominant w w pgarotiuepn,tslowgirtahnkvetreyst,lopw=D0N.0M1,TF3igA.4eCxp).reIsnsioounrc(noh=ort14o0fpiantieenactsh, hmyapgeernmeesitsh.ylation, thus represent a novel assessment of myelo- .jim m we found the promoter of DNMT3A to be aberrantly hyper- ThefindingofhypomethylationinMGUSandmyelomaisalso u n methylated (Fig. 4B). Mutations of the gene encoding DNMT3a differentfromtheprevioussinglelocusstudiesthathavefocused o haverecentlybeenreportedformyelodysplasticsyndrome(MDS) onhypermethylationoftumorsuppressorgenesinmyeloma(21). l.org and AML (17) and have not been examined in myeloma. Se- The classical cancer-associated epigenetic alteration is promoter b/ quencingofthecatalyticdomainofDNMT3Ain23ofourCD138 CpG island hypermethylation. Even though global hypo- y g purifiedplasmacellsamplesrevealednoexonicmutationorSNPs. methylation was reported in the pioneering epigenetic studies in ue s These results suggest that DNMT3A expression in myeloma is cancer (22), most investigators have subsequently focused on t o mainlyreduced byaberrant hypermethylation. hypermethylationinCpGislandswithinselectedgenepromoters. n M Array-basedDNAmethylationassaysthathavemainlyfocusedon a MyelomacelllinesaresensitivetoDNMTinhibitors rc CpG islands have supported the biased perception that CpG is- h Lastly,becauseweobservedthatrelapsedcasesofmyelomaexhibit landsareuniquelyresponsibleformethyl-DNA–inducedgenomic 3, 2 increased aberrant methylation, wewanted to determine the sen- changes. Newer iterations of assays for the analysis of DNA 0 1 sitivity of these cells to hypomethylating agents. We tested the methylation,whicharebasedonnext-generationsequencing,have 9 efficacyofDNMTinhibitor,decitabine,inlongstandingmyeloma revealed a much more complex picture with DNA methylation cell lines that exhibit various cytogenetic alterations and are re- occurring further upstream in CpG island shores, in introns, as flective of relapsed cases. Decitabine was able to significantly wellasextendingmuchfurtherdownstream.Withthisinmind,it inhibittheproliferationofthesemyelomacelllinesatbothlowand is difficult to speculate about the true meaning of differential high doses (Fig. 5). In fact, the dose of 0.5 mM has shown to be methylationinCpGislands,andthisclearlypointstotheneedof hypomethylating without causing DNA damage and was signifi- further in-depth investigations with these newer methods. Hypo- cantly able to inhibit myeloma cell proliferation, thus suggesting methylation has been hypothesized to lead to carcinogenesis by that reversal of hypermethylation can be a potential therapeutic promoting genomic instability (23, 24) as well as by aberrant strategyinthese cases. activation of oncogenes (23). Because myeloma is characterized byvarious chromosomal translocations anddeletions, thefinding Discussion of early hypomethylation may be an important pathogenic Weshowthatmyelomaischaracterizedbywidespreadalterations mechanismthatpromotessecondarygeneticeventsthatleadtothe in DNA methylation that are specific for different stages of the development offull-blowndisease. disease. Early stage of MGUS is characterized by predominant Efforts to distinguish MGUS from MM in an unsupervised hypomethylationthatisprevalentenoughtodistinguishthesecells manner using gene expression profiling data from large clinical from normal control plasma cells. The later stages acquire pro- trialshavenotbeensuccessfultodate(25,26).AlthoughMGUS gressive hypermethylation with maximum methylation seen in samples can readily be separated from NL samples, they appear relapsed cases. These data provide a comprehensive epigenomic identical to MM at a gene expression profiling level. Using map of myelomagenesis and also identify important oncogenic methylationdata,wewereabletoclearlydistinguishbetweenthe gene pathwaysthat are targeted bythese aberrant changes. majorityofNL,MGUS,MM,andRELsamples.Geneexpression 8 METHYLOME OFMULTIPLEMYELOMA D o w n lo a d e d fro m h ttp ://w w w .jim m u n o l.o rg b/ y g u e 2F2I)G,UMRGEUS4.(nD=N44M),Ta3nAdMisMund(ner=ex5p5r9es)sferdomanAdrhkyapnesarmsdetahtayslaettesdGiSnEm59y0e0loamnad.G(AS)EB26o5x8pslohtoswshsoigwniinfigcagnetnlyereexdpurceesdsioenxpvraelsuseiosninleCveDls13in8+mcyeelllosmfraom(ttNesLt,(pn,= st on 0.05).TheMMsamplesincludedinthesedatasetscontaineduntreatedsamples.(B)BoxplotsrepresentingthemethylationoftheDNMT3Apromoterinnormal M a plasmacells(NL),MGUS,andmyelomasamples(MM)showhypermethylationinMMcomparedwithNL(ttest,p,0.05).(C)LowDNMT3Aexpressionis rc h associatedwithworseoverallsurvivalinTT2.DifferencesbetweengroupswithtopandbottomquartilegeneexpressionareshownwithKaplan–Meiergraphs. 3 , 2 0 profiling can be affected by large-scale changes in just a few ationofDNA,itisnotgloballybiasedbydifferencesinafewloci, 1 9 transcripts. Because methylation analysis is dependent on evalu- andthusisnotaffectedbychangesthatmayoccuronlyinami- nority of the analyzed cells. It is therefore more reflective of bi- ology of premalignant conditions, as illustrated by our previous study in esophageal carcinogenesis (6). In the present study, we used CD138+ selection to isolate the myelomatous and normal plasma cells; thus, it is possible that the observed difference be- tween MGUS and MM samples is in part due to dilution with normalsamples.Strategiessuchasmultiparameterflowcytometry sortingarebeingusedtoensureclonalityinfuturestudies.Atthis pointitshouldbenotedthat,althoughtwosamplesincludedinour study were in clinical remission with ,3% of plasma cells ob- served on bone marrow biopsy, they were quite different at the epigenetic level. Whereas REM2 as expected clustered with MGUS samples, REM1 clustered with the relapsed samples, suggesting the presence of epigenetic higher risk features that were notappreciated withconventionalmethods. FIGURE5. Decitabinetreatmentleadstogrowthinhibitioninmyeloma Despite the continued progress and the improvement of treat- celllines.Celllinesweretreatedwithdifferentdosesofdecitabinefor5d, ment with newer drugs, drug resistance remains a big concern. andproliferationwasassessedbytheMTSassay.Significantinhibitionof growthwasseenaftertreatmentevenwithlowdosesofdecitabine(ttest, Strategiestousehighlyactivedrugsincombinationupfronthave p,0.05).Shownisonerepresentativeofthreeexperiments. resultedinasignificantimprovementofprogression-freesurvival; TheJournal ofImmunology 9 however, they have only had limited effect on overall survival. In contrast to early MM, relapsed MM shows predominant Multiple studies in other cancers have shown association of hypermethylation.Althoughwecannotshowaclearreasonforthis, hypermethylationphenotypeswithresistancetotreatmentviathe othershaveshownthatexposuretochemotherapycanleadtolarge- inactivation of various cell cycles and other genes involved in scalegeneticandepigeneticchangesintumorsamples[reviewedin chemosensitivity. The presented study identifies a relative hyper- (31–33)].Therelapsedcasesexaminedinourcohortwereheavily methylationincasesofrelapsedmyelomascomparedwithnormal pretreated patients who have been exposed to multiple MM plasmacells.Thisdifferenceisfurtherenhancedinthecomparison agents, including bortezomib. It is plausible that our relapsed betweennewlydiagnosedMMandrelapsedMM(datanotshown) population is enriched with patients who have a higher overall and consistent with the observation made by Walker et al. (18) degree of methylation, as hypermethylated phenotype has been comparingplasmacellleukemia,averyadvancedhigh-riskstage associatedwithchemotherapyresistanceinmultiplecancers(34– ofMM,withnewlydiagnosedMM.Atthispointitisnotpossible 36)andhasbeenlinkedwithresistancetobortezomib(37).Inthe to say whether this hypermethylation phenotype is the result of current study, we have shown that low-dose decitabine signifi- treatment or due to the biology of the disease. However, it sug- cantlyreducesviabilityofseveralMMcelllinesasmodelsoflate- gestsinclusionofdemethylatingagentssuchasDNMTinhibitors stage disease. Low doses of decitabine have been shown to sig- asaviabletreatmentoption.Invitrofindingsbyusandothers(27, nificantly reduce DNMT levels without the additional DNA 28) with representative myeloma cell lines using the DNMT in- damage activity (38,39). Ongoing longitudinal studies following hibitor decitabine support this assumption, and clinical trials patients from diagnosis to relapse will hopefully answer the testing this hypothesis are currently underway. questionastowhetherhypermethylationcanbedetectedearlyon Inadditiontoglobalquantitativedifferencesinmethylation,we and whether it is associated with survival. If hypermethylation also found differences in sites of aberrant methylation between weretobedetectedearlyandtopredictforshortprogression-free D MGUS and myeloma. We observed that even though changes in survival,itwouldberationaltoaddademethylatingdrugsuchas o w MGUSinvolvedCpGislands,thelaterchangesseeninmyeloma decitabine totheinitial therapy. n lo preferentially occurred outside of CpG islands. Recent work has a d e sbiemaiblaerrlryansthlyowmnetthhyaltacteydto/hsiynpeosmpertehsyelnatteodutisnidceanocfeCr,paGndiasslasnaydsstchaant Disclosures d fro J.M.andS.B.S.areontheSpeakers’BureauxofCelgeneandMillenium. m cover these loci are critical to discovering the full landscape of Theotherauthorshavenofinancialconflictsofinterest. h altered methylome of malignancies (16). Our novelfindings thus ttp demonstratebothqualitativeandquantitativedifferencesbetween ://w these subsets of disease. References w w genFeintiacllcyh,awnegeasl.soWperoovbisdeerviendsigthhatst DinNtoMthTe3Agenisessiisgnoiffitchaenstelyerpei-- 1. AMn.gDuhiaondoa,pkAa.r,,SJ..NAe.vTinusc,hBm.aBna,rClo.gAiec,hJ.arDy.aS,hKa.ugShanlteesr,syC,.JrG.,aasnpdarAe.ttPoo,tFti..Z20h0a9n., .jim Geneexpressionprofilesoftumorbiologyprovideanovelapproachtoprognosis m ducedinmyelomaandisaberrantlymethylatedearlyinbothMGUS andmayguidetheselectionoftherapeutictargetsinmultiplemyeloma.J.Clin. u n andmyeloma.DNMT3Aisanimportantmethyltransferasethathas Oncol.27:4197–4203. o beenshowntobemutatedinalargeproportionofAMLcases(17). 2. ZS.hYana,ccFo.,bYy,.JH.Suaanwgy,eSr,.BC.oBlluar,inJ.gtPo.nS,teetwaal.rt2,0I0.6H.aTnhaemmuroal,ecSu.laGrucplatas,siJfi.cEatpisotneionf, l.org WedidnotfindanyDNMT3Amutationsinourcasesandshowed multiplemyeloma.Blood108:2020–2028. b/ thatthisenzymecanbeaberrantlymethylatedincanceraswell.It 3. BJ.eSrghsaauggehln,esPs.y,LJ.r,.2W00.5.MC.ycKliunehDl,dyFs.reZghualant,ionJ.:aSnaewayrleyr,anBd.uBniafrylionggiep,atahnod- y g isgenerallyacceptedthatDNMT3AandDNMT3Bareresponsible geniceventinmultiplemyeloma.Blood106:296–303. ue s for the establishment of methylation, whereas DNMT1 ensures 4. Zhan,F.,B.Barlogie,V.Arzoumanian,Y.Huang,D.R.Williams,K.Hollmig, t o maintenance of methylation, thus guaranteeing the faithful trans- Mex.prPeisnseiodna-Rsiogmnaatnu,reGo.fTbreicnoigt,nFm. ovannoclRohneael,gMam.mZoapnagtahryi,eevtidael.nt20in07m.uGlteinpele- n M missionofDNAmethylationmarksfromonecellgenerationtothe myelomaislinkedtogoodprognosis.Blood109:1692–1700. a next. However, this longstanding view is being challenged, and 5. Figueroa, M. E., S. Lugthart, Y. Li, C. Erpelinck-Verschueren, X. Deng, rch P.J.Christos,E.Schifano,J.Booth,W.vanPutten,L.Skrabanek,etal.2010. 3 newer models suggest a role for the de novo enzymes DNMT3A DNA methylation signatures identify biologically distinct subtypes in acute , 2 andDNMT3Binmethylationmaintenance(29).Infact,recentdata myeloidleukemia.CancerCell17:13–27. 0 1 show that DNMT3A mutations impart an adverse prognosis in 6. Alvarez,H.,J.Opalinska,L.Zhou,D.Sohal,M.J.Fazzari,Y.Yu,C.Montagna, 9 E. A. Montgomery, M. Canto, K. B. Dunbar, et al. 2011. Widespread hypo- AML (30). Our data show that dysregulation of this methyl- methylationoccursearlyandsynergizeswithgeneamplificationduringesoph- transferase can also be seen in myeloma and adds to the impor- agealcarcinogenesis.PLoSGenet.7:e1001356. 7. Oda,M.,J.L.Glass,R.F.Thompson,Y.Mo,E.N.Olivier,M.E.Figueroa, tance of this gene in hematologic malignancies. Analysis of the R. R. Selzer,T. A. Richmond,X. Zhang, L. Dannenberg,et al. 2009. High- publiclyavailabledatafromWalkeretal.(18)confirmsasignifi- resolutiongenome-widecytosinemethylationprofilingwithsimultaneouscopy cantly higher level of methylation for newly diagnosed MM numberanalysisandoptimizationforlimitedcellnumbers.NucleicAcidsRes. 37:3829–3839. comparedwithnormalsamplesandaveryhighmethylationstatus 8. Chapman, M. A., M. S. Lawrence, J. J. Keats, K. Cibulskis, C. Sougnez, of MGUS samples with a strong trend toward significance (data A.C.Schinzel,C.L.Harview,J.P.Brunet,G.J.Ahmann,M.Adli,etal.2011.Initial notshown).However,generalizationofthisdataislimiteddueto genomesequencingandanalysisofmultiplemyeloma.Nature471:467–472. 9. Khulan, B., R. F. Thompson, K. Ye, M. J. Fazzari, M. Suzuki, E. Stasiek, the low number of normal and MGUS samples included in that M.E.Figueroa,J.L.Glass,Q.Chen,C.Montagna,etal.2006.Comparative study.Unfortunately,duetosamplelimitation,wewerenotableto isoschizomerprofilingofcytosinemethylation:theHELPassay.GenomeRes. 16:1046–1055. obtainRNAforgeneexpressionprofilesfromthesamplesusedto 10. Zhou,L.,J.Opalinska,D.Sohal,Y.Yu,Y.Mo,T.Bhagat,O.Abdel-Wahab, perform the methylation analysis. Although we are not able to M.Fazzari,M.Figueroa,C.Alencar,etal.2011.Aberrantepigeneticandgenetic directly correlate methylation status and gene expression, the marksareseeninmyelodysplasticleukocytesandrevealDock4asacandidate pathogenicgeneonchromosome7q.J.Biol.Chem.286:25211–25223. findingofhypermethylationandunderexpression(comparedwith 11. Thompson,R.F.,M.Reimers,B.Khulan,M.Gissot,T.A.Richmond,Q.Chen, normal plasma cells) seen in two different datasets, respectively, X.Zheng,K.Kim,andJ.M.Greally.2008.Ananalyticalpipelineforgenomic as well as the DNMT3A expression effect on survival suggest representationsusedforcytosinemethylationstudies.Bioinformatics24:1161– 1167. a role for DNMT3A in myelomagenesis that warrants further in- 12. Subramanian, A., P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, vestigation.IfDNMT3Aexpressionandmethylationplayarolein M.A.Gillette,A.Paulovich,S.L.Pomeroy,T.R.Golub,E.S.Lander,and J.P.Mesirov.2005.Genesetenrichmentanalysis:aknowledge-basedapproach the progression of MGUS to MM, requiring treatment is the forinterpretinggenome-wideexpressionprofiles.Proc.Natl. Acad.Sci. USA subject ofan ongoinginvestigation. 102:15545–15550.

Description:
nome stability and regulating gene expression. To characterize . tion are seen in myeloma and have the power to discriminate between . the MGUS, NEWMM, or REL cases versus control samples. Volcano plots . PDLIM2, PLP1, RNASE2, SIGIRR, STK39, TGM2. 3 . Lymphoid tissue structure and.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.